ChipFind - Datasheet

Part Number MB90210

Download:  PDF   ZIP

Document Outline

DS07-13501-6E
FUJITSU SEMICONDUCTOR
DATA SHEET
16-bit Proprietary Microcontroller
CMOS
F
2
MC-16F MB90210 Series
MB90214/P214A/P214B/W214A/W214B/V210
s
OUTLINE
The MB90210 series is a line of 16-bit microcontrollers particularly suitable for system control of video cameras,
VTRs, and copiers. The F
2
MC-16F CPU integrated in this series is based on the F
2
MC*-16, while providing
enhanced instructions for high-level languages and supporting extended addressing modes.
The MB90210 series incorporates a variety of peripheral resources such as a PWC timer with 4 channels, a 10-
bit A/D converter with 8 channels, UART serial ports with 3 channels (1 channel for CTS and 1 channel for dual
input/output pin switching), 16-bit reload timers with 8 channels, and an 8-bit PPG timer with 1 channel.
MB90P214B/W214B is under development.
*: F
2
MC stands for FUJITSU Flexible Microcontroller.
s
PACKAGE
80-pin Plastic QFP
(FPT-80P-M06)
80-pin Ceramic QFP
(FPT-80C-C02)
MB90210 Series
2
s
FEATURES
F
2
MC-16F CPU
· Minimum execution time: 62.5 ns/16-MHz oscillation (using a duty control system)
· Instruction sets optimized for controllers
Upward object-compatible with the F
2
MC-16(H)
Various data types (bit, byte, word, and long-word)
Instruction cycle improved to speed up operation
Extended addressing modes: 25 types
High coding efficiency
Access method (bank access with linear pointer)
Enhanced multiplication and division instructions (with signed instructions added)
Higher-precision operation using a 32-bit accumulator
· Extended intelligent I/O service (Automatic transfer function independent of instructions) access area
expanded to 64 Kbytes
· Enhanced instruction set applicable to high-level language (C) and multitasking
System stack pointer
Enhanced pointer-indirect instructions
Barrel shift instruction
Stack check function
· Increased execution speed: 8-byte instruction queue
· Powerful interrupt functions: 8 levels and 29 sources
Integrated Peripheral Resources
· ROM
: 64 Kbytes (MB90214)
EPROM : 64 Kbytes (MB90W214A/W214B)
OTPROM: 64Kbytes (MB90P214A/P214B)
· RAM: 3 Kbytes (MB90214)
4 Kbytes (MB90P214A/P214B/W214A/W214B/V210)
· General-purpose ports: max. 65 channels
· PWC timer with time measurement function: 4 channels
· 10-bit A/D converter: 8 channels
· UART: 3 channels
· Including: 1 channel with CTS function
1 channel with I/O pin switching function
· 16-bit reload timer
Toggled output, external clock, and gate functions: 4 channels
External clock and gate functions: 4 channels
· 8-bit PPG timer: 1 channel
· DTP/External-interrupt inputs: 4 channels
· Write-inhibit RAM: 256 bytes (MB90V210: 512 bytes)
· Timebase counter: 18 bits
· Clock gear function
· Low-power consumption mode
Sleep mode
Stop mode
Hardware standby mode
3
MB90210 Series
Product Description
· MB90214 is a mask ROM product.
· MB90P214A/P214B are OTPROM products.
· MB90W214A/W214B are EPROM products. ES only.
· Operating temperature of MB90P214A/W214A is ­40
°
C to +85
°
C. (However, the AC characteristics is assured
in ­40
°
C to +70
°
C)
· MB90V210 is a evaluation device for the program development. ES only.
MB90210 Series
4
s
PRODUCT LINEUP
MB90P214A
MB90P214B
MB90W214A
MB90W214B
MB90V210
Classification
Mask ROM product
OTPROM product
EPROM product
For evaluation
ROM size
64 Kbytes
64 Kbytes
64 Kbytes
--
RAM size
3 Kbytes
4 Kbytes
4 Kbytes
4 Kbytes
CPU functions
The number of instructions:
412
Instruction bit length:
8 or 16 bits
Instruction length:
1 to 7 bytes
Data bit length:
1, 4, 8, 16, or 32 bits
Minimum execution time:
62.5 ns/16 MHz
Interrupt processing time:
1.0
µ
s/16 MHz (min.)
Ports
I/O ports (N-ch open-drain):
8
I/O ports (CMOS):
57
Total:
65
PWC timer
Number of channels: 4
16-bit reload timer operation (operating clock cycle: 0.25
µ
s to 1.31 ms)
16-bit pulse-width count operation (Allowing continuous/one-shot measurement, H/L width
measurement, inter-edge measurement, and divided-frequency measurement)
10-bit
A/D converter
Resolution: 10 or 8 bits, Number of inputs: 8
Single conversion mode (conversion for each input channel)
Scan conversion mode (continuous conversion for up to 8 consecutive channels)
Continuous conversion mode (repeated conversion for a selected channel)
Stop conversion mode (conversion every fixed cycle)
UART
Number of channels: 3
(1 channel with CTS function; 1 channel with I/O pin switching function)
Clock-synchronous transfer mode
(full-duplex double buffering, 7- to 9-bit data length, 2400 to 62500 bps)
Asynchronous transfer mode
(full-duplex double buffering, 7- to 9-bit data length, 2400 to 62500 bps)
Timer
Number of channels: 4 channels
×
2 types
16-bit reload timer operation (operating clock cycle: 0.25
µ
s to 1.05 s)
8-bit PPG timer
Number of channels: 1
8-bit PPG operation (operating clock cycle: 0.25
µ
s to 6 s)
DTP/External
interrupt
Number of inputs: 4
External interrupt mode (allowing interrupts to activate at four different request levels)
Simple DMA start mode (allowing extended I
2
OS to activate at two different request levels)
Write-inhibit RAM
RAM size: 256 bytes (MB90V210: 512 bytes)
RAM write-protectable with WI pin
Standby mode
Stop mode (activated by software or hardware) and sleep mode
Gear function
Machine clock operating frequency switching: 16, 8, 4, or 1 MHz (at 16 MHz oscillation)
Package
FPT-80P-M06
FPT-80C-C02
PGA-256C-A02
MB90214
Part number
Item
5
MB90210 Series
s
DIFFERENCES BETWEEN MB90214 (MASK ROM PRODUCT) AND MB90P214A/P214B/
W214A/W214B
Note: MB90V210, device used for evaluation, is not warranted for electrical specifications.
MB90P214A
MB90P214B
MB90W214A
MB90W214B
ROM
Mask ROM
64 Kbytes
OTPROM
64 Kbytes
EPROM
64 Kbytes
Pin function
43 pins
MD2 pin
MD2/V
PP
pin
MB90214
Part number
Item
MB90210 Series
6
s
PIN ASSIGNMENT
X1
V
CC
P00/D00
P01/D01
P02/D02
P03/D03
P04/D04
P05/D05
P06/D06
P07/D07
P10/D08
P12/D10
P13/D11
P14/D12
P15/D13
P11/D09
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
X0
V
SS
RST
P57/WI
P56/RD
P55/WRL
P54/WRH/CTS0/INT3
P53/HRQ
P52/HAK
P51/RDY
P50/CLK
P82/INT2/ATG
P81/INT1
P80/INT0
P75/SOD0
P74/SID0
P73/SCK0
P72/SOD1
P71/SID1
P70/SCK1
HST
MD2
MD1
MD0
P16D14
P17D15
P20A00/TIN0
P21/A01/TIN1
P22/A02/TIN2
P23/A03/TIN3
P24/A04/TIN4
P25/A05/TIN5
P26/A06/TIN6
P27/A07/TIN7
V
SS

P
31/A09/
PPG
P32/A10/TOUT0
P36/A14/SCK3
P37/A15/S
I D3
P40/A16/SOD3
P30/A08
P34/A12/TOUT2
P41/A17/SC
K2
P42/A18/S
I D2
P43/A19/S
OD2
P44/A20/
PWC0/POUT0
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
P67/AN7
P66/AN6
P65/AN5
P64/AN4
P63/AN3
P62/AN2
V
SS
P61/AN1
P60/AN0
AV
SS
AVRL
AV
CC
PWC3/P47/A23/POUT3
PWC2/P46/A22/POUT2
PWC1/P45/A21/POUT1
AVRH
(Top view)
(FPT-80P-M06)
(FPT-80C-C02)
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
P33/A11/TOUT1
P35/A13/TOUT3
7
MB90210 Series
s
PIN DESCRIPTION
* : FPT-80P-M06, FPT-80C-C02
(Continued)
Pin no.
Pin name
Circuit
type
Function
QFP*
64,
65
X0,
X1
A
Crystal oscillator pins (16 MHz)
62
RST
H
External reset request input pin
66
V
CC
Power supply
Digital circuit power supply pin
11,
34,
63
V
SS
Power supply
Digital circuit grounding level
67 to 74
P00 to P07
B
General-purpose I/O ports
These ports are available only in the single-chip mode.
D00 to D07
I/O pins for the lower eight bits of external data bus
These pins are available in an external-bus mode.
75 to 80,
1,
2
P10 to P15,
P16,
P17
B
General-purpose I/O ports
These ports are available in the single-chip mode and in an
external-bus mode with the 8-bit data bus specified.
D08 to D13,
D14,
D15
I/O pins for the upper eight bits of external data bus
These pins are available in an external-bus mode with the 16-bit
data bus specified.
3 to 6
P20 to P23
E
General-purpose I/O ports
These ports are available only in the single-chip mode.
A00 to A03
Output pins for external address buses A00 to A03
These pins are available in an external-bus mode.
TIN0 to TIN3
16-bit reload timer 1 (ch.0 to ch.3) input pins
These pins are available when the 16-bit reload timer 1 (ch.0 to
ch.3) input specification is "enabled". The data on the pin is read
as the 16-bit reload timer 1 (ch.0 to ch.3) input (TIN0 to TIN3).
7 to 10
P24 to P27
E
General-purpose I/O ports
These ports are available only in the single-chip mode.
A04 to A07
Output pins for external address buses A04 to A07
These pins are available in an external-bus mode.
TIN4 to TIN7
16-bit reload timer 2 (ch.4 to ch.7) input pins
These pins are available when the 16-bit reload timer 2 (ch.4 to
ch.7) input specification is "enabled". The data on the pin is read
as the 16-bit reload timer 2 (ch.4 to ch.7) input (TIN4 to TIN7).
12
P30
E
General-purpose I/O port
This port is available in the single-chip mode or when the middle
address control register setting is "port."
A08
Output pin for external address bus A08
This pin is available in an external-bus mode and when the middle
address control register set to "address."
MB90210 Series
8
* : FPT-80P-M06, FPT-80C-C02
(Continued)
Pin no.
Pin name
Circuit
type
Function
QFP*
13
P31
E
General-purpose I/O port
This port is available in the single-chip mode or when the middle
address control register setting is "port", with the 8-bit PPG
output is disabled.
A09
Output pin for external address bus A09
This pin is available in an external-bus mode and when the middle
address control register setting is "address."
PPG
PPG timer output pin
This pin is available when the PPG operation mode control
register specification is the PPG output pin.
14 to 17
P32 to P35
E
General-purpose I/O ports
These ports are available in the single-chip mode or when the
middle address control register setting is "port", with the 16-bit
reload timer 1 (ch.0 to ch.3) output is disabled.
A10 to A13
Output pins for external address buses A10 to A13
These pins are available in an external-bus mode and when the
middle address control register setting is "address."
TOUT0 to TOUT3
16-bit reload timer 1 (ch.0 to ch.3) output pin
These pins are available when the 16-bit reload timer 1 (ch.0 to
ch.3) is output operation.
18
P36
E
General-purpose I/O port
This port is available when the UART (ch.2) clock output is
disabled either in the single-chip mode or when the middle
address control register setting is "port."
A14
Output pin for external address bus A14
This pin is available when the UART (ch.2) clock output is
disabled in an external-bus mode and when the middle address
control register setting is "address."
SCK3
UART (ch.2) clock output pin (SCK3)
This pin is available when the UART (ch.2) clock output is
enabled.
UART (ch.2) external clock input pin (SCK3)
This pin is available when the port is in input mode and the UART
(ch.2) specification is external clock mode.
19
P37
E
General-purpose I/O port
This port is available in the single-chip mode or when the middle
address control register setting is "port."
A15
Output pin for external address bus A15
This pin is available in an external-bus mode and when middle
address control register setting is "address."
SID3
UART (ch.2) serial data input pin (SID3)
Since this input is used whenever the SID3 is in input operation,
the output by any other function must be suspended unless the
output is intentionally performed.
9
MB90210 Series
* : FPT-80P-M06, FPT-80C-C02
(Continued)
Pin no.
Pin name
Circuit
type
Function
QFP*
20
P40
E
General-purpose I/O port
This port is available when the UART (ch.2) serial data output
from SOD3 is disabled either in the single-chip mode or when the
upper address control register setting is "port."
A16
Output pin for external address bus A16
This pin is available when the UART (ch.2) serial data output
from SOD3 is disabled in an external-bus mode and when the
upper address control register setting is "address."
SOD3
UART (ch.2) serial data output pin (SOD3)
This pin is available when the UART (ch.2) serial data output is
enabled.
21
P41
E
General-purpose I/O port
This port is available when the UART (ch.2) clock output is
disabled either in the single-chip mode or when the upper
address control register setting is "port."
A17
Output pin for external address bus A17
This pin is available when the UART (ch.2) clock output is
disabled in an external-bus mode and when the upper address
control register setting is "address."
SCK2
UART (ch.2) clock output pin (SCK2)
This pin is available when the UART (ch.2) clock output is
enabled.
UART (ch.2) external clock input pin (SCK2)
This pin is available when the port is in input mode and the UART
(ch.2) specification is external clock mode.
22
P42
E
General-purpose I/O port
This port is available in the single-chip mode or when the upper
address control register setting is "port."
A18
Output pin for external address bus A18
This pin is available in an external-bus mode and when the upper
address control register setting is "address."
SID2
UART (ch.2) serial data input pin (SID2)
Since this input is used whenever the SID2 is in input operation,
the output by any other function must be suspended unless the
output is intentionally performed.
23
P43
E
General-purpose I/O port
This port is available when the UART (ch.2) serial data output
from SOD2 is disabled either in the single-chip mode or when the
upper address control register setting is "port."
A19
Output pin for external address bus A19
This pin is available when the UART (ch.2) serial data output
from SOD2 is disabled in an external-bus mode and when the
upper address control register setting is "address."
SOD2
UART (ch.2) serial data output pin (SOD2)
This pin is available when the UART (ch.2) serial data output
from SOD2 is enabled.
MB90210 Series
10
* : FPT-80P-M06, FPT-80C-C02
(Continued)
Pin no.
Pin name
Circuit
type
Function
QFP*
24
PWC0
E
PWC timer input pin
Since this input is used whenever the PWC0 timer is in input
operation, the output by any other function must be suspended
unless the output is intentionally performed.
POUT0
PWC timer output pin
This pin is available when the PWC0 is output operation.
25
P45
E
General-purpose I/O port
This port is available in the single-chip mode or when the upper
address control register setting is "port."
A21
Output pin for external address bus A21
This pin is available in an external-bus mode and when the upper
address control register setting is "address."
PWC1
PWC timer data sample input pin
Since this input is used whenever the PWC1 timer is in input
operation, the output by any other function must be suspended
unless the output is intentionally performed.
POUT1
PWC timer output pin
This pin is available when the PWC1 is output operation.
26
P46
E
General-purpose I/O port
This port is available in the single-chip mode or when the upper
address control register setting is "port."
A22
Output pin for external address bus A22
This pin is available in an external-bus mode and when the upper
address control register setting is "address."
PWC2
PWC timer input pin
Since this input is used whenever the PWC2 timer is in input
operation, the output by any other function must be suspended
unless the output is intentionally performed.
POUT2
PWC timer output pin
This pin is available when the PWC2 is output operation.
27
P47
E
General-purpose I/O port
This port is available in the single-chip mode or when the upper
address control register setting is "port."
A23
Output pin for external address bus A23
This pin is available in an external-bus mode and when the upper
address control register setting is "address."
PWC3
PWC timer input pin
Since this input is used whenever the PWC3 timer is in input
operation, the output by any other function must be suspended
unless the output is intentionally performed.
POUT3
PWC timer output pin
This pin is available when the PWC3 is output operation.
11
MB90210 Series
* : FPT-80P-M06, FPT-80C-C02
(Continued)
Pin no.
Pin name
Circuit
type
Function
QFP*
54
P50
E
General-purpose I/O port
This port is available in the single-chip mode and when the CLK
output is disabled.
CLK
CLK output pin
This pin is available in an external-bus mode with the CLK output
enabled.
55
P51
E
General-purpose I/O port
This port is available in the single-chip mode or when the ready
function is disable.
RDY
Ready signal input pin
This pin is available in an external-bus mode and when the ready
function is enabled.
56
P52
E
General-purpose I/O port
This port is available in the single-chip mode or when the hold
function is disabled.
HAK
Hold acknowledge output pin
This pin is available in an external-bus mode and when the hold
function is enabled.
57
P53
E
General-purpose I/O port
This port is available in the single-chip mode or when the hold
function is disabled in an external-bus mode.
HRQ
Hold request input pin
This pin is available in an external-bus mode and when the hold
function is enabled.
Since this input is used during this operation at any time, the
output by any other function must be suspended unless the
output is intentionally performed.
58
P54
D
General-purpose I/O port
This port is available in the single-chip mode, in the external bus
8-bit mode, or when the WRH pin output is disabled.
When these pins are open in input mode, through current may
leak in stop mode/reset mode, be sure to fix these pins to V
CC
/V
SS
level to use these pins in input mode.
CTS0
UART (ch.0) clear-to-send input pin
Since this input is used whenever the UART (ch.0) CTS function
is enabled, the output by any other function must be suspended
unless the output is intentionally performed.
When these pins are open in input mode, through current may
leak in stop mode/reset mode, be sure to fix these pins to V
CC
/V
SS
level to use these pins in input mode.
WRH
Write strobe output pin for the upper eight bits of data bus
This pin is available in the external bus 16-bit mode with the
WRH pin output enabled in an external-bus mode.
MB90210 Series
12
* : FPT-80P-M06, FPT-80C-C02
(Continued)
Pin no.
Pin name
Circuit
type
Function
QFP*
58
INT3
D
External interrupt request input pin
Since this input is used whenever external interrupts are enabled,
the output by any other function must be suspended unless the
output is intentionally performed.
When these pins are open in input mode, through current may
leak in stop mode/reset mode, be sure to fix these pins to V
CC
/V
SS
level to use these pins in input mode.
59
P55
E
General-purpose I/O port
This port is available in the single-chip mode or when the WRL
pin output is disabled.
WRL
Write strobe output pin for the lower eight bits of data bus
This pin is available in an external-bus mode and when the WRL
pin output is enabled.
60
P56
E
General-purpose I/O port
This port is available in the single-chip mode.
RD
Data bus read strobe output pin
This pin is available in an external-bus mode.
61
P57
D
General-purpose I/O port
This port is always available.
When these pins are open in input mode, through current may
leak in stop mode/reset mode, be sure to fix these pins to V
CC
/V
SS
level to use these pins in input mode.
WI
RAM write disable request input
Since this input is used during this operation at any time, the
output by any other function must be suspended unless the
output is intentionally performed.
When these pins are open in input mode, through current may
leak in stop mode/reset mode, be sure to fix these pins to V
CC
/V
SS
level to use these pins in input mode.
32,
33,
35 to 40
P60,
P61,
P62 to P67
C
Open-drain I/O ports
These ports are available when the analog input enable register
setting is "port."
AN0,
AN1,
AN2 to AN7
10-bit A/D converter analog input pins
These pins are available when the analog input enable register
setting is "analog input."
41 to 43
MD0 to MD2
F
Operation mode select signal input pins
Connect these pins directly to V
CC
or V
SS
.
44
HST
G
Hardware standby input pin
45
P70
E
General-purpose I/O port
This port is available when the UART (ch.1) clock output is
disabled.
13
MB90210 Series
* : FPT-80P-M06, FPT-80C-C02
(Continued)
Pin no.
Pin name
Circuit
type
Function
QFP*
45
SCK1
E
UART (ch.1) clock output pin
This pin is available when the UART (ch.1) clock output is
enabled.
UART (ch.1) external clock input pin
This pin is available when the port is in input mode and the UART
(ch.1) specification is external clock mode.
46
P71
E
General-purpose I/O port
This port is always available.
SID1
UART (ch.1) serial data input pin
Since this input is used whenever the UART (ch.1) is in input
operation, the output by any other function must be suspended
unless the output is intentionally performed.
47
P72
E
General-purpose I/O port
This port is available when the UART (ch.1) serial data output is
disabled.
SOD1
UART (ch.1) serial data output pin
This pin is available when the UART (ch.1) serial data output is
enabled.
48
P73
E
General-purpose I/O port
This port is available when the UART (ch.0) clock output is
disabled.
SCK0
UART (ch.0) clock output pin
This pin is available when the UART (ch.0) clock output is
enabled.
UART (ch.0) external clock input pin
This pin is available when the port is in input mode and the UART
(ch.0) specification is external clock mode.
49
P74
E
General-purpose I/O port
This port is always available.
SID0
UART (ch.0) serial data input pin
Since this input is used whenever the UART (ch.0) is in input
operation, the output by any other function must be suspended
unless the output is intentionally performed.
50
P75
E
General-purpose I/O port
This port is available when the UART (ch.0) serial data output is
disabled.
SOD0
UART (ch.0) serial data output pin
This pin is available when the UART (ch.0) serial data output is
enabled.
51,
52
P80,
P81
D
General-purpose I/O port
This port is always available.
When these pins are open in input mode, through current may
leak in stop mode/reset mode, be sure to fix these pins to V
CC
/V
SS
level to use these pins in input mode.
MB90210 Series
14
(Continued)
* : FPT-80P-M06, FPT-80C-C02
Pin no.
Pin name
Circuit
type
Function
QFP*
51,
52
INT0,
INT1
D
External interrupt request input pin
Since this input is used whenever external interrupts are enabled,
the output by any other function must be suspended unless the
output is intentionally performed.
When these pins are open in input mode, through current may
leak in stop mode/reset mode, be sure to fix these pins to V
CC
/V
SS
level to use these pins in input mode.
53
P82
D
General-purpose I/O port
This port is always available.
When these pins are open in input mode, through current may
leak in stop mode/reset mode, be sure to fix these pins to V
CC
/V
SS
level to use these pins in input mode.
INT2
External interrupt request input pin
Since this input is used whenever external interrupts are enabled,
the output by any other function must be suspended unless the
output is intentionally performed.
When these pins are open in input mode, through current may
leak in stop mode/reset mode, be sure to fix these pins to V
CC
/V
SS
level to use these pins in input mode.
ATG
10-bit A/D converter trigger input pin
When these pins are open in input mode, through current may
leak in stop mode/reset mode, be sure to fix these pins to V
CC
/V
SS
level to use these pins in input mode.
28
AV
CC
Power supply
Analog circuit power supply pin
This power supply must be turned on or off with a potential equal
to or higher than AV
CC
applied to V
CC
.
Be sure that AV
CC
= V
CC
before use and during operation.
29
AVRH
Power supply
Analog circuit reference voltage input pin
This pins must be turned on or off with a potential equal to or
higher than AVRH applied to AV
CC
.
30
AVRL
Power supply
Analog circuit reference voltage input pin
31
AV
SS
Power supply
Analog circuit grounding level
15
MB90210 Series
s
I/O CIRCUIT TYPE
(Continued)
Type
Circuit
Remarks
A
· Oscillation feedback resistor: Approx.1 M
MB90214
MB90P214B
MB90W214B
· Oscillation feedback resistor: Approx.1 M
MB90P214A
MB90W214A
B
· CMOS-level I/O
Standby control provided
MB90214: With or without pull-up/pull-down
reisistor optional
MB90P214A/P214B: Without pull-up/pull-down
resistor
MB90W214A/W214B: Without pull-up/pull-down
resistor
C
· N-ch open-drain output
· CMOS-level hysteresis input
A/D control provided
D
· CMOS-level output
· CMOS-level hysteresis input
Standby control not provided
MB90214: With or without pull-up/pull-down
reisistor optional
MB90P214A/P214B: Without pull-up/pull-down
resistor
MB90W214A/W214B: Without pull-up/pull-down
resistor
X1
X0
Standby control
X1
X0
Standby control
Digital output
Digital output
Digital input
Standby control
R
R
R
Digital input
Digital output
A/D input
R
Digital output
Digital output
Digital input
R
R
R
MB90210 Series
16
(Continued)
Note: The pull-up and pull-down resistors are always connected, regardless of the state.
Type
Circuit
Remarks
E
· CMOS-level output
· CMOS-level hysteresis input
Standby control provided
MB90214: With or without pull-up/pull-down
reisistor optional
MB90P214A/P214B: Without pull-up/pull-down
resistor
MB90W214A/W214B: Without pull-up/pull-down
resistor
F
· CMOS-level input with no standby control
Mask ROM products only:
MD2: With pull-down resistor
MD1: With pull-up resistor
MD0: With pull-down resistor
· COMS-level input with no standby control
MD2 of OTPROM products/EPROM products
only
G
· CMOS-level hysteresis input
Standby control not provided
· With input analog filter (40 ns Typ.)
H
· CMOS-level hysteresis input
Standby control not provided
· With input analog filter (40 ns Typ.)
· With pull-up resistor
MB90214: With or without pull-up/pull-down
resistor optional
MB90P214A/W214A/P214B/W214B:
With pull-up resistor
Digital input
Digital output
Digital output
R
R
R
Digital input
R
Digital input
R
V
PP
power supply
R
Analog filter
Digital input
Pull-up
resistor
R
R
Digital input
Analog filter
: P-type transistor
: N-type transistor
17
MB90210 Series
s
HANDLING DEVICES
1. Preventing Latchup
CMOS ICs may cause latchup when a voltage higher than V
CC
or lower than V
SS
is applied to input or output
pins, or when a voltage exceeding the rating is applied between V
CC
and V
SS
.
If latch-up occurs, the power supply current increases rapidly, sometimes resulting in thermal breakdown of the
device. Use meticulous care not to let any voltage exceed the maximum rating.
Also, take care to prevent the analog power supply (AV
CC
and AVRH) and analog input from exceeding the digital
power supply (V
CC
) when the analog system power supply is turned on and off.
2. Treatment of Unused Input Pins
Leaving unused input pins open could cause malfunctions. They should be connected to a pull-up or pull-down
resistor.
3. Treatment of Pins when A/D is not Used
Connect to be AV
CC
= AVRH = V
CC
and AV
SS
= AVRL = V
SS
even if the A/D converter is not in use.
4. Precautions when Using an External Clock
To reset the internal circuit properly by the Low-level input to the RST pin, the "L" level input to the RST pin
must be maintained for at least five machine cycles. Pay attention to it if the chip uses external clock input.
5. V
CC
and V
SS
Pins
Apply equal potential to the V
CC
and V
SS
pins.
6. Supply Voltage Variation
The operation assurance range for the V
CC
supply voltage is as given in the ratings. However, sudden changes
in the supply voltage can cause misoperation, even if the voltage remains within the rated range. Therefore, it
is important to supply a stable voltage to the IC. The recommended power supply control guidelines are that
the commercial frequency (50 to 60 Hz) ripple variation (P-P value) on V
CC
should be less than 10% of the
standard V
CC
value and that the transient rate of change during sudden changes, such as during power supply
switching, should be less than 0.1 V/ms.
7. Notes on Using an External Clock
When using an external clock, drive the X0 pin as illustrated below. When an external clock is used, oscillation
stabilization time is required even for power-on reset and wake-up from stop mode.
X0
X1
MB90210
Note: When using an external clock, be sure to input external clock more than 6 machine cycles after
setting the HST pin to "L" to transfer to the hardware standby mode.
·
Use of External Clock
MB90210 Series
18
8. Power-on Sequence for A/D Converter Power Supplies and Analog Inputs
Be sure to turn on the digital power supply (V
CC
) before applying voltage to the A/D converter power supplies
(AV
CC
, AVRH, and AVRL) and analog inputs (AN0 to AN7).
When turning power supplies off, turn off the A/D converter power supplies (AV
CC
, AVRH, and AVRL) and analog
inputs (AN0 to AN7) first, then the digital power supply (V
CC
).
When turning AVRH on or off, be careful not to let it exceed AV
CC
.
19
MB90210 Series
s
PROGRAMMING FOR MB90P214A/P214B/W214A/W214B
In EPROM mode, the MB90P214A/P214B/W214A/W214B functions equivalent to the MBM27C1000. This
allows the EPROM to be programmed with a general-purpose EPROM programmer by using the dedicated
socket adapter (do not use the electronic signature mode).
1. Program Mode
When shipped from Fujitsu, and after each erasure, all bits (64 K
×
8 bits) in the MB90P214A/P214B/W214A/
W214B are in the "1" state. Data is written to the ROM by selectively programming "0's" into the desired bit
locations. Bits cannot be set to "1" electrically.
2. Programming Procedure
(1) Set the EPROM programmer to MBM27C1000.
(2) Load program data into the EPROM programmer at 10000
H
to 1FFFF
H
.
Note that ROM addresses FF0000
H
to FFFFFF
H
in the operation mode in the MB90P214A/P214B/W214A/
W214B series assign to 10000
H
to 1FFFF
H
in the EPROM mode (on the EPROM programmer).
(3) Mount the MB90P214A/P214B/W214A/W214B on the adapter socket, then fit the adapter socket onto the
EPROM programmer. When mounting the device and the adapter socket, pay attention to their mounting
orientations.
(4) Start programming the program data to the device.
(5) If programming has not successfully resulted, connect a capacitor of approx. 0.1
µ
F between V
CC
and GND,
between V
PP
and GND.
(6) Since the MB90P214A and MB90W214A have CMOS-level input, programming to them may be impossible
depending on the output level of the general-purpose programmer. In that case, connect a pull-up resistor
to the adapter socket side.
Note: The mask ROM products (MB90214) does not support EPROM mode. Data cannot, therefore, be read by
the EPROM programmer.
FFFFFF
H
10000
H
*
1FFFF
H
*
Operation mode
EPROM mode
(Corresponding addresses on the EPROM mode)
FF0000
H
* : Be sure to set the programming, the start address and the stop address on the EPROM programmer to 10000
H
/1FFFF
H
.
MB90210 Series
20
3. EPROM Programmer Socket Adapter and Recommended Programmer Manufacturer
Inquiry: Sun Hayato Co., Ltd.: TEL: (81)-3-3986-0403
FAX: (81)-3-5396-9106
Advantest Corp.:
TEL: Except JAPAN (81)-3-3930-4111
4. Erase Procedure
Data written in the MB90W214A/W214B are erased (from "0" to "1") by exposing the chip to ultraviolet rays with
a wavelength of 2,537 Å through the translucent cover.
Recommended irradiation dosage for exposure is 10 Wsec/cm
2
. This amount is reached in 15 to 20 minutes
with a commercial ultraviolet lamp positioned 2 to 3 cm above the package (when the package surface
illuminance is 1200
µ
W/cm
2
).
If the ultraviolet lamp has a filter, remove the filter before exposure. Attaching a mirrored plate to the lamp
increases the illuminance by a factor of 1.4 to 1.8, thus shortening the required erasure time. If the translucent
part of the package is stained with oil or adhesive, transmission of ultraviolet rays is degraded, resulting in a
longer erasure time. In that case, clean the translucent part using alcohol (or other solvent not affecting the
package).
The above recommended dosage is a value which takes the guard band into consideration and is a multiple of
the time in which all bits can be evaluated to have been erased. Observe the recommended dosage for erasure;
the purpose of the guard band is to ensure erasure in all temperature and supply voltage ranges. In addition,
check the life span of the lamp and control the illuminance appropriately.
Data in the MB90W214A/W214B are erased by exposure to light with a wavelength of 4000 Å or less.
Data in the device is also erased even by exposure to fluorescent lamp light or sunlight although the exposure
results in a much lower erasure rate than exposure to 2537 Å ultraviolet rays. Note that exposure to such lights
for an extended period will therefore affect system reliability. If the chip is used where it is exposed to any light
with a wavelength of 4000 Å or less, cover the translucent part, for example, with a protective seal to prevent
the chip from being exposed to the light.
Exposure to light with a wavelength of 4,000 to 5,000 Å or more will not erase data in the device. If the light
applied to the chip has a very high illuminance, however, the device may cause malfunction in the circuit for
reasons of general semiconductor characteristics. Although the circuit will recover normal operation when
exposure is stopped, the device requires proper countermeasures for use in a place exposed continuously to
such light even though the wavelength is 4,000 Å or more.
Part No.
MB90P214B
Package
QFP-80
Compatible socket adapter
Sun Hayato Co., Ltd.
ROM-80QF-32DP-16F
Recommended
programmer
manufacturer
and programmer
name
Advantest corp.
R4945A
(main unit)
+
R49451A
(adapter)
Recommended
21
MB90210 Series
5. Recommended Screening Conditions
High temperature aging is recommended as the pre-assembly screening procedure.
6. Programming Yeild
MB90P214A/P214B cannot be write-tested for all bits due to their nature. Therefore the write yield cannot always
be guaranteed to be 100%.
7. Pin Assignment in EPROM Mode
(1) Pins compatible with MBM27C1000
MBM27C1000
MB90P214A, MB90P214B,
MB90W214A, MB90W214B
MBM27C1000
MB90P214A, MB90P214B,
MB90W214A, MB90W214B
Pin no.
Pin name
Pin no.
Pin name
Pin no.
Pin name
Pin no.
Pin name
1
V
PP
43
MD2 (V
PP
)
32
V
CC
2
OE
59
P55
31
PGM
60
P56
3
A15
19
P37
30
N.C.
4
A12
16
P34
29
A14
18
P36
5
A07
10
P27
28
A13
17
P35
6
A06
9
P26
27
A08
12
P30
7
A05
8
P25
26
A09
13
P31
8
A04
7
P24
25
A11
15
P33
9
A03
6
P23
24
A16
20
P40
10
A02
5
P22
23
A10
14
P32
11
A01
4
P21
22
CE
58
P54
12
A00
3
P20
21
D07
74
P07
13
D00
67
P00
20
D06
73
P06
14
D01
68
P01
19
D05
72
P05
15
D02
69
P02
18
D04
71
P04
16
GND
17
D03
70
P03
Program, verify
Aging
+150
°
C, 48 Hrs.
Data verification
Assembly
MB90210 Series
22
(2) Power supply and ground connection pins
(3) Pins other than MBM27C1000-compatible pins
Type
Pin no.
Pin name
Power supply
41
42
44
66
MD0
MD1
HST
V
CC
GND
11
30
31
34
56
57
62
63
V
SS
AVRL
AV
SS
V
SS
P52
P53
RST
V
SS
Pin no.
Pin name
Treatment
64
X0
Pull up to 4.7 k
.
65
X1
Open
1
2
21
to
27
28
29
32
33
35
to
40
45
to
50
51
to
53
54
55
61
75
to
80
P16
P17
P41
to
P47
AV
CC
AVRH
P60
P61
P62
to
P67
P70
to
P75
P80
to
P82
P50
P51
P57
P10
to
P15
Connect a pull-up resistor of approximately 1 M
to each pin.
23
MB90210 Series
s
BLOCK DIAGRAM
4
UART
×
3
PWC
timer
× 4
16-bit
timer 1
×
4
DTP/External
interrupt
× 4
External bus
interface
16-bit
timer 2
×
4
F
2
MC-16F
CPU
RAM
ROM
10-bit
A/D converter
8 ch.
CTS0
SCK3
SID3
SOD3
SCK2
SID2
SOD2
SCK1
SID1
SOD1
SCK0
SID0
SOD0
TOUT0 to
TOUT3
TIN0 to
TIN3
ATG
AN0 to
AN7
AV
CC
AVRH
AVRL
AV
SS
PWC0 to PWC3
/POUT0 to POUT3
INT0 to INT3
D00 to D15
A00 to A23
CLK
RDY
HAK
HRQ
WRH
WRL
RD
TIN4 to
TIN7
Internal data bus
8-bit
PPG timer
PPG
8-bit
PPG timer
P00 to P07
P10 to P17
P20 to P27
P30 to P37
P40 to P47
P50 to P57
P60 to P67
P70 to P75
P80 to P82
8-bit
PPG timer
I/O port
13
65
Write-inhibit
RAM
WI
Clock controller
X1
X0
RST
HST
MD2
MD1
MD0
7
8
13
4
4
4
47
MB90210 Series
24
s
PROGRAMMING MODEL
Accumulator
User stack pointer
System stack pointer
Processor status
Program counter
User stack upper register
System stack upper register
User stack lower register
System stack lower register
Direct page register
Program bank register
Data bank register
User stack bank register
System stack bank register
Additional data bank register
Max.32 banks
RW 7
RW 6
RW 5
RW 4
R 7
R 5
R 3
R 1
R 6
R 4
R 2
R 0
RW3
RW 2
RW 1
RW 0
RL 3
RL 2
RL 1
RL 0
000180
H
+ RP
×
10
H
ILM
--
I
S
T
N
Z
V
C
Processor Status (PS)
General-purpose Registers
Dedicated Registers
AH
AL
USP
SSP
PS
PC
USPCU
SSPCU
USPCL
SSPCL
DPR
PCB
DTB
USB
SSB
ADB
8 bits
16 bits
32 bits
C C R
16 bits
MSB
LSB
RP
Upper
Lower
25
MB90210 Series
s
MEMORY MAP
Single chip
Internal ROM
and external bus
External ROM
and external bus
FFFFFF
H
Address #1
010000
H
Address #2
Address #4
Address #5
Address #6
Peripherals
RAM
Registers
RAM
RAM
Write-inhibit RAM
ROM area
FF bank
image
ROM area
ROM area
000380
H
000180
H
0000C0
H
000000
H
000100
H
: Internal
: External
: No access
ROM area
FF bank
image
Write-inhibit RAM
Write-inhibit RAM
Registers
Registers
Peripherals
Peripherals
Address #3
Type
Address #1
Address #2
Address #3
Address #4
Address #5
Address #6
MB90214
FF0000
H
004000
H
001300
H
001200
H
001100
H
000D00
H
MB90P214A/P214B
MB90W214A/W214B
FF0000
H
004000
H
001300
H
001200
H
001100
H
001100
H
MB90V210
(FE0000
H
)
004000
H
001300
H
001300
H
001100
H
001100
H
MB90210 Series
26
s
I/O MAP
(Continued)
Address
Register
Register
name
Access
Resource
name
Initial value
000000
H
*
3
Port 0 data register
PDR0
R/W
Port 0
XXXXXXXX
000001
H
*
3
Port 1 data register
PDR1
R/W
Port 1
XXXXXXXX
000002
H
*
3
Port 2 data register
PDR2
R/W
Port 2
XXXXXXXX
000003
H
*
3
Port 3 data register
PDR3
R/W
Port 3
XXXXXXXX
000004
H
*
3
Port 4 data register
PDR4
R/W
Port 4
XXXXXXXX
000005
H
*
3
Port 5 data register
PDR5
R/W
Port 5
XXXXXXXX
000006
H
Port 6 data register
PDR6
R/W
Port 6
1 1 1 1 1 1 1 1
000007
H
Port 7 data register
PDR7
R/W
Port 7
­ ­ XXXXXX
000008
H
Port 8 data register
PDR8
R/W
Port 8
­ ­ ­ ­ ­ XX X
000009
H
to 0F
H
(Reserved area) *
1
000010
H
*
3
Port 0 data direction register
DDR0
R/W
Port 0
0 0 0 0 0 0 0 0
000011
H
*
3
Port1 data direction register
DDR1
R/W
Port 1
0 0 0 0 0 0 0 0
000012
H
*
3
Port 2 data direction register
DDR2
R/W
Port 2
0 0 0 0 0 0 0 0
000013
H
*
3
Port 3 data direction register
DDR3
R/W
Port 3
0 0 0 0 0 0 0 0
000014
H
*
3
Port 4 data direction register
DDR4
R/W
Port 4
0 0 0 0 0 0 0 0
000015
H
*
3
Port 5 data direction register
DDR5
R/W
Port 5
0 0 0 0 0 0 0 0
000016
H
Analog input enable register
ADER
R/W
Port 6
1 1 1 1 1 1 1 1
000017
H
Port 7 data direction register
DDR7
R/W
Port 7
­ ­ 0 0 0 0 0 0
000018
H
Port 8 data direction register
DDR8
R/W
Port 8
­ ­ ­ ­ ­ 0 0 0
000019
H
to 1F
H
(Reserved area) *
1
000020
H
Mode control register 0
UMC0
R/W
UART (ch.0)
0 0 0 0 0 1 0 0
000021
H
Status register 0
USR0
R/W
0 0 0 1 0 0 0 0
000022
H
Input data register 0/output data
register 0
UIDR0/
UODR0
R/W
XXXXXXXX
000023
H
Rate and data register 0
URD0
R/W
0 0 0 0 0 0 0 0
000024
H
Mode control register 1
UMC1
R/W
UART (ch.1)
0 0 0 0 0 1 0 0
000025
H
Status register 1
USR1
R/W
0 0 0 1 0 0 0 0
000026
H
Input data register 1/output data
register 1
UIDR1/
UODR1
R/W
XXXXXXXX
000027
H
Rate and data register 1
URD1
R/W
0 0 0 0 0 0 0 0
27
MB90210 Series
(Continued)
Address
Register
Register
name
Access
Resource
name
Initial value
000028
H
Mode control register 2
UMC2
R/W
UART (ch.2)
0 0 0 0 0 1 0 0
000029
H
Status register 2
USR2
R/W
0 0 0 1 0 0 0 0
00002A
H
Input data register 2/output data
register 2
UIDR2/
UODR2
R/W
XXXXXXXX
00002B
H
Rate and data register 2
URD2
R/W
0 0 0 0 0 0 0 0
00002C
H
UART redirect control register
URDR
R/W
UART (ch.0/2)
­ ­ ­ 0 0000
00002D
H
to 2F
H
(Reserved area) *
1
000030
H
Interrupt/DTP enable register
ENIR
R/W
DTP/external
interrupt
­ ­ ­ ­ 0000
000031
H
Interrupt/DTP factor register
EIRR
R/W
­ ­ ­ ­ 0000
000032
H
Request level setting register
ELVR
R/W
0 0 0 0 0 0 0 0
000033
H
(Reserved area) *
1
000034
H
AD control status register
ADCS
R/W
10-bit A/D
converter
0 0 0 0 0 0 0 0
000035
H
0 0 0 0 0 0 0 0
000036
H
to 37
H
AD data register
ADCD
R/W
*4
XXXXXXXX
0 ­ ­ ­ ­ ­ XX
000038
H
to 39
H
Timer control status register 0
TMCSR0
R/W
16-bit reload
timer 1 (ch.0)
0 0 0 0 0 0 0 0
­ ­ ­ ­ 0 0 0 0
00003A
H
to 3B
H
Timer control status register 1
TMCSR1
R/W
16-bit reload
timer 1 (ch.1)
0 0 0 0 0 0 0 0
­ ­ ­ ­ 0 0 0 0
00003C
H
to 3D
H
Timer control status register 2
TMCSR2
R/W
16-bit reload
timer 1 (ch.2)
0 0 0 0 0 0 0 0
­ ­ ­ ­ 0 0 0 0
00003E
H
to 3F
H
Timer control status register 3
TMCSR3
R/W
16-bit reload
timer 1 (ch.3)
0 0 0 0 0 0 0 0
­ ­ ­ ­ 0 0 0 0
000040
H
Timer 0 timer register
TMR0
R
16-bit reload
timer 1 (ch.0)
XXXXXXXX
000041
H
XXXXXXXX
000042
H
Timer 0 reload register
TMRLR0
W
XXXXXXXX
000043
H
XXXXXXXX
000044
H
Timer 1 timer register
TMR1
R
16-bit reload
timer 1 (ch.1)
XXXXXXXX
000045
H
XXXXXXXX
000046
H
Timer 1 reload register
TMRLR1
W
XXXXXXXX
000047
H
XXXXXXXX
MB90210 Series
28
(Continued)
Address
Register
Register
name
Access
Resource
name
Initial value
000048
H
Timer 2 timer register
TMR2
R
16-bit reload
timer 1 (ch.2)
XXXXXXXX
000049
H
XXXXXXXX
00004A
H
Timer 2 reload register
TMRLR2
W
XXXXXXXX
00004B
H
XXXXXXXX
00004C
H
Timer 3 timer register
TMR3
R
16-bit reload
timer 1 (ch.3)
XXXXXXXX
00004D
H
XXXXXXXX
00004E
H
Timer 3 reload register
TMRLR3
W
XXXXXXXX
00004F
H
XXXXXXXX
000050
H
Timer 4 timer register
TMR4
R
16-bit reload
timer 2 (ch.4)
XXXXXXXX
000051
H
XXXXXXXX
000052
H
Timer 4 reload register
TMRLR4
W
XXXXXXXX
000053
H
XXXXXXXX
000054
H
Timer 5 timer register
TMR5
R
16-bit reload
timer 2 (ch.5)
XXXXXXXX
000055
H
XXXXXXXX
000056
H
Timer 5 reload register
TMRLR5
W
XXXXXXXX
000057
H
XXXXXXXX
000058
H
Timer 6 timer register
TMR6
R
16-bit reload
timer 2 (ch.6)
XXXXXXXX
000059
H
XXXXXXXX
00005A
H
Timer 6 reload register
TMRLR6
W
XXXXXXXX
00005B
H
XXXXXXXX
00005C
H
Timer 7 timer register
TMR7
R
16-bit reload
timer 2 (ch.7)
XXXXXXXX
00005D
H
XXXXXXXX
00005E
H
Timer 7 reload register
TMRLR7
W
XXXXXXXX
00005F
H
XXXXXXXX
000060
H
Timer control status register 4
TMCSR4
R/W
16-bit reload
timer 2 (ch.4)
0 0 0 0 0 0 0 0
000061
H
(Reserved area) *
1
000062
H
Timer control status register 5
TMCSR5
R/W
16-bit reload
timer 2 (ch.5)
0 0 0 0 0 0 0 0
000063
H
(Reserved area) *
1
000064
H
Timer control status register 6
TMCSR6
R/W
16-bit reload
timer 2 (ch.6)
0 0 0 0 0 0 0 0
000065
H
(Reserved area) *
1
29
MB90210 Series
(Continued)
Address
Register
Register
name
Access
Resource
name
Initial value
000066
H
Timer control status register 7
TMCSR7
R/W
16-bit reload
timer 2 (ch.7)
0 0 0 0 0 0 0 0
000067
H
(Reserved area) *
1
000068
H
PWC0 divide ratio register
DIVR0
R/W
PWC timer
(ch.0)
­ ­ ­ ­ ­ ­ 0 0
000069
H
(Reserved area) *
1
00006A
H
PWC1 divide ratio register
DIVR1
R/W
PWC timer
(ch.1)
­ ­ ­ ­ ­ ­ 0 0
00006B
H
(Reserved area) *
1
00006C
H
PWC2 divide ratio register
DIVR2
R/W
PWC timer
(ch.2)
­ ­ ­ ­ ­ ­ 0 0
00006D
H
(Reserved area) *
1
00006E
H
PWC3 divide ratio register
DIVR3
R/W
PWC timer
(ch.3)
­ ­ ­ ­ ­ ­ 0 0
00006F
H
(Reserved area) *
1
000070
H
PWC0 control status register
PWCSR0
R/W
PWC timer
(ch.0)
0 0 0 0 0 0 0 0
000071
H
0 0 0 0 0 0 0 0
000072
H
PWC0 data buffer register
PWCR0
R/W
0 0 0 0 0 0 0 0
000073
H
0 0 0 0 0 0 0 0
000074
H
PWC1 control status register
PWCSR1
R/W
PWC timer
(ch.1)
0 0 0 0 0 0 0 0
000075
H
0 0 0 0 0 0 0 0
000076
H
PWC1 data buffer register
PWCR1
R/W
0 0 0 0 0 0 0 0
000077
H
0 0 0 0 0 0 0 0
000078
H
PWC2 control status register
PWCSR2
R/W
PWC timer
(ch.2)
0 0 0 0 0 0 0 0
000079
H
0 0 0 0 0 0 0 0
00007A
H
PWC2 data buffer register
PWCR2
R/W
0 0 0 0 0 0 0 0
00007B
H
0 0 0 0 0 0 0 0
00007C
H
PWC3 control status register
PWCSR3
R/W
PWC timer
(ch.3)
0 0 0 0 0 0 0 0
00007D
H
0 0 0 0 0 0 0 0
00007E
H
PWC3 data buffer register
PWCR3
R/W
0 0 0 0 0 0 0 0
00007F
H
0 0 0 0 0 0 0 0
000080
H
to 87
H
(Reserved area) *
1
000088
H
PPG operation mode control register
PPGC
R/W
8-bit PPG timer
0 0 0 0 0 ­ ­ 1
000089
H
(Reserved area) *
1
MB90210 Series
30
(Continued)
Address
Register
Register
name
Access
Resource
name
Initial value
00008A
H
PPG reload register
PRL
R/W
8-bit PPG timer
XXXXXXXX
00008B
H
XXXXXXXX
00008C
H
to 8D
H
(Reserved area) *
1
00008E
H
WI control register
WICR
R/W
Write-inhibit RAM
­ ­ ­ X ­ ­ ­ ­
00008F
H
to 9E
H
(Reserved area) *
1
00009F
H
Delayed interrupt source generate/
release register
DIRR
R/W
Delayed interrupt
generation module
­ ­ ­ ­ ­ ­ ­ 0
0000A0
H
Standby control register
STBYC
R/W
Low-power
consumption
mode
0 0 0 1
0000A1
H
to A2
H
(Reserved area) *
1
0000A3
H
Middle address control register
MACR
W
External pin
########
0000A4
H
Upper address control register
HACR
W
########
0000A5
H
External pin control register
EPCR
W
##0­0#00
0000A6
H
to A7
H
(Reserved area) *
1
0000A8
H
Watchdog timer control register
WTC
R/W
Watchdog timer
XXXXXXXX
0000A9
H
Timebase timer control register
TBTC
R/W
Timebase timer
1 ­ ­ 0 0 0 0 0
0000AA
H
to AF
H
(Reserved area) *
1
0000B0
H
Interrupt control register 00
ICR00
R/W
Interrupt
controller
0 0 0 0 0 1 1 1
0000B1
H
Interrupt control register 01
ICR01
R/W
0 0 0 0 0 1 1 1
0000B2
H
Interrupt control register 02
ICR02
R/W
0 0 0 0 0 1 1 1
0000B3
H
Interrupt control register 03
ICR03
R/W
0 0 0 0 0 1 1 1
0000B4
H
Interrupt control register 04
ICR04
R/W
0 0 0 0 0 1 1 1
0000B5
H
Interrupt control register 05
ICR05
R/W
0 0 0 0 0 1 1 1
0000B6
H
Interrupt control register 06
ICR06
R/W
0 0 0 0 0 1 1 1
0000B7
H
Interrupt control register 07
ICR07
R/W
0 0 0 0 0 1 1 1
0000B8
H
Interrupt control register 08
ICR08
R/W
0 0 0 0 0 1 1 1
0000B9
H
Interrupt control register 09
ICR09
R/W
0 0 0 0 0 1 1 1
31
MB90210 Series
(Continued)
Initial value
0: The initial value of this bit is 0.
1: The initial value of this bit is 1.
X: The initial value of this bit is undefined.
­: This bit is not used. The initial value is undefined.
: The initial value of this bit varies with the reset source.
#: The initial value of this bit varies with the operation mode.
*1: Access inhibited
*2: The only area available for the external access below address 0000FF
H
is this area. Accesses to these addresses
are handled as accesses to an external I/O area.
*3: When the external bus is enabled, do not access any register not serving as a general-purpose port in the areas
from address 000000
H
to 000005
H
and from 000010
H
to 000015
H
.
*4: Writing to bit 15 is possible. Writing to other bits is used as a test function.
Address
Register
Register
name
Access
Resource
name
Initial value
0000BA
H
Interrupt control register 10
ICR10
R/W
Interrupt
controller
0 0 0 0 0 1 1 1
0000BB
H
Interrupt control register 11
ICR11
R/W
0 0 0 0 0 1 1 1
0000BC
H
Interrupt control register 12
ICR12
R/W
0 0 0 0 0 1 1 1
0000BD
H
Interrupt control register 13
ICR13
R/W
0 0 0 0 0 1 1 1
0000BE
H
Interrupt control register 14
ICR14
R/W
0 0 0 0 0 1 1 1
0000BF
H
Interrupt control register 15
ICR15
R/W
0 0 0 0 0 1 1 1
0000C0
H
to FF
H
(External area) *
2
MB90210 Series
32
s
INTERRUPT SOURCES AND INTERRUPT VECTORS/INTERRUPT
CONTROL REGISTERS
(Continued)
Interrupt source
EI
2
OS
support
Interrupt vector
Interrupt control register
No.
Address
ICR
Address
Reset
×
# 08
08
H
FFFFDC
H
--
--
INT9 instruction
×
# 09
09
H
FFFFD8
H
--
--
Exceptional
×
# 10
0A
H
FFFFD4
H
--
--
UART interrupt #0
# 11
0B
H
FFFFD0
H
ICR00
000B0
H
UART interrupt #1
# 12
0C
H
FFFFCC
H
UART interrupt #2
# 13
0D
H
FFFFC8
H
ICR01
000B1
H
UART interrupt #3
# 14
0E
H
FFFFC4
H
PWC timer # 0 · count completed
# 15
0F
H
FFFFC0
H
ICR02
000B2
H
PWC timer # 0 · overflow
# 16
10
H
FFFFBC
H
PWC timer # 1 · count completed
# 17
11
H
FFFFB8
H
ICR03
000B3
H
PWC timer # 1 · overflow
# 18
12
H
FFFFB4
H
PWC timer # 2 · count completed
# 19
13
H
FFFFB0
H
ICR04
000B4
H
PWC timer # 2 · overflow
# 20
14
H
FFFFAC
H
PWC timer # 3 · count completed
# 21
15
H
FFFFA8
H
ICR05
000B5
H
PWC timer # 3 · overflow
# 22
16
H
FFFFA4
H
16-bit reload timer 1 # 0 overflow
# 23
17
H
FFFFA0
H
ICR06
000B6
H
16-bit reload timer 1 # 1 overflow
# 24
18
H
FFFF9C
H
16-bit reload timer 1 # 2 overflow
# 25
19
H
FFFF98
H
ICR07
000B7
H
16-bit reload timer 1 # 3 overflow
# 26
1A
H
FFFF94
H
16-bit reload timer 2 # 4 overflow
# 27
1B
H
FFFF90
H
ICR08
000B8
H
16-bit reload timer 2 # 5 overflow
# 28
1C
H
FFFF8C
H
16-bit reload timer 2 # 6 overflow
# 29
1D
H
FFFF88
H
ICR09
000B9
H
16-bit reload timer 2 # 7 overflow
# 30
1E
H
FFFF84
H
A/D converter count completed
# 31
1F
H
FFFF80
H
ICR10
000BA
H
Timebase timer interval interrupt
# 32
20
H
FFFF7C
H
UART2 · transmission completed
# 33
21
H
FFFF78
H
ICR11
000BB
H
UART2 · reception completed
# 34
22
H
FFFF74
H
33
MB90210 Series
(Continued)
: EI
2
OS is supported (with stop request).
: EI
2
OS is supported; however, since two interrupt sources are allocated to a single ICR, in case EI
2
OS is used
for one of the two, EI
2
OS and ordinary interrupt are not both available for the other (with stop request).
: EI
2
OS is supported; however, since two interrupt sources are allocated to a single ICR, in case EI
2
OS is used
for one of the two, EI
2
OS and ordinary interrupt are not both available for the other (with no stop request).
: EI
2
OS is not supported.
Interrupt source
EI
2
OS
support
Interrupt vector
Interrupt control register
No.
Address
ICR
Address
UART1 · transmission completed
# 35
23
H
FFFF70
H
ICR12
0000BC
H
UART1 · reception completed
# 36
24
H
FFFF6C
H
UART0 · transmission completed
# 37
25
H
FFFF68
H
ICR13
0000BD
H
UART0 · reception completed
# 39
27
H
FFFF60
H
ICR14
0000BE
H
Delayed interrupt generation module
×
# 42
2A
H
FFFF54
H
ICR15
0000BF
H
Stack fault
×
# 255
FF
H
FFFC00
H
--
--
×
MB90210 Series
34
s
PERIPHERAL RESOURCES
1. Parallel Ports
The MB90210 series has 57 I/O pins and 8 open-drain I/O pins.
Ports 0 to 5, 7, and 8 are I/O ports. Each of these ports serves as an input port when the data direction register
value is 0 and as an output port when the value is 1.
Port 6 is an open-drain port, which may be used as a port when the analog input enable register value is 0.
(1) Register Configuration
·
Port data registers 0 to 8 (PDR0 to PDR8)
·
Port direction registers 0 to 5, 7, and 8 (DDR0 to DDR5, DDR7, and DDR8)
000001
H
000003
H
000005
H
000007
H
PDR1
PDR3
PDR5
PDR7
Address:
Port data register
000000
H
000002
H
000004
H
000006
H
000008
H
PDR0
PDR2
PDR4
PDR6
PDR8
Address:
Port data register
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Bit
Bit
PDx7
PDx0
PDx1
PDx2
PDx3
PDx4
PDx5
PDx6
PDx7
PDx0
PDx1
PDx2
PDx3
PDx4
PDx5
PDx6
PDRx
Only for the PDR6
Note: No register bit is included in bits 7 and 6 of port 7 or bits 7 to 3 of port 8.
(R/W)
(X)
(R/W)
(X)
(R/W)
(X)
(R/W)
(X)
(R/W)
(X)
(R/W)
(X)
(R/W)
(X)
(R/W)
(X)
(R/W)
(X)
(1)
(R/W)
(X)
(1)
(R/W)
(X)
(1)
(R/W)
(X)
(1)
(R/W)
(X)
(1)
(R/W)
(X)
(1)
(R/W)
(X)
(1)
(R/W)
(X)
(1)
Read/write
Initial value
Read/write
Initial value
000011
H
000013
H
000015
H
000017
H
DDR1
DDR3
DDR5
DDR7
Address:
Port direction register
000010
H
000012
H
000014
H
000018
H
DDR0
DDR2
DDR4
DDR8
Address:
Port direction register
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Bit
Bit
DDx7
DDx0
DDx1
DDx2
DDx3
DDx4
DDx5
DDx6
DDx7
DDx0
DDx1
DDx2
DDx3
DDx4
DDx5
DDx6
DDRx
No register bit is included in bits 7 and 6 of port 7 or bits 7 to 3 of port 8.
Port 6 has no DDR.
Note:
(R/W)
(0)
(R/W)
(0)
(R/W)
(0)
(R/W)
(0)
(R/W)
(0)
(R/W)
(0)
(R/W)
( 0)
(R/W)
(0)
(R/W)
(0)
(R/W)
(0)
(R/W)
(0)
(R/W)
(0)
(R/W)
(0)
(R/W)
(0)
(R/W)
(0)
(R/W)
(0)
Read/write
Initial value
Read/write
Initial value
35
MB90210 Series
(2) Block Diagram
·
Analog input enable register (ADER)
000016
H
ADER
Address:
Analog input enable register
7
6
5
4
3
2
1
0
Bit
ADE7
ADE0
ADE1
ADE2
ADE3
ADE4
ADE5
ADE6
ADER
(R/W)
(1)
(R/W)
(1)
(R/W)
(1)
(R/W)
(1)
(R/W)
(1)
(R/W)
(1)
(R/W)
(1)
(R/W)
(1)
Read/write
Initial value
Port data register read
Port data register write
Port direction register write
Port direction register read
Port data register
Port direction register
Pin
Port data register read
Port data register write
Analog input enable register write
Analog input enable register read
Port data register
Analog input enable register
Pin
RMW
(Read-modify-write instruction)
Internal data bus
Internal data bus
·
I/O port (Port 0 to 5, 7, and 8)
·
I/O port with an open-drain output (Port 6)
MB90210 Series
36
2. 16-bit Reload Timer 1 (with Event Count Function)
The 16-bit reload timer 1 consists of a 16-bit down counter, a 16-bit reload register, an input pin (TIN), an output
pin (TOUT), and a control register. The input clock can be selected from among three internal clocks and one
external clock. At the output pin (TOUT), the pulses in the toggled output waveform are output in the reload
mode; the rectangular pulses indicating that the timer is counting are in the single-shot mode. The input pin
(TIN) can be used for event input in the event count mode, and for trigger input or gate input in the internal clock
mode.
MB90210 series contains four channels for this timer.
(1) Register Configuration
·
Timer control status register (TMCSR)
·
Timer register (TMR)
000039
H
00003B
H
00003D
H
00003F
H
ch.0
ch.1
ch.2
ch.3
Address:
Timer control status register (Upper byte)
000038
H
00003A
H
00003C
H
00003E
H
ch.0
ch.1
ch.2
ch.3
Address:
Timer control status register (Lower byte)
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Bit
Bit
MDO0
TRG
CNTE
UF
INTE
RELD
OUTL
OUTE
--
MOD1
MOD2
CSL0
CSL1
--
--
--
TMCSRx
(--)
(--)
(--)
(--)
(--)
(--)
(--)
(--)
(R/W)
(0)
(R/W)
(0)
(R/W)
(0)
(R/W)
(0)
(R/W)
(0)
(R/W)
(0)
(R/W)
(0)
(R/W)
(0)
(R/W)
(0)
(R/W)
(0)
(R/W)
(0)
(R/W)
(0)
Read/write
Initial value
Read/write
Initial value
000041
H
000045
H
000049
H
00004D
H
ch.0
ch.1
ch.2
ch.3
Address:
Timer register (Upper byte)
000040
H
000044
H
000048
H
00004C
H
ch.0
ch.1
ch.2
ch.3
Address:
Timer register (Lower byte)
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Bit
Bit
TMRx
(R)
(X)
(R)
(X)
(R)
(X)
(R)
(X)
(R)
(X)
(R)
(X)
(R)
(X)
(R)
(X)
(R)
(X)
(R)
(X)
(R)
(X)
(R)
(X)
(R)
(X)
(R)
(X)
(R)
(X)
(R)
(X)
Read/write
Initial value
Read/write
Initial value
37
MB90210 Series
(2) Block Diagram
·
Reload register (TMRLR)
000043
H
000047
H
00004B
H
00004F
H
ch.0
ch.1
ch.2
ch.3
Address:
Reload register (Upper byte)
000042
H
000046
H
00004A
H
00004E
H
ch.0
ch.1
ch.2
ch.3
Address:
Reroal register (Lower byte)
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Bit
Bit
TMRLRx
(W)
(X)
(W)
(X)
(W)
(X)
(W)
(X)
(W)
(X)
(W)
(X)
(W)
(X)
(W)
(X)
(W)
(X)
(W)
(X)
(W)
(X)
(W)
(X)
(W)
(X)
(W)
(X)
(W)
(X)
(W)
(X)
Read/write
Initial value
Read/write
Initial value
16
8
16
16-bit reload register
Internal data bus
16-bit down counter
Reload
UF
2
GATE
OUT
CTL.
2
Clock selector
CSL 1
CSL 0
Retrigger
IN CTL
EXCK
3
Prescaler clear
MOD 2
MOD 1
MOD 0
RELD
OUTE
OUTL
I NTE
UF
CNTE
TRG
EI OSCLR
IRQ
Clear
2
Port (TIN)
Port (TOUT)
UART (timer 1 ch.2 output)
A/D (timer 1 ch.3 output)
Internal clock
2
2
2
1
3
5
2
3
MB90210 Series
38
3. 16-bit Reload Timer 2 (with Gate Mode)
The 16-bit reload timer 2 consists of a 16-bit down counter, a 16-bit reload register, an input pin (TIN), and an
8-bit control register. The input clock can be selected from among four internal clocks.
The MB90210 series contains four channels for this timer.
(1) Register Configuration
·
Timer control status register (TMCSR)
·
Timer register (TMR)
·
Reload register (TMRLR)
000060
H
000062
H
000064
H
000066
H
ch.4
ch.5
ch.6
ch.7
Address:
Timer control status register
7
6
5
4
3
2
1
0
Bit
CSL1
STRT
UF
INTE
RELD
GATL
GATE
CSL0
TMCSRx
(R/W)
(0)
(R/W)
(0)
(R/W)
(0)
(R/W)
(0)
(R/W)
(0)
(R/W)
(0)
(R/W)
(0)
(R/W)
(0)
Read/write
Initial value
000051
H
000055
H
000059
H
00005D
H
ch.4
ch.5
ch.6
ch.7
Address:
Timer register (Upper byte)
000050
H
000054
H
000058
H
00005C
H
ch.4
ch.5
ch.6
ch.7
Address:
Timer register (Lower byte)
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Bit
Bit
TMRx
(R)
(X)
(R)
(X)
(R)
(X)
(R)
(X)
(R)
(X)
(R)
(X)
(R)
(X)
(R)
(X)
(R)
(X)
(R)
(X)
(R)
(X)
(R)
(X)
(R)
(X)
(R)
(X)
(R)
(X)
(R)
(X)
Read/write
Initial value
Read/write
Initial value
000053
H
000057
H
00005B
H
00005F
H
ch.4
ch.5
ch.6
ch.7
Address:
Reload register (Upper byte)
000052
H
000056
H
00005A
H
00005E
H
ch.4
ch.5
ch.6
ch.7
Address:
Reload register (Lower byte)
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Bit
Bit
TMRLRx
(W)
(X)
(W)
(X)
(W)
(X)
(W)
(X)
(W)
(X)
(W)
(X)
(W)
(X)
(W)
(X)
(W)
(X)
(W)
(X)
(W)
(X)
(W)
(X)
(W)
(X)
(W)
(X)
(W)
(X)
(W)
(X)
Read/write
Initial value
Read/write
Initial value
39
MB90210 Series
(2) Block Diagram
CSL 1
CSL 0
Clock selector
16-bit down counter
Internal data bus
UF
16-bit reload register
Reload
Port (TIN)
IN CTL
IRQ
2
2
2
2
5
6
2
8
RELD
INTE
UF
STRT
Clear (RELD = 0)
2
GATE
GATL
2
2
16
4
16
2
GATE
EI OSCLR
2
Clear
MB90210 Series
40
4. UART
The UART is a serial I/O port for synchronous or asynchronous communication with external resources. It has
the following features:
· Full duplex double buffer
· Data transfer synchronous or asynchronous with clock pulses
· Multiprocessor mode support (Mode 2)
· Built-in dedicated baud-rate generator (Nine types)
· Arbitrary baud-rate setting from external clock input or internal timer
(Use the 16-bit reroad timer 1 channel 2 for internal timer.)
· Variable data length (7 to 9 bits (without parity bit); 6 to 8 bits (with parity bit))
· Variable data length (7 to 9 bit no parity, 6 to 8 bit with parity)
· Error detection function (Framing, overrun, parity)
· Interrupt function (Two sources for transmission and reception)
· Transfer in NRZ format
The MB90210 series contains three channels for the UART.
UART channel 0 has the CTS function.
UART channel 2 provides dual I/O pin switching.
(1) Register Configuration
000021
H
000025
H
000029
H
ch.0
ch.1
ch.2
Address:
Status register
000022
H
000026
H
00002A
H
ch.0
ch.1
ch.2
Address:
Input data register/output data register
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Bit
Bit
D7
D0
D1
D2
D3
D4
D5
D6
RDRF
TBF
RBF
TIE
RIE
TDRE
PE
ORFE
UIDR (read)/
UODR (write)
USR
(R)
(0)
(R)
(0)
(R)
(0)
(R)
(1)
(R/W)
(0)
(R)
(0)
(R)
(0)
(R/W)
(0)
(R/W)
(X)
(R/W)
(X)
(R/W)
(X)
(R/W)
(X)
(R/W)
(X)
(R/W)
(X)
(R/W)
(X)
(R/W)
(X)
Read/write
Initial value
Read/write
Initial value
000020
H
000024
H
000028
H
ch.0
ch.1
ch.2
Address:
Serial mode control register
7
6
5
4
3
2
1
0
Bit
PEN
SOE
SCKE
RFC
SMDE
MC0
MC1
SBL
UMC
(R/W)
(0)
(R/W)
(0)
(R/W)
(0)
(R/W)
(0)
(R/W)
(0)
(R/W)
(0)
(R/W)
(0)
(W)
(1)
Read/write
Initial value
·
Status register (USR)
·
Serial mode control register (UMC)
·
Input data register (UIDR)/output data register (UODR)
41
MB90210 Series
000023
H
000027
H
00002B
H
ch.0
ch.1
ch.2
Address:
Rate and data register
00002C
H
Address:
UART redirect control register
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Bit
Bit
--
SEL3
UDPE
CTSE
CSP
CTE
--
--
BCH
D8
P
BCH0
RC0
RC1
RC2
RC3
URDR
URDx
(R/W)
(0)
(R/W)
(0)
(R/W)
(0)
(R/W)
(0)
(R/W)
(0)
(R/W)
(0)
(R/W)
(0)
(R/W)
(0)
(--)
(--)
(--)
(--)
(--)
(--)
(R/W)
(0)
(R/W)
(0)
(R/W)
(0)
(R/W)
(0)
(R/W)
(0)
Read/write
Initial value
Read/write
Initial value
·
Rate and data register (URD)
·
UART redirect control register (URDR)
MB90210 Series
42
(2) Block Diagram
CONTROL BUS
Dedicated baud-rate clock
External clock
16-bit reload timer 1 channel 2
(internally connected)
Clock
selector circuit Receiving clock pulse
Transmitting clock pulse
Reception interrupt
(To CPU)
SCK0 to SCK3
Transmission interrupt
(To CPU)
Transmission control circuit
SOD0 to SOD3
Transmission shifter
UODR
Start of
transmission
Reception control circuit
Start bit detector
Transmission control
circuit
Transmission bit
counter
Transmission parity
counter
Received bit counter
Recieved parity
bit counter
Reception shifter
Internal data bus
End of reception
SIDR
Reception error
occurence signal for
EI
2
OS (To CPU)
Reception status
detection circuit
UMC
register
USR
register
URD
register
PEN
SBL
MC1
MC0
SMDE
RFC
SCKE
SOE
RDRF
ORFE
PE
TDRE
RIE
TIE
RBF
TBF
BCH
RC3
RC2
RC1
RC0
BCH0
P
D8
CONTROL BUS
SID0 to SID3
43
MB90210 Series
5. 10-bit A/D Converter
The 10-bit A/D converter converts the analog input voltage to a digital value. It has the following features:
· Conversion time: min.6.125
µ
s per channel (at 16-MHz machine clock)
· RC-type successive approximation with built-in sample-and-hold circuit
· 10-bit or 8-bit resolution
· Eight analog input channels programmable for selection
Single conversion mode: Selects and converts one channel.
Scan conversion mode: Converts multiple consecutive channels (up to eight channels programmable).
Consecutive conversion mode: Converts a specified channel repeatedly.
Stop conversion mode: Converts one channel and suspends its own operation until the next activation (allowing
synchronized conversion start).
· On completion of A/D conversion, the converter can generate an interrupt request to the CPU. This interrupt
generation can activate the EI
2
OS to transfer the A/D conversion result to memory, making the converter
suitable for continuous operation.
· Conversion can be activated by software, external trigger (falling edge), and/or timer (rising edge) as selected.
Use the 16-bit reroad timer 1 channel 3 for the timer.
(1) Register Configuration
000035
H
Address:
A/D Control status register (Upper byte)
000034
H
Address:
A/D Control status register (Lower byte)
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Bit
Bit
MD1
ANE0
ANE1
ANE2
ANS0
ANS1
ANS2
MD0
BUSY
--
STRT
STS0
STS1
PAUS
INTE
INT
ADCS0
ADCS1
(R/W)
(0)
(R/W)
(0)
(R/W)
(0)
(R/W)
(0)
(R/W)
(0)
(W)
(0)
(--)
(0)
(R/W)
(0)
(R/W)
(0)
(R/W)
(0)
(R/W)
(0)
(R/W)
(0)
(R/W)
(0)
(R/W)
(0)
(R/W)
(0)
(R/W)
(0)
Read/write
Initial value
Read/write
Initial value
000037
H
Address:
A/D Data register (Upper byte)
000036
H
Address:
A/D Data register (Lower byte)
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Bit
Bit
D7
D0
D1
D2
D3
D4
D5
D6
S10
D8
D9
--
--
--
--
--
ADCD0
ADCD1
(W)
(0)
(--)
(--)
(--)
(--)
(--)
(--)
(--)
(--)
(R)
(X)
(R)
(X)
(--)
(--)
(R)
(X)
(R)
(X)
(R)
(X)
(R)
(X)
(R)
(X)
(R)
(X)
(R)
(X)
(R)
(X)
Read/write
Initial value
Read/write
Initial value
·
A/D Control status register (ADCS1 and ADCS0)
·
A/D Data registers (ADCD1 and ADCD0)
MB90210 Series
44
(2) Block Diagram
AV
CC
AVRH/AVRL
AV
SS
D/A converter
Internal data bus
Successive
approximation register
Comparator
Sample-and-hold circuit
MPX
AN0
AN1
AN2
AN3
AN4
AN5
AN6
AN7
A/D data register
ADCD0, ADCD1
Decorder
A/D control status register
Operation clock
Trigger activation
Timer activation
16-bit reload timer 1 channel 3
(internally connected)
Machine clock (
)
Prescaler
ATG
ADCS0, ADCS1
Input circuit
45
MB90210 Series
6. PWC(Pulse Width Count) Timer
The PWC (pulse width count) timer is a 16-bit multifunction up-count timer with an input-signal pulse-width count
function and a reload timer function. The hardware configuration of this module is a 16-bit up-count timer, an
input pulse divider with divide ratio control register, four count input pins, and a 16-bit control register. Using
these components, the PWC timer provides the following features:
· Timer functions:
An interrupt request can be generated at set time intervals.
Pulse signals synchronized with the timer cycle can be output.
The reference internal clock can be selected from among three internal clocks.
· Pulse-width count functions:
The time between arbitrary pulse input events can be counted.
The reference internal clock can be selected from among three internal clocks.
Various count modes:
"H" pulse width (
to
) /"L" pulse width (
to
)
Rising-edge cycle (
to
) /Falling-edge cycle (
to
)
Count between edges (
or
to
or
)
Cycle count can be performed by 22n division (n = 1, 2, 3, 4) of the input
pulse, with an 8 bit input divider.
An interrupt request can be generated once counting has been performed.
The number of times counting is to be performed (once or subsequently) can
be selected.
The MB90210 series contains four channels for the PWC timer.
(1) Register Configuration
·
PWC control status register (PWCSR)
000071
H
000075
H
000079
H
00007D
H
ch.0
ch.1
ch.2
ch.3
Address:
PWC control status register (Upper byte)
000070
H
000074
H
000078
H
00007C
H
ch.0
ch.1
ch.2
ch.3
Address:
PWC control status register (Lower byte)
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Bit
Bit
CKS1
MOD0
MOD1
MOD2
S/C
PIS0
PIS1
CKS0
STRT
POUT
ERR
OVIE
OVIR
EDIE
EDIR
STOP
PWCSRx
(R/W)
(0)
(R/W)
(0)
(R)
(0)
(R/W)
(0)
(R/W)
(0)
(R)
(0)
(R/W)
(0)
(R/W)
(0)
(R/W)
(0)
(R/W)
(0)
(R/W)
(0)
(R/W)
(0)
(R/W)
(0)
(R/W)
(0)
(R/W)
(0)
(R/W)
(0)
Read/write
Initial value
Read/write
Initial value
MB90210 Series
46
000073
H
000077
H
00007B
H
00007F
H
ch.0
ch.1
ch.2
ch.3
Address:
PWC data buffer register (Upper byte)
000072
H
000076
H
00007A
H
00007E
H
ch.0
ch.1
ch.2
ch.3
Address:
PWC data buffer register (Lower byte)
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Bit
Bit
PWCR
(R/W)
(0)
(R/W)
(0)
(R/W)
(0)
(R/W)
(0)
(R/W)
(0)
(R/W)
(0)
(R/W)
(0)
(R/W)
(0)
(R/W)
(0)
(R/W)
(0)
(R/W)
(0)
(R/W)
(0)
(R/W)
(0)
(R/W)
(0)
(R/W)
(0)
(R/W)
(0)
Read/write
Initial value
Read/write
Initial value
000068
H
00006A
H
00006C
H
00006E
H
ch.0
ch.1
ch.2
ch.3
Address:
Divide ratio control register
7
6
5
4
3
2
1
0
Bit
--
DIV0
DIV1
--
--
--
--
--
DIVR
(--)
(--)
(--)
(--)
(--)
(--)
(--)
(--)
(--)
(--)
(R/W)
(0)
(R/W)
(0)
(--)
(--)
Read/write
Initial value
·
PWC data buffer register (PWCR)
·
PWC divide ratio control register (DIVR)
47
MB90210 Series
(2) Block Diagram
Clock
divider
Internal clock
(machine clock/4)
2
3
2
2
CKS 1
CKS 0
Divider clear
PIS 1
PIS 0
PWC0
PWC1
PWC2
PWC3
F.F.
POUT
*
Overflow
Divide ratio
select
DIVR
2
15
PWCSR
Channel
POUT pin
* : The POUT pins of the MB90210 series are assigned as follows:
Count edge end
Count end interrupt edge
Overflow interrupt request
Control bit output
Flag setting, etc.
Edge
detection
Count start edge
ERR
PIS 1
PIS 0
CKS 1
CKS 0
8-bit
divider
Dividing
ON/OFF
End edge
select
Start edge
select
Control circuit
Internal data bus
16-bit up-count timer
ch.0
ch.1
ch.2
ch.3
PWC
PWC
PWC
PWC
P44/A20/PWC0/POUT0
P45/A21/PWC1/POUT1
P46/A22/PWC2/POUT2
P47/A23/PWC3/POUT3
16
Error detection
Write enable
PWCR
16
16
16
Timer clear
Count enable
Clock
Overflow
Data transfer
Reload
ERR
PWCR read
MB90210 Series
48
7. 8-bit PPG Timer
This block is an 8-bit reload timer module for PPG output by controlling pulse output according to the timer
operation.
The hardware configuration of this block is an 8-bit down counter, two 8-bit reload registers, an 8-bit control
register, and an external pulse output pin. Using these components, the module provides the following features:
PPG output operation:
The module outputs pulse waves of any period and duty factor. It can also be used as
a D/A converter using an external circuit.
(1) Register Configuration
00008B
H
Address:
PPG reload register
00008A
H
Address:
PPG reload register
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Bit
Bit
PRLL
PRLH
(R/W)
(X)
(R/W)
(X)
(R/W)
(X)
(R/W)
(X)
(R/W)
(X)
(R/W)
(X)
(R/W)
(X)
(R/W)
(X)
(R/W)
(X)
(R/W)
(X)
(R/W)
(X)
(R/W)
(X)
(R/W)
(X)
(R/W)
(X)
(R/W)
(X)
(R/W)
(X)
Read/write
Initial value
Read/write
Initial value
000088
H
Address:
PPG operation mode control register
7
6
5
4
3
2
1
0
Bit
PEN
Reserved
--
--
PUF
Reserved
POE
PCKS
PPGC
(R/W)
(0)
(R/W)
(0)
(R/W)
(0)
(R/W)
(0)
(R/W)
(0)
(--)
(--)
(R/W)
(1)
(--)
(--)
Read/write
Initial value
·
PPG operation mode control register (PPGC)
·
PPG reload registers (PRLL and RRLH)
49
MB90210 Series
(2) Block Diagram
PPG
output pin
(Port section)
Output enable
Output A of timebase counter
Output B of timebase counter
PPG
output latch
PCNT (Down counter)
L/H selector
Invert
Clear
PEN
Count clock
selection
Reload
PRLL
PRLBH
PRLH
PPGC
Operation
mode control
Low-byte data bus
High-byte data bus
MB90210 Series
50
8. DTP/External Interrupt
The data transfer peripheral (DTP) is located between external peripherals and the F
2
MC-16F CPU. It receives
a DMA request or an interrupt request generated by the external peripherals and reports it to the F
2
MC-16F
CPU to activate the extended intelligent I/O service or interrupt handler. The user can select two request levels
of "H" and "L" for extended intelligent I/O service or, and four request levels of "H," "L," rising edge and falling
edge for external interrupt requests.
(1) Register Configuration
000030
H
Address:
Interrupt/DTP enable register
7
6
5
4
3
2
1
0
Bit
--
EN0
EN1
EN2
EN3
--
--
--
ENIR
(--)
(--)
(--)
(--)
(--)
(--)
(--)
(--)
(R/W)
(0)
(R/W)
(0)
(R/W)
(0)
(R/W)
(0)
Read/write
Initial value
000031
H
Address:
Interrupt/DTP source register
15
14
13
12
11
10
9
8
Bit
--
ER0
ER1
ER2
ER3
--
--
--
EIRR
(--)
(--)
(--)
(--)
(--)
(--)
(--)
(--)
(R/W)
(0)
(R/W)
(0)
(R/W)
(0)
(R/W)
(0)
Read/write
Initial value
000032
H
Address:
Request level setting register
7
6
5
4
3
2
1
0
Bit
LB3
LA0
LB0
LA1
LB1
LA2
LB2
LA3
ELVR
(R/W)
(0)
(R/W)
(0)
(R/W)
(0)
(R/W)
(0)
(R/W)
(0)
(R/W)
(0)
(R/W)
(0)
(R/W)
(0)
Read/write
Initial value
·
Interrupt/DTP enable register (ENIR)
·
Interrupt/DTP source register (EIRR)
·
Request level setting register (ELVR)
51
MB90210 Series
(2) Block Diagram
Interrupt/DTP enable register
4
Gate
Internal data bus
4
Source F/F
Edge detection circuit
4
Interrupt/DTP source register
4
Request level setting register
8
INT
MB90210 Series
52
9. Watchdog Timer and Timebase Timer
The watchdog timer consists of a 2-bit watchdog counter using carry signals from an 18-bit timebase timer as
the clock source, a control register, and a watchdog reset control section. The timebase timer consists of an 18-
bit timer and an interval interrupt control circuit.
(1) Register Configuration
0000A9
H
Address:
Timebase timer control register
0000A8
H
Address:
Watchdog timer control register
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Bit
Bit
PONR
WT0
WT1
WTE
SRST
ERST
WRST
STBR
Reserved
TBC0
TBC1
TBR
TBOF
TBIE
--
--
WTC
TBTC
(W)
(1)
(--)
(--)
(--)
(--)
(R/W)
(0)
(R/W)
(0)
(R/W)
(0)
(R/W)
(0)
(R)
(0)
(R)
(X)
(R)
(X)
(R)
(X)
(R)
(X)
(R)
(X)
(W)
(X)
(W)
(X)
(W)
(X)
Read/write
Initial value
Read/write
Initial value
·
Watchdog timer control register (WTC)
·
Timebase timer control register (TBTC)
53
MB90210 Series
(2) Block Diagram
TBTC
TBC1
TBC0
TBR
TBIE
TBOF
Selector
AND
Q
R
S
Selector
Timebase
interrupt
WTC
WT1
WT0
WTE
PONR
STBR
WRST
ERST
SRST
From RST bit in STBYC
register
RST pin
From hardware standby
control circuit
From power-on occurence
WDGRST
To internal reset generator
2-bit counter
Internal data bus
OF
CLR
Watchdog
reset
generator
CLR
2
12
2
14
2
16
2
18
TBTRES
Clock input
Timebase timer
2
14
2
16
2
17
2
18
Oscillation clock
MB90210 Series
54
10. Delayed Interrupt Generation Module
The delayed interrupt generation module is used to generate an interrupt for task switching. Using this module
allows an interrupt request to the F
2
MC-16F CPU to generate or cancel by software.
(1) Register Configuration
(2) Block Diagram
·
Delayed interrupt source generate/release register (DIRR)
00009F
H
Address:
Delayed interrupt source generate/release register
15
14
13
12
11
10
9
8
Bit
--
R0
--
--
--
--
--
--
DIRR
(--)
(--)
(--)
(--)
(--)
(--)
(--)
(--)
(--)
(--)
(--)
(--)
(R/W)
(0)
(--)
(--)
Read/write
Initial value
Delayed interrupt source
generate/release register
Source latch
Internal data bus
55
MB90210 Series
11. Write-inhibit RAM
The write-inhibit RAM is write-protectable with the WI pin input. Maintaining the "L" level input to the WI pin
prevents a certain area of RAM from being written. The WI pin has a 4-machine-cycle filter.
(1) Register Configuration
(2) Write-inhibit RAM Area
Write-inhibit RAM area
001100
H
to 0011FF
H
(MB90214/P214A/P214B/W214A/W214B)
001100
H
to 0012FF
H
(MB90V210)
(3) Block Diagram
·
WI control register (WICR)
00008E
H
Address:
WI control register
7
6
5
4
3
2
1
0
Bit
--
--
--
--
--
WI
--
--
WICR
(--)
(--)
(--)
(--)
(--)
(--)
(R/W)
(1)
(--)
(--)
(--)
(--)
(--)
(--)
(--)
(--)
Read/write
Initial value
W I
4-machine-cycle
skew removal
4-machine-cycle
skew removal
S Q
R
Access to other area
Internal data bus
S
Q
Preceded
R
Write-inhibit
circuit
Select
RAM
decoder
Write-
inhibit
RAM
WR
L
H
MB90210 Series
56
12. Low-power Consumption Modes, Oscillation Stabilization Delay Time, and Gear Function
The MB90210 series has three low-power consumption modes: the sleep mode, the stop mode, the hardware
standby mode, and gear function.
Sleep mode is used to suspend only the CPU operation clock; the other components remain in operation. Stop
mode and hardware standby mode stop oscillation, minimizing the power consumption while holding data.
The clock gear function divides the external clock frequency, which is used usually as it is, to provide a lower
machine clock frequency. This function can therefore lower the overall operation speed without changing the
oscillation frequency. The function can select the machine clock as a division of the frequency of crystal oscillation
or external clock input by 1, 2, 4, or 16.
The OSC1 and OSC0 bits can be used to set the oscillation stabilization delay time for wake-up from stop mode
or hardware standby mode.
(1) Register Configuration
·
Standby control register (STBYC)
0000A0
H
Address:
Standby control register
7
6
5
4
3
2
1
0
Bit
STP
CLK0
CLK1
OSC0
OSC1
RST
SPL
SLP
STBYC
(W)
(0)
(W)
(0)
(R/W)
(0)
(R/W)
(1)
(R/W)
(*)
(R/W)
(*)
(R/W)
(*)
(R/W)
(*)
Read/write
Initial value
Note: The initial value(*) of bit0 to bit3 is changed by reset source.
57
MB90210 Series
(2) Block Diagram
Gear divider circuit
Selector
1/1 1/2 1/4 1/16
STBYC
CLK1
CLK0
SLP
STP
Standby control circuit
RST Clear HST start
Peripheral clock
generator
CPU clock
generator
Oscillation clock
CPU clock
Peripheral clock
HST pin
Interrupt request
or RST
Clock input
Internal data bus
Timebase timer
2 2 2 2
2
2
2
2
0
16
17
18
14
16
17
18
Selector
OSC1
OSC0
SPL
RST
Pin high-impedance control circuit
Internal reset generator
Pin HI­Z
RST pin
Internal RST
To watchdog timer
WDGRST
MB90210 Series
58
s
ELECTRICAL CHARACTERISTICS (MB90V210, device used for evaluation, is excluded)
1. Absolute Maximum Ratings
(V
SS
= AV
SS
= 0.0 V)
*1: V
I
and V
O
must not exceed V
CC
+ 0.3 V.
*2: Output pins
P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P50 to P57, P70 to P75, P80 to P82
*3: Output pins
P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P75, P80 to P82
WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current,
temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.
Parameter
Symbol
Pin
name
Value
Unit
Remarks
Min.
Max.
Power supply voltage
V
CC
V
CC
V
SS
­ 0.3
V
SS
+ 7.0
V
Program voltage
V
PP
V
PP
V
SS
­ 0.3
13.0
V
MB90P214A/W214A
MB90P214B/W214B
Analog power supply voltage
AV
CC
AV
CC
V
SS
­ 0.3
V
CC
+ 0.3
V
Power supply voltage
for A/D converter
AVRH
AVRL
AVRH
AVRL
V
SS
­ 0.3
AV
CC
V
Reference voltage for A/D
converter
Input voltage
V
I
*1
--
V
SS
­ 0.3
V
CC
+ 0.3
V
Output voltage
V
O
*2
V
SS
­ 0.3
V
CC
+ 0.3
V
"L" level output current
I
OL
*3
--
20
mA
Rush current
"L" level total output current
I
OL
*3
--
50
mA
Total output current
"H" level output current
I
OH
*2
--
­10
mA
Rush current
"H" level total output current
I
OH
*2
--
­48
mA
Total output current
Power consumption
Pd
--
--
650
mW
Operating temperature
T
A
--
­40
+105
°
C
MB90214/P214B/W214B
­40
+85
°
C
MB90P214A/W214A
Storage temperature
Tstg
--
­55
+150
°
C
59
MB90210 Series
2. Recommended Operating Conditions
(V
SS
= AV
SS
= 0.0 V)
* : Excluding the temperature rise due to the heat produced.
WARNING: Recommended operating conditions are normal operating ranges for the semiconductor device. All the
device's electrical characteristics are warranted when operated within these ranges.
Always use semiconductor devices within the recommended operating conditions. Operation outside
these ranges may adversely affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on
the data sheet. Users considering application outside the listed conditions are advised to contact their
FUJITSU representative beforehand.
Parameter
Symbol
Pin
name
Value
Unit
Remarks
Min.
Max.
Power supply voltage
V
CC
V
CC
4.5
5.5
V
When operating
3.0
5.5
V
Retains the RAM state in stop
mode
Analog power supply
voltage
AV
CC
AV
CC
4.5
V
CC
+ 0.3
V
Power supply voltage for A/D
converter
AVRH
AVRH
AVRL
AV
CC
V
Reference voltage for A/D
converter
AVRL
AVRL
AV
SS
AVRH
V
Clock frequency
F
C
--
10
16
MHz
Operating temperature
T
A
*
--
­40
+105
°
C
Single-chip mode
MB90214/P214B/W214B
­40
+85
°
C
Single-chip mode
MB90P214A/W214A
­40
+70
°
C
External bus mode
MB90210 Series
60
3. DC Characteristics
Single-chip mode MB90214/P214B/W214B : (V
CC
= +4.5 V to +5.5 V, V
SS
= 0.0 V, T
A
= ­40
°
C to +105
°
C)
MB90P214A/W214A
: (V
CC
= +4.5 V to +5.5 V, V
SS
= 0.0 V, T
A
= ­40
°
C to +85
°
C)
External bus mode
: (V
CC
= +4.5 V to +5.5 V, V
SS
= 0.0 V, T
A
= ­40
°
C to +70
°
C)
(Continued)
Parameter
Symbol
Pin name
Condition
Value
Unit
Remarks
Min.
Typ.
Max.
"H" level input
voltage
V
IH
*1
--
0.7 V
CC
--
V
CC
+ 0.3
V
CMOS level input
V
IHS
*2
--
0.8 V
CC
--
V
CC
+ 0.3
V
Hysteresis input
V
IHM
MD0 to MD2
--
V
CC
­ 0.3
--
V
CC
+ 0.3
V
"L" level input
voltage
V
IL
*1
--
V
SS
­ 0.3
--
0.3 V
CC
V
CMOS level input
V
ILS
*2
--
V
SS
­ 0.3
--
0.2 V
CC
V
Hysteresis input
V
ILM
MD0 to MD2
--
V
SS
­ 0.3
--
V
SS
+ 0.3
V
"H" level output
voltage
V
OH
*3
V
CC
= 4.5 V
I
OH
= ­4.0 mA
V
CC
­ 0.5
--
V
CC
V
V
OH1
X1
V
CC
= 4.5 V
I
OH
= ­2.0 mA
V
CC
­ 2.3
--
V
CC
V
"L" level output
voltage
V
OL
*4
V
CC
= 4.5 V
I
OL
= 4.0 mA
0
--
0.4
V
V
OL1
X1
V
CC
= 4.5 V
I
OL
= 2.0 mA
0
--
V
CC
­ 2.3
V
Input leakage
current
I
I
*1
*2
V
CC
=5.5 V
0.2 V
CC
<
V
I
<
0.8
V
CC
--
--
±
10
µ
A
Except pins with
pull-up/pull-down
resistor and RST
pin
I
I2
X0
V
CC
=5.5 V
0.2 V
CC
<
V
IH
<
0.8 V
CC
--
--
±
25
µ
A
Analog power
supply voltage
I
A
AV
CC
F
C
= 16 MHz
--
3
7
mA
I
AH
--
--
--
5*
5
µ
A
In stop mode,
T
A
= +25
°
C
Input capacitance C
IN
*6
--
--
10
--
pF
Pull-up resistor
R
puIU
RST
--
22
50
110
k
*
7
MB90214
MB90P214A/
W214A/P214B/
W214B
MD1
--
110
300
650
k
*
7
MB90214
Generic pin
--
22
50
110
k
*
7
MB90214
Pull-down resistor R
puID
MD0, MD2
--
110
300
650
k
*
7
MB90214
Generic pin
--
22
50
110
k
*
7
MB90214
61
MB90210 Series
(Continued)
*1: CMOS level input (P00 to P07, P10 to P17, X0)
*2: Hysteresis input pins (RST, HST, P20 to P27, P30 to P37, P40 to P47, P50 to P57, P60 to P67 P70 to P75, P80
to P82)
*3: Output pins (P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P50 to P57, P70 to P75, P80 to P82)
*4: Output pins (P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to
P75, P80 to P82)
*5: The current value applies to the CPU stop mode with A/D converter inactive (V
CC
= AV
CC
= AVRH = +5.5 V).
*6: Other than V
CC
, V
SS
, AV
CC
and AV
SS
*7: A list of availabilities of pull-up/pull-down resistors
*8: V
CC
= +5.0 V, V
SS
= 0.0 V, T
A
= +25
°
C, F
C
= 16 MHz
*9: Measurement condition of power supply current; external clock pin and output pin are open.
Measurement condition of V
CC
; see the table above mentioned.
Parameter
Symbol
Pin name
Condition
Value
Unit
Remarks
Min.
Typ.
Max.
Power supply
voltage*
9
I
CC
V
CC
F
C
= 16 MHz
--
50*
8
80
mA MB90214
--
70*
8
100
mA
MB90P214A/
W214A
MB90P214B/
W214B
I
CCS
V
CC
F
C
= 16 MHz
--
--
40
mA In sleep mode
I
CCH
V
CC
--
--
5
10
µ
A
T
A
= +25
°
C
In stop mode
In hardware
standby input
time
Pin name
MB90214
MB90P214A/W214A
MB90P214B/W214B
RST
Availability of pull-up resistors is
optionally defined.
Pull-up resistors
available
Pull-up resistors
available
MD1
Pull-up resistors available
Unavailable
Unavailable
MD0, MD2
Pull-down resistors available
Unavailable
Unavailable
Generic pin
Availability of pull-up/pull-down
resistors is optionally defined.
Unavailable
Unavailable
MB90210 Series
62
2. AC Characteristics
(1) Clock Timing Standards
Single-chip mode MB90214/P214B/W214B : (V
CC
= +4.5 V to +5.5 V, V
SS
= 0.0 V, T
A
= ­40
°
C to +105
°
C)
MB90P214A/W214A
: (V
CC
= +4.5 V to +5.5 V, V
SS
= 0.0 V, T
A
= ­40
°
C to +85
°
C)
External bus mode
: (V
CC
= +4.5 V to +5.5 V, V
SS
= 0.0 V, T
A
= ­40
°
C to +70
°
C)
Parameter
Symbol
Pin
name
Condition
Value
Unit
Remarks
Min.
Typ.
Max.
Clock frequency
F
C
X0, X1
--
10
--
16
MHz
Clock cycle time
t
C
X0, X1
--
62.5
--
100
ns
1/F
C
Input clock pulse width
P
WH
P
WL
X0
--
0.4 t
C
--
0.6 t
C
ns
Duty ratio: 60%
Input clock rising/falling time
t
cr
t
cf
X0
--
--
--
8
ns
t
cr
+ t
cf
·
Clock Conditions
·
Clock Input Timings
0.7 V
CC
0.7 V
CC
X0
0.3 V
CC
t
cf
t
C
t
cr
P
WH
P
WL
When a crystal
or
ceramic resonator is used
When an external clock is used
Open
X0
X1
X0
X1
C
2
C
1
C
1
= C
2
= 10 pF
Select the optimum capacity value for the resonator.
63
MB90210 Series
(2) Clock Output Timing Standards
External mode: (V
CC
= +4.5 to +5.5 V, V
SS
= 0.0 V, T
A
= ­40
°
C to +70
°
C)
* : t
CYC
= n/F
C
, n gear ratio (1, 2, 4, 16)
Parameter
Symbol
Pin
name
Condition
Value
Unit
Remarks
Min.
Typ.
Max.
Machine cycle time
t
CYC
CLK
Load condition:
80 pF
62.5
--
1600
ns
*
CLK
CLK
t
CHCL
t
CYC
/
2 ­ 20
--
t
CYC
/2
ns
·
Relationship between Clock Frequency and Power Supply Voltage
V
CC
[V]
5.5
4.5
0
16
F
C
[MHz]
Operation assurance range
10
Single-chip mode
External bus mode
(MB90214/P214B/W214B)
(MB90P214A/W214A)
: (T
A
= ­40
°
C to +105
°
C, F
C
= 10 to 16 MHz)
: (T
A
= ­40
°
C to +85
°
C, F
C
= 10 to 16 MHz)
: (T
A
= ­40
°
C to +70
°
C, F
C
= 10 to 16 MHz)
t
CYC
t
CHCL
CLK
1/2 V
CC
1/2 V
CC
MB90210 Series
64
(3) Recommended Resonator Manufacturers
(4) Reset and Hardware Standby Input Standards
Single-chip mode MB90214/P214B/W214B : (V
CC
= +4.5 V to +5.5 V, V
SS
= 0.0 V, T
A
= ­40
°
C to +105
°
C)
MB90P214A/W214A
: (V
CC
= +4.5 V to +5.5 V, V
SS
= 0.0 V, T
A
= ­40
°
C to +85
°
C)
External bus mode
: (V
CC
= +4.5 V to +5.5 V, V
SS
= 0.0 V, T
A
= ­40
°
C to +70
°
C)
* : The machine cycle (t
CYC
) at hardware standby input is set to 1/16 divided oscillation.
Parameter
Symbol
Pin
name
Condition
Value
Unit
Remarks
Min.
Typ.
Max.
Reset input time
t
RSTL
RST
--
5 t
CYC
--
--
ns
Hardware standby input time t
HSTL
HST
5 t
CYC
--
--
ns
*
X 0
X 1
C
1
C
2
*1: Fujitsu Acoustic Resonator
*2
*2
FAR
*1
Inquiry: FUJITSU LIMITED
FAR part number
(built-in capacitor type)
Frequency
Initial deviation of
FAR frequency
(T
A
= +25
°
C)
Temperature
characteristics of
FAR frequency
(T
A
= ­20
°
C to +60
°
C)
Load
capacitance*
2
FAR-C4C F-1 6000- 02
16.00
±
0.5%
±
0.5%
Built-in
FAR-C4C F-1 6000- 12
±
0.5%
±
0.5%
·
Sample Application of Piezoelectric Resonator (FAR Series)
t
RSTL
, t
HSTL
RST
HST
0.2 V
CC
0.2 V
CC
65
MB90210 Series
(5) Power on Supply Specifications (Power-on Reset)
Single-chip mode MB90214/P214B/W214B : (V
CC
= +4.5 V to +5.5 V, V
SS
= 0.0 V, T
A
= ­40
°
C to +105
°
C)
MB90P214A/W214A
: (V
CC
= +4.5 V to +5.5 V, V
SS
= 0.0 V, T
A
= ­40
°
C to +85
°
C)
External bus mode
: (V
CC
= +4.5 V to +5.5 V, V
SS
= 0.0 V, T
A
= ­40
°
C to +70
°
C)
* : Before the power rising, V
CC
must be less than +0.2 V.
Notes:
·
The above specifications are for the power-on reset.
·
Always apply power-on reset using these specifications, regardless of whether or not
the power-on reset is needed.
·
There are some internal registers (such as STBYC) which are only initialized by the power-on reset.
Note: Caution on switching power supply
Abrupt change of supply voltage may initiate power-on reset, even if the above requirements are not met.
It is, therefore, recommended to power up gradually during the instantaneous change of power supply as
shown in the figure below.
Parameter
Symbol
Pin
name
Condition
Value
Unit
Remarks
Min.
Typ.
Max.
Power supply rising time
t
R
V
CC
--
--
--
30
ms
*
Power supply cut-off time
t
OFF
V
CC
--
1
--
--
ms
t
R
0.2 V
0.2 V
4.5 V
V
CC
t
OFF
0.2 V
·
Power-on Reset
V
SS
Main power
supply voltage
Subpower
supply voltage
The rising edge should be 50 mV/ms or less.
·
Changing Power Supply
MB90210 Series
66
(6) Bus Read Timing
(V
CC
= +4.5 to +5.5 , V
SS
= 0.0 V, T
A
= ­40
°
C to +70
°
C)
Parameter
Symbol
Pin
name
Condition
Value
Unit
Remarks
Min.
Max.
Valid address
RD
time
t
AVRL
A23 to A00
Load
condition:
80 pF
t
CYC
/2 ­ 20
--
ns
RD pulse width
t
RLRH
RD
t
CYC
­ 25
--
ns
RD
valid data input
t
RLDV
D15 to D00
--
t
CYC
­ 30
ns
RD
data hold time
t
RHDX
0
--
ns
Valid address
valid data
input
t
AVDV
--
3 t
CYC
/2 ­ 40
ns
RD
address valid time
t
RHAX
A23 to A00
t
CYC
/2 ­ 20
--
ns
Valid address
CLK
time
t
AVCH
A23 to A00
CLK
t
CYC
/2 ­ 25
--
ns
RD
CLK
time
t
RLCL
RD, CLK
t
CYC
/2 ­ 25
--
ns
t
RLRH
t
RLCL
t
AVCH
t
AVRL
t
RHAX
t
RHDX
t
RLDV
t
AVDV
0.7 V
CC
0.3 V
CC
0.7 V
CC
0.3 V
CC
CLK
0.7 V
CC
0.7 V
CC
0.7 V
CC
0.3 V
CC
0.7 V
CC
0.3 V
CC
0.3 V
CC
0.3 V
CC
RD
A23 to A00
D15 to D00
Read data
67
MB90210 Series
(7) Bus Write Timing
(V
CC
= +4.5 to +5.5 V, V
SS
= 0.0 V, T
A
= ­40
°
C to +70
°
C)
Parameter
Symbol
Pin name
Condition
Value
Unit
Remarks
Min.
Max.
Valid address
WR
time t
AVWL
A23 to A00
Load
condition:
80 pF
t
CYC
/2 ­ 20
--
ns
WR
pulse width
t
WLWH
WRL, WRH
t
CYC
­ 25
--
ns
Valid data output
WR
time
t
DVWH
D15 to D00
t
CYC
­ 40
--
ns
WR
data hold time
t
WHDX
t
CYC
/2 ­ 20
--
ns
WR
address valid time t
WHAX
A23 to A00
t
CYC
/2 ­ 20
--
ns
WR
CLK
time
t
WLCH
WRL, WRH, CLK
t
CYC
/2 ­ 25
--
ns
t
WLWH
t
WLCL
t
WHAX
CLK
WR
(WRL, WRH)
t
WHDX
Write data
t
DVWH
t
AVWL
Un-
defined
0.7 V
CC
0.7 V
CC
0.7 V
CC
0.3 V
CC
0.3 V
CC
0.3 V
CC
0.3 V
CC
A23 to A00
D15 to D00
MB90210 Series
68
(8) Ready Signal Input Timing
(V
CC
= +4.5 to +5.5 V, V
SS
= 0.0 V, T
A
= ­40
°
C to +70
°
C)
Note: Use the auto-ready function if the RDY setup time is insufficient.
(9) Hold Timing
(V
CC
= +4.5 to +5.5 V, V
SS
= 0.0 V, T
A
= ­40
°
C to +70
°
C)
Note: It takes at least one cycle for HAK to vary after HRQ is fetched.
Parameter
Symbol
Pin name
Condition
Value
Unit
Remarks
Min.
Max.
RDY setup time
t
RYHS
RDY
Load condition:
80 pF
40
--
ns
RDY hold time
t
RYHH
0
--
ns
Parameter
Symbol
Pin
name
Condition
Value
Unit
Remarks
Min.
Max.
Pin floating
HAK
time
t
XHAL
HAK
Load condition:
80 pF
30
t
CYC
ns
HAK
pin valid time
t
HAHV
t
CYC
2t
CYC
ns
t
RYHS
t
RYHH
t
RYHS
t
RYHH
CLK
0.7 V
CC
0.7 V
CC
0.8 V
CC
0.8 V
CC
0.8 V
CC
0.8 V
CC
0.2 V
CC
A23 to A00
RD/WR
(WRL, WRH)
RDY
No wait
Wait
t
XHAL
t
HAHV
High impedance
HRQ
HAK
Each pin
0.8 V
CC
0.2 V
CC
0.3 V
CC
0.7 V
CC
69
MB90210 Series
(10) UART Timing
Single-chip mode
MB90214/P214B/W214B : (V
CC
= +4.5 V to +5.5 V, V
SS
= 0.0 V, T
A
= ­40
°
C to +105
°
C)
MB90P214A/W214A
: (V
CC
= +4.5 V to +5.5 V, V
SS
= 0.0 V, T
A
= ­40
°
C to +85
°
C)
External bus mode
: (V
CC
= +4.5 V to +5.5 V, V
SS
= 0.0 V, T
A
= ­40
°
C to +70
°
C)
Notes:
·
These AC characteristics assume the CLK synchronous mode.
·
t
CYC
is the machine cycle (unit: ns).
Parameter
Symbol
Pin
name
Condition
Value
Unit
Remarks
Min.
Max.
Serial clock cycle time t
SCYC
--
Load condition:
80 pF
8 t
CYC
--
ns
Internal shift
clock mode
output pin
SCLK
SOUT
delay time
t
SLOV
­80
80
ns
Valid SIN
SCLK
t
IVSH
100
--
ns
SCLK
Valid SIN
hold time
t
SHIX
60
--
ns
Serial clock "H" pulse
width
t
SHSL
4 t
CYC
--
ns
External shift
clock mode
output pin
Serial clock "L" pulse
width
t
SLSH
4 t
CYC
--
ns
SCLK
SOUT
delay time
t
SLOV
--
150
ns
Valid SIN
SCLK
t
IVSH
60
--
ns
SCLK
Valid SIN
hold time
t
SHIX
60
--
ns
MB90210 Series
70
t
SCYC
t
SLOV
t
IVSH
t
SHIX
SCK
0.3 V
CC
0.7 V
CC
0.2 V
CC
0.8 V
CC
0.7 V
CC
0.3 V
CC
0.8 V
CC
0.2 V
CC
0.7 V
CC
0.3 V
CC
0.8 V
CC
0.2 V
CC
SID
SOD
SCK
SID
SOD
t
SLSH
t
SLOV
t
IVSH
t
SHIX
t
SHSL
0.3 V
CC
0.8 V
CC
0.2 V
CC
0.2 V
CC
0.2 V
CC
0.8 V
CC
0.2 V
CC
·
Internal Shift Clock Mode
·
External Shift Clock Mode
71
MB90210 Series
(11) Resource Input Timing
Single-chip mode
MB90214/P214B/W214B : (V
CC
= +4.5 V to +5.5 V, V
SS
= 0.0 V, T
A
= ­40
°
C to +105
°
C)
MB90P214A/W214A
: (V
CC
= +4.5 V to +5.5 V, V
SS
= 0.0 V, T
A
= ­40
°
C to +85
°
C)
External bus mode
: (V
CC
= +4.5 V to +5.5 V, V
SS
= 0.0 V, T
A
= ­40
°
C to +70
°
C)
(12) Resource Output Timing
Single-chip mode
MB90214/P214B/W214B : (V
CC
= +4.5 V to +5.5 V, V
SS
= 0.0 V, T
A
= ­40
°
C to +105
°
C)
MB90P214A/W214A
: (V
CC
= +4.5 V to +5.5 V, V
SS
= 0.0 V, T
A
= ­40
°
C to +85
°
C)
External bus mode
: (V
CC
= +4.5 V to +5.5 V, V
SS
= 0.0 V, T
A
= ­40
°
C to +70
°
C)
Parameter
Symbol
Pin name
Condition
Value
Unit
Remarks
Min.
Typ.
Max.
Input pulse width
t
TIWH
t
TIWL
TIN0 to TIN3
Load
condition:
80 pF
4 t
CYC
--
--
ns
External event
count input mode
2 t
CYC
--
--
Trigger input/
Gate input mode
TIN4 to TIN7
2 t
CYC
--
--
ns
Gate input mode
PWC0 to PWC3
2 t
CYC
--
--
ns
INT0 to INT3
3 t
CYC
--
--
ns
ATG
2 t
CYC
--
--
ns
t
WIWL
WI
4 t
CYC
--
--
ns
Parameter
Symbol
Pin name
Condition
Value
Unit
Remarks
Min.
Max.
CLK
T
OUT
transition time
t
TO
TOUT0 to TOUT3
PPG
POUT0 to POUT3
Load condition:
80 pF
--
30
ns
t
TIWH
TIN0 to TIN7
PWC0 to PWC3
INT0 to INT3
WI
0.8 V
CC
0.8 V
CC
0.2 V
CC
0.2 V
CC
t
TIWL
, t
WIWL
t
TO
CLK
TOUT0 to TOUT3
PPG
POUT0 to POUT3
0.7 V
CC
0.7 V
CC
0.3V
CC
MB90210 Series
72
5. A/D Converter Electrical Characteristics
Single-chip mode MB90214/P214B/W214B:
(AV
CC
= V
CC
= +5.0
±
10%, AV
SS
= V
SS
= 0.0 V, T
A
= ­40
°
C to +105
°
C, +4.5 V
AVRH ­ AVRL)
Single-chip mode MBP90214A/W214A:
(AV
CC
= V
CC
= +5.0
±
10%, AV
SS
= V
SS
= 0.0 V, T
A
= ­40
°
C to +85
°
C, +4.5 V
AVRH ­ AVRL)
External bus mode:
(AV
CC
= V
CC
= +5.0
±
10%, AV
SS
= V
SS
= 0.0 V, T
A
= ­40
°
C to +70
°
C, +4.5 V
AVRH ­ AVRL)
* : The current value applies to the CPU stop mode with the A/D converter inactive (V
CC
= AV
CC
= AVRH = +5.5 V).
Notes: (1) The smaller the | AVRH ­ AVRL |, the greater the error would become relatively.
(2) Use the output impedance of the external circuit for analog input under the following conditions:
External circuit output impedance < approx. 10 k
(Sampling period
3.75
µ
s, t
CYC
= 62.5 ns)
(3) Precision values are standard values applicable to sleep mode.
(4) If V
CC
/AV
CC
or V
SS
/AV
SS
is caused by a noise to drop to below the analog input voltage, the analog input
current is likely to increase. In such cases, a bypass capacitor or the like should be provided in the external
circuit to suppress the noise.
Parameter
Symbol
Pin name
Condition
Value
Unit
Remarks
Min.
Typ.
Max.
Resolution n
--
--
--
--
10
bit
Total error
--
--
--
­3.0
--
+3.0
LSB
Linearity error
--
--
--
­2.0
--
+2.0
LSB
Differential
linearity error
--
--
--
--
--
±
1.5
LSB
Zero transition
voltage
V
OT
AN0 to AN7
--
AVRL ­ 1.5 AVRL + 0.5 AVRL + 2.5
LSB
Full-scale
transition voltage
V
FST
--
AVRH ­ 3.5 AVRH ­ 1.5 AVRH
+ 0.5
LSB
Conversion time
Sampling period
T
CONV
--
t
CYC
= 62.5 ns
6.125
--
µ
s
98 machine
cycles
T
SAMP
--
3.75
--
µ
s
60 machine
cycles
Analog port input
current
I
AIN
AN0 to AN7
--
--
--
±
0.1
µ
A
Analog input
voltage
V
AIN
--
AVRL
--
AVRH
V
Analog reference
voltage
--
AVRH
--
AVRL
--
AV
CC
V
AVRL
--
AV
SS
--
AVRH
V
Reference voltage
supply current
I
R
AVRH
--
--
200
500
µ
A
I
RH
--
--
--
5*
µ
A
Interchannel
disparity
--
AN0 to AN7
--
--
--
4
LSB
--
--
=
.
.
73
MB90210 Series
6. A/D Converter Glossary
Resolution: Analog changes that are identifiable with the A/D converter
When the number of bits is 10, analog voltage can be divided into 2
10
= 1024.
Total error: Difference between actual and logical values. This error is caused by a zero transition error,
full-scale transition error, linearity error, differential linearity error, or by noise.
Linearity error: The deviation of the straight line connecting the zero transition point ("00 0000 0000"
"00
0000 0001") with the full-scale transition point ("11 1111 1111"
"11 1111 1110") from actual
conversion characteristics
Differential linearity error: The deviation of input voltage needed to change the output code by 1 LSB from the
theoretical value.
·
Equivalent Circuit of Analog Input Circuit
Note: The values shown here are reference values.
Analog input
Comparator
C
1
C
0
R
ON2
R
ON1
R
ON1
: Approx. 1.5 k
R
ON2
: Approx. 1.5 k
C
0
: Approx. 60 pF
C
1
: Approx. 4 pF
External impedance
Digital output
11 1111 1111
11 1111 1110
11 1111 1101
N + 1
N
N ­ 1
00 0000 0010
00 0000 0001
00 0000 0000
·
·
·
·
·
·
·
·
1LSB
V
FST
­ V
0T
1022
=
AV
RH
­ AV
RL
1022
=
Linearity error
·
1LSB theoretical value
V
NT
­ (N
×
1LSB + V
0T
)
=
1LSB
N = 0 to 1022
V
NT (N = 0)
= V
0T
V
NT (N = 1022)
= V
FST
Differential linearity error
V
NT
­ V
(N ­ 1) T
=
1LSB
­ 1
N = 1 to 1022
Total error
·
·
·
·
V
NT
­ { ( N + 0.5 )
×
1LSB theoretical value }
=
1LSB theoretical value
N = 0 to 1022
V
FST
V
0T
V
(N­1)T
Theoretical value
Actual conversion value
Total error
Linerity error
V
1T
V
2T
V
(N+1)T
V
NT
AVRH (V)
AVRL
N
×
1LSB + V
0T
Theoretical value V
NT
MB90210 Series
74
s
EXAMPLE CHARACTERISTICS
(1) Power Supply Current
Note: These are not assured value of characteristics but example characteristics.
(2) Output Voltage
Note: These are not assured value of characteristics but example characteristics.
I
CC
vs. T
A
example characteristics
­50
0
50
100
150
T
A
(
°
C)
100
90
80
70
60
50
40
I
CC
(mA)
F
C
= 16 MHz
External clock input
V
CC
= 5.5 V
MB90P214A
MB90214
I
CCH
vs. T
A
example characteristics
­50
0
50
100
150
T
A
(
°
C)
40
30
20
10
0
­10
I
CCH
(
µ
A)
V
CC
= 5.5 V
V
OH
vs. I
OH
example characteristics
­15
­10
­5
0
5
I
OH
(mA)
5.5
5.0
4.5
4.0
3.5
3.0
V
OH
(V)
T
A
= +25
°
C
V
CC
= 5.0 V
V
OL
vs. I
OL
example characteristics
­5
0
5
10
15
I
OL
(mA)
2.0
1.5
1.0
0.5
0.0
­0.5
V
OL
(V)
20
25
T
A
= +25
°
C
V
CC
= 5.0 V
75
MB90210 Series
(3) Pull-up/Pull-down Resistor
Note: These are not assured value of characteristics but example characteristics.
(4) Analog Filter
Note: These are not assured value of characteristics but example characteristics.
Pull-down resistor example characteristics
­50
0
50
100
150
T
A
(
°
C)
100
90
80
70
60
50
40
30
20
R
pul
D (k
)
V
CC
= 4.5 V
V
CC
= 5.0 V
V
CC
= 5.5 V
Pull-up resistor example characteristics
­50
0
50
100
150
T
A
(
°
C)
100
90
80
70
60
50
40
30
20
R
pul
U (k
)
V
CC
= 4.5 V
V
CC
= 5.0 V
V
CC
= 5.5 V
Pull-up resistor example characteristics
­50
0
50
100
150
T
A
(
°
C)
500
400
300
200
100
R
pul
U (k
)
V
CC
= 5.5 V
Pull-down resistor example characteristics
­50
0
50
100
150
T
A
(
°
C)
500
400
300
200
100
R
pul
D (k
)
V
CC
= 5.5 V
Analog filter example characteristics
4.0
4.5
5.0
5.5
6.0
V
CC
(V)
80
70
60
50
40
30
20
10
Input pulse width (ns)
Filtering enable
T
A
= +25
°
C
MB90210 Series
76
s
INSTRUCTIONS (421 INSTRUCTIONS)
Table 1 Description of Items in Instruction List
Item
Description
Mnemonic
English upper case and symbol: Described directly in assembler code.
English lower case: Converted in assembler code.
Number of letters after English lower case: Describes bit width in code.
#
Describes number of bytes.
~
Describes number of cycles.
For other letters in other items, refer to table 4.
B
Describes correction value for calculating number of actual states.
Number of actual states is calculated by adding value in the ~section.
Operation
Describes operation of instructions.
LH
Describes a special operation to 15 bits to 08 bits of the accumulator.
Z : Transfer 0.
X : Sign-extend and transfer.
­ : No transmission
AH
Describes a special operation to the upper 16-bit of the accumulator.
* : Transmit from AL to AH.
­ : No transfer.
Z : Transfer 00
H
to AH.
X : Sign-extend AL and transfer 00
H
or FF
H
to AH.
I
Describes status of I (interrupt enable), S (stack), T (sticky bit), N (negative), Z (zero),
V (overflow), and C (carry) flags.
* : Changes after execution of instruction.
­ : No changes.
S : Set after execution of instruction.
R : Reset after execution of instruction.
S
T
N
Z
V
C
RMW
Describes whether or not the instruction is a read-modify-write type (a data is read out from
memory etc. in single cycle, and the result is written into memory etc.).
* : Read-modify-write instruction
­ : Not read-modify-write instruction
Note: Not used to addresses having different functions for reading and writing operations.
77
MB90210 Series
Table 2 Description of Symbols in Instruction Table
Item
Description
A
32-bit accumlator
The bit length is dependent on the instructions to be used.
Byte : Lower 8-bit of AL
Word :16-bit of AL
Long : AL: 32-bit of AH
AH
Upper 16-bit of A
AL
Lower 16-bit of A
SP
Stack pointer (USP or SSP)
PC
Program counter
SPCU
Stack pointer upper limited register
SPCL
Stack pointer lower limited register
PCB
Program bank register
DTB
Data bank register
ADB
Additional data bank register
SSB
System stack bank register
USB
User stack bank register
SPB
Current stack bank register (SSB or USB)
DPR
Direct page register
brg1
DTB, ADB, SSB, USB, DPR, PCB
brg2
DTB, ADB, SSB, USB, DPR
Ri
R0, R1, R2, R3, R4, R5, R6, R7
RWi
RW0, RW1, RW2, RW3, RW4, RW5, RW6, RW7
RWj
RW0, RW1, RW2, RW3
RLi
RL0, RL1, RL2, RL3
dir
addr16
addr24
ad24 0 to 15
ad24 16 to 23
Specify shortened direct address.
Specify direct address.
Specify physical direct address.
bit0 to bit15 of addr24
bit16 to bit 23 of addr24
io
I/O area (000000
H
to 0000FF
H
)
#imm4
#imm8
#imm16
#imm32
ext (imm8)
4-bit immediate data
8-bit immediate data
16-bit immediate data
32-bit immediate data
16-bit data calculated by sign-extending an 8-bit immediate data
disp8
disp16
8-bit displacement
16-bit displacement
bp
Bit offset value
vct4
vct8
Vector number (0 to 15)
Vector number (0 to 255)
( )b
Bit address
rel
ear
eam
Specify PC relative branch.
Specify effective address (code 00 to 07).
Specify effective address (code 08 to 1F).
rlst
Register allocation
MB90210 Series
78
Table 3 Effective Address Field
Note: Number of bytes for address extension corresponds to "+" in the # (number of bytes) part in the instruction
table.
Code
Symbol
Address type
Number of bytes in address
extension block*
00
01
02
03
04
05
06
07
R0
R1
R2
R3
R4
R5
R6
R7
RW0
RW1
RW2
RW3
RW4
RW5
RW6
RW7
RL0
(RL0)
RL1
(RL1)
RL2
(RL2)
RL3
(RL3)
Register direct
"ea" corresponds to byte, word, and
long word from left respectively.
--
08
09
0A
0B
@RW0
@RW1
@RW2
@RW3
Register indirect
0
0C
0D
0E
0F
@RW0 +
@RW1 +
@RW2 +
@RW3 +
Register indirect with post increment
0
10
11
12
13
14
15
16
17
@RW0 + disp8
@RW1 + disp8
@RW2 + disp8
@RW3 + disp8
@RW4 + disp8
@RW5 + disp8
@RW6 + disp8
@RW7 + disp8
Register indirect with 8-bit
displacement
1
18
19
1A
1B
@RW0 + disp16
@RW1 + disp16
@RW2 + disp16
@RW3 + disp16
Register indirect with 16-bit
displacement
2
1C
1D
1E
1F
@RW0 + RW7
@RW1 + RW7
@PC + disp16
addr16
Register indirect with index
Register indirect with index
PC indirect with 16-bit displacement
Direct address
0
0
2
2
79
MB90210 Series
Table 4 Number of Execution Cycles in Addressing Modes
Note: (a) is used for ~ (number of cycles) and B (correction value) in instruction table.
Table 5 Correction Value for Number of Cycles for Calculating Actual Number of Cycles
Notes: (b), (c), (d) is used for ~ (number of cycles) and B (correction value) in instruction table.
Code
Operand
(a)*
Number of execution cycles for addressing modes
00 to 07
Ri
RWi
RLi
Listed in instruction table
08 to 0B
@RWj
1
0C to 0F
@RWj +
4
10 to 17
@RWi + disp8
1
18 to 1B
@RWj + disp16
1
1C
1D
1E
1F
@RW0 + RW7
@RW1 + RW7
@PC + disp16
addr16
2
2
2
1
Operand
(b)*
(c)*
(d)*
byte
word
long
Internal register
+0
+0
+0
Internal RAM even address
Internal RAM odd address
+0
+0
+0
+1
+0
+2
Other than internal RAM even address
Other than internal RAM odd address
+1
+1
+1
+3
+2
+6
External data bus 8-bit
+1
+3
+6
MB90210 Series
80
Table 6 Transmission Instruction (Byte) [50 Instructions]
Note: For (a) and (b), refer to "Table 4 Number of Execution Cycles in Addressing Modes" and "Table 5 Correction
Values for Number of Cycles for Calculating Actual Number of Cycles."
Mnemonic
#
~
B
Operation
LH AH
I
S
T
N
Z
V
C RMW
MOV
A, dir
MOV
A, addr16
MOV
A, Ri
MOV
A, ear
MOV
A, eam
MOV
A, io
MOV
A, #imm8
MOV
A, @A
MOV
A, @RLi + disp8
MOV
A, @SP + disp8
MOVP A, addr24
MOVP A, @A
MOVN A, #imm4
MOVX A, dir
MOVX A, addr16
MOVX A, Ri
MOVX A, ear
MOVX A, eam
MOVX A, io
MOVX A, #imm8
MOVX A, @A
MOVX A, @RWi + disp8
MOVX A, @RLi + disp8
MOVX A, @SP + disp8
MOVPX
A, addr24
MOVPX
A, @A
MOV
dir, A
MOV
addr16, A
MOV
Ri, A
MOV
ear, A
MOV
eam, A
MOV
io, A
MOV
@RLi + disp8, A
MOV
@SP + disp8, A
MOVP addr24, A
MOV
Ri, ear
MOV
Ri, eam
MOVP @A, Ri
MOV
ear, Ri
MOV
eam, Ri
MOV
Ri, #imm8
MOV
io, #imm8
MOV
dir, #imm8
MOV
ear, #imm8
MOV
eam, #imm8
MOV
@AL, AH
XCH
A, ear
XCH
A, eam
XCH
Ri, ear
XCH
Ri, eam
2
3
1
2
2 +
2
2
2
3
3
5
2
1
2
3
2
2
2 +
2
2
2
2
3
3
5
2
2
3
1
2
2 +
2
3
3
5
2
2 +
2
2
2 +
2
3
3
3
3 +
2
2
2 +
2
2 +
2
2
1
1
2 + (a)
2
2
2
6
3
3
2
1
2
2
1
1
2 + (a)
2
2
2
3
6
3
3
2
2
2
1
2
2 + (a)
2
6
3
3
2
3 + (a)
3
3
3 + (a)
2
3
3
2
2 + (a)
2
3
3 + (a)
4
5 + (a)
(b)
(b)
0
0
(b)
(b)
0
(b)
(b)
(b)
(b)
(b)
0
(b)
(b)
0
0
(b)
(b)
0
(b)
(b)
(b)
(b)
(b)
(b)
(b)
(b)
0
0
(b)
(b)
(b)
(b)
(b)
0
(b)
(b)
0
(b)
0
(b)
(b)
0
(b)
(b)
0
2
×
(b)
0
2
×
(b)
byte (A)
(dir)
byte (A)
(addr16)
byte (A)
(Ri)
byte (A)
(ear)
byte (A)
(eam)
byte (A)
(io)
byte (A)
imm8
byte (A)
((A))
byte (A)
((RLi) + disp8)
byte (A)
((SP) + disp8)
byte (A)
(addr24)
byte (A)
((A))
byte (A)
imm4
byte (A)
(dir)
byte (A)
(addr16)
byte (A)
(Ri)
byte (A)
(ear)
byte (A)
(eam)
byte (A)
(io)
byte (A)
imm8
byte (A)
((A))
byte (A)
((RWi) + disp8)
byte (A)
((RLi) + disp8)
byte (A)
((SP) + disp8)
byte (A)
(addr24)
byte (A)
((A))
byte (dir)
(A)
byte (addr16)
(A)
byte (Ri)
(A)
byte (ear)
(A)
byte (eam)
(A)
byte (io)
(A)
byte ((RLi) + disp8)
(A)
byte ((SP) + disp8)
(A)
byte (addr24)
(A)
byte (Ri)
(ear)
byte (Ri)
(eam)
byte ((A))
(Ri)
byte (ear)
(Ri)
byte (eam)
(Ri)
byte (Ri)
imm8
byte (io)
imm8
byte (dir)
imm8
byte (ear)
imm8
byte (eam)
imm8
byte ((A))
(AH)
byte (A)
(ear)
byte (A)
(eam)
byte (Ri)
(ear)
byte (Ri)
(eam)
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
X
X
X
X
X
X
X
X
X
X
X
X
X
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
Z
Z
­
­
*
*
*
*
*
*
*
­
*
*
*
­
*
*
*
*
*
*
*
*
­
*
*
*
*
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
*
*
*
*
*
*
*
*
*
*
*
*
R
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
­
­
*
­
*
­
­
­
­
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
­
­
*
­
*
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
81
MB90210 Series
Table 7 Transmission Instruction (Word) [40 Instructions]
Note: For (a) and (c), refer to "Table 4 Number of Execution Cycles in Addressing Modes" and "Table 5 Correction
Values for Number of Cycles for Calculating Actual Number of Cycles."
Mnemonic
#
~
B
Operation
LH AH
I
S
T
N
Z
V
C RMW
MOVW A, dir
MOVW A, addr16
MOVW A, SP
MOVW A, RWi
MOVW A, ear
MOVW A, eam
MOVW A, io
MOVW A, @A
MOVW A, #imm16
MOVW A, @RWi + disp8
MOVW A, @RLi + disp8
MOVW A, @SP + disp8
MOVPW
A, addr24
MOVPW
A, @A
MOVW dir, A
MOVW addr16, A
MOVW SP, #imm16
MOVW SP, A
MOVW RWi, A
MOVW ear, A
MOVW eam, A
MOVW io, A
MOVW @RWi + disp8, A
MOVW @RLi + disp8, A
MOVW @SP + disp8, A
MOVPW
addr24, A
MOVPW
@A, RWi
MOVW RWi, ear
MOVW RWi, eam
MOVW ear, RWi
MOVW eam, RWi
MOVW RWi, #imm16
MOVW io, #imm16
MOVW ear, #imm16
MOVW eam, #imm16
MOVW @AL, AH
XCHW
A, ear
XCHW
A, eam
XCHW
RWi, ear
XCHW
RWi, eam
2
3
1
1
2
2 +
2
2
3
2
3
3
5
2
2
3
4
1
1
2
2 +
2
2
3
3
5
2
2
2 +
2
2 +
3
4
4
4 +
2
2
2 +
2
2 +
2
2
2
1
1
2 + (a)
2
2
2
3
6
3
3
2
2
2
2
2
1
2
2 + (a)
2
3
6
3
3
3
2
3 + (a)
3
3 + (a)
2
3
2
2 + (a)
2
3
3 + (a)
4
5 + (a)
(c)
(c)
0
0
0
(c)
(c)
(c)
0
(c)
(c)
(c)
(c)
(c)
(c)
(c)
0
0
0
0
(c)
(c)
(c)
(c)
(c)
(c)
(c)
0
(c)
0
(c)
0
(c)
0
(c)
(c)
0
2
×
(c)
0
2
×
(c)
word (A)
(dir)
word (A)
(addr16)
word (A)
(SP)
word (A)
(RWi)
word (A)
(ear)
word (A)
(eam)
word (A)
(io)
word (A)
((A))
word (A)
imm16
word (A)
((RWi) +disp8)
word (A)
((RLi) +disp8)
word (A)
((SP) + disp8)
word (A)
(addr24)
word (A)
((A))
word (dir)
(A)
word (addr16)
(A)
word (SP)
imm16
word (SP)
(A)
word (RWi)
(A)
word (ear)
(A)
word (eam)
(A)
word (io)
(A)
word ((RWi) +disp8)
(A)
word ((RLi) +disp8)
(A)
word ((SP) + disp8)
(A)
word (addr24)
(A)
word ((A))
(RWi)
word (RWi)
(ear)
word (RWi)
(eam)
word (ear)
(RWi)
word (eam)
(RWi)
word (RWi)
imm16
word (io)
imm16
word (ear)
imm16
word (eam)
imm16
word ((A))
(AH)
word (A)
(ear)
word (A)
(eam)
word (RWi)
(ear)
word (RWi)
(eam)
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
*
*
*
*
*
*
*
­
*
*
*
*
*
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
­
*
­
*
­
­
­
­
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
­
*
­
*
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
MB90210 Series
82
Table 8 Transmission Instruction (Long) [11 Instructions]
Note: For (a) and (c), refer to "Table 4 Number of Execution Cycles in Addressing Modes" and "Table 5 Correction
Values for Number of Cycles for Calculating Actual Number of Cycles."
Mnemonic
#
~
B
Operation
LH AH
I
S
T
N
Z
V
C RMW
MOVL
A, ear
2
2
0
long (A)
(ear)
­
­
­
­
­
*
*
­
­
­
MOVL
A, eam
2 +
3 + (a)
(d)
long (A)
(eam)
­
­
­
­
­
*
*
­
­
­
MOVL
A, #imm32
5
3
0
long (A)
imm32
­
­
­
­
­
*
*
­
­
­
MOVL
A, @SP + disp8
3
4
(d)
long (A)
((SP) + disp8)
­
­
­
­
­
*
*
­
­
­
MOVPL A, addr24
5
4
(d)
long (A)
(addr24)
­
­
­
­
­
*
*
­
­
­
MOVPL A, @A
2
3
(d)
long (A)
((A))
­
­
­
­
­
*
*
­
­
­
MOVPL @A, RLi
2
5
(d)
long ((A))
(RLi)
­
­
­
­
­
*
*
­
­
­
MOVL
@SP + disp8, A
3
4
(d)
long ((SP) + disp8)
(A)
­
­
­
­
­
*
*
­
­
­
MOVPL addr24, A
5
4
(d)
long (addr24)
(A)
­
­
­
­
­
*
*
­
­
­
MOVL
ear, A
2
2
0
long (ear)
(A)
­
­
­
­
­
*
*
­
­
­
MOVL
eam, A
2 +
3 + (a)
(d)
long (eam)
(A)
­
­
­
­
­
*
*
­
­
­
83
MB90210 Series
Table 9 Add/Subtract (Byte, Word, Long) [42 Instructions]
Note: For (a) to (d), refer to "Table 4 Number of Execution Cycles in Addressing Modes" and "Table 5 Correction
Values for Number of Cycles for Calculating Actual Number of Cycles."
Mnemonic
#
~
B
Operation
LH AH
I
S
T
N
Z
V
C RMW
ADD
A,#imm8
ADD
A, dir
ADD
A, ear
ADD
A, eam
ADD
ear, A
ADD
eam, A
ADDC
A
ADDC
A, ear
ADDC
A, eam
ADDDC A
SUB
A, #imm8
SUB
A, dir
SUB
A, ear
SUB
A, eam
SUB
ear, A
SUB
eam, A
SUBC
A
SUBC
A, ear
SUBC
A, eam
SUBDC A
2
2
2
2 +
2
2 +
1
2
2 +
1
2
2
2
2 +
2
2 +
1
2
2 +
1
2
3
2
3 + (a)
2
3 + (a)
2
2
3 + (a)
3
2
3
2
3 + (a)
2
3 + (a)
2
2
3 + (a)
3
0
(b)
0
(b)
0
2
×
(b)
0
0
(b)
0
0
(b)
0
(b)
0
2
×
(b)
0
0
(b)
0
byte (A)
(A) +imm8
byte (A)
(A) +(dir)
byte (A)
(A) +(ear)
byte (A)
(A) +(eam)
byte (ear)
(ear) + (A)
byte (eam)
(eam) + (A)
byte (A)
(AH) + (AL) + (C)
byte (A)
(A) + (ear) + (C)
byte (A)
(A) + (eam) + (C)
byte (A)
(AH) + (AL) + (C) (decimal)
byte (A)
(A) ­ imm8
byte (A)
(A) ­ (dir)
byte (A)
(A) ­ (ear)
byte (A)
(A) ­ (eam)
byte (ear)
(ear) ­ (A)
byte (eam)
(eam) ­ (A)
byte (A)
(AH) ­ (AL) ­ (C)
byte (A)
(A) ­ (ear) ­ (C)
byte (A)
(A) ­ (eam) ­ (C)
byte (A)
(AH) ­ (AL) ­ (C) (decimal)
Z
Z
Z
Z
­
Z
Z
Z
Z
Z
Z
Z
Z
Z
­
­
Z
Z
Z
Z
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
­
­
­
­
*
*
­
­
­
­
­
­
­
­
*
*
­
­
­
­
ADDW
A
ADDW
A, ear
ADDW
A, eam
ADDW
A, #imm16
ADDW
ear, A
ADDW
eam, A
ADDCW A, ear
ADDCW A, eam
SUBW
A
SUBW
A, ear
SUBW
A, eam
SUBW
A, #imm16
SUBW
ear, A
SUBW
eam, A
SUBCW A, ear
SUBCW A, eam
1
2
2 +
3
2
2 +
2
2 +
1
2
2 +
3
2
2 +
2
2 +
2
2
3 + (a)
2
2
3 + (a)
2
3 + (a)
2
2
3 + (a)
2
2
3 + (a)
2
3 + (a)
0
0
(c)
0
0
2
×
(c)
0
(c)
0
0
(c)
0
0
2
×
(c)
0
(c)
word (A)
(AH) + (AL)
word (A)
(A) + (ear)
word (A)
(A) + (eam)
word (A)
(A) + imm16
word (ear) ­ (ear) + (A)
word (eam) ­ (eam) + (A)
word (A)
(A) + (ear) + (C)
word (A)
(A) + (eam) + (C)
word (A)
(AH) ­ (AL)
word (A)
(A) ­ (ear)
word (A)
(A) ­ (eam)
word (A)
(A) ­ imm16
word (ear)
(ear) ­ (A)
word (eam)
(eam) ­ (A)
word (A)
(A) ­ (ear) ­ (C)
word (A)
(A) ­ (eam) ­ (C)
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
­
­
­
­
*
*
­
­
­
­
­
­
*
*
­
­
ADDL
A, ear
ADDL
A, eam
ADDL
A, #imm32
SUBL
A, ear
SUBL
A, eam
SUBL
A, #imm32
2
2 +
5
2
2 +
5
5
6 + (a)
4
5
6 + (a)
4
0
(d)
0
0
(d)
0
long (A)
(A) + (ear)
long (A)
(A) + (eam)
long (A)
(A) + imm32
long (A)
(A) ­ (ear)
long (A)
(A) ­ (eam)
long (A)
(A) ­ imm32
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
­
­
­
­
­
­
MB90210 Series
84
Table 10 Increment/Decrement (Byte, Word, Long) [12 Instructions]
Note: For (a) to (d), refer to "Table 4 Number of Execution Cycles in Addressing Modes" and "Table 5 Correction
Values for Number of Cycles for Calculating Actual Number of Cycles."
Table 11 Compare (Byte, Word, Long) [11 Instructions]
Note: For (a) to (d), refer to "Table 4 Number of Execution Cycles in Addressing Modes" and "Table 5 Correction
Values for Number of Cycles for Calculating Actual Number of Cycles."
Mnemonic
#
~
B
Operation
LH AH
I
S
T
N
Z
V
C RMW
INC
ear
INC
eam
DEC
ear
DEC
eam
2
2 +
2
2 +
2
3 + (a)
2
3 + (a)
0
2
×
(b)
0
2
×
(b)
byte (ear)
(ear) +1
byte (eam)
(eam) +1
byte (ear)
(ear) ­1
byte (eam)
(eam) ­1
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
*
*
*
*
*
*
*
*
*
*
*
*
­
­
­
­
*
*
*
*
INCW
ear
INCW
eam
DECW
ear
DECW
eam
2
2 +
2
2 +
2
3 + (a)
2
3 + (a)
0
2
×
(c)
0
2
×
(c)
word (ear)
(ear) +1
word (eam)
(eam) +1
word (ear)
(ear) ­1
word (eam)
(eam) ­1
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
*
*
*
*
*
*
*
*
*
*
*
*
­
­
­
­
*
*
*
*
INCL
ear
INCL
eam
DECL
ear
DECL
eam
2
2 +
2
2 +
4
5 + (a)
4
5 + (a)
0
2
×
(d)
0
2
×
(d)
long (ear)
(ear) +1
long (eam)
(eam) +1
long (ear)
(ear) ­1
long (eam)
(eam) ­1
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
*
*
*
*
*
*
*
*
*
*
*
*
­
­
­
­
­
*
*
*
Mnemonic
#
~
B
Operation
LH AH
I
S
T
N
Z
V
C RMW
CMP
A
CMP
A, ear
CMP
A, eam
CMP
A, #imm8
1
2
2 +
2
1
2
3 + (a)
2
0
0
(b)
0
byte (AH) ­ (AL)
byte (A) ­ (ear)
byte (A) ­ (eam)
byte (A) ­ imm8
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
­
­
­
­
CMPW A
CMPW A, ear
CMPW A, eam
CMPW
A, #imm16
1
2
2 +
3
1
2
3 + (a)
2
0
0
(c)
0
word (AH) ­ (AL)
word (A) ­ (ear)
word (A) ­ (eam)
word (A) ­ imm16
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
­
­
­
­
CMPL
A, ear
CMPL
A, eam
CMPL
A, #imm32
2
2 +
5
6
7 + (a)
3
0
(d)
0
word (A) ­ (ear)
word (A) ­ (eam)
word (A) ­ imm32
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
*
*
*
*
*
*
*
*
*
*
*
*
­
­
­
85
MB90210 Series
Table 12 Unsigned Multiply/Division (Word, Long) [11 Instructions]
Note: For (b) and (c), refer to "Table 5 Correction Values for Number of Cycles for Calculating Actual Number of
Cycles."
*1: Set to 3 when the division-by-0, 6 for an overflow, and 14 for normal operation.
*2: Set to 3 when the division-by-0, 6 for an overflow, and 13 for normal operation.
*3: Set to 5 + (a) when the division-by-0, 7 + (a) for an overflow, and 17 + (a) for normal operation.
*4: Set to 3 when the division-by-0, 5 for an overflow, and 21 for normal operation.
*5: Set to 4 + (a) when the division-by-0, 7 + (a) for an overflow, and 25 + (a) for normal operation.
*6: When the division-by-0, (b) for an overflow, and 2
×
(b) for normal operation.
*7: When the division-by-0, (c) for an overflow, and 2
×
(c) for normal operation.
*8: Set to 3 when byte (AH) is zero, 7 when byte (AH) is not zero.
*9: Set to 3 when byte (ear) is zero, 7 when byte (ear) is not zero.
*10:Set to 4 + (a) when byte (eam) is zero, 8 + (a) when byte (eam) is not zero.
*11:Set to 3 when word (AH) is zero, 11 when word (AH) is not zero.
*12:Set to 4 when word (ear) is zero, 11 when word (ear) is not zero.
*13:Set to 4 + (a) when word (eam) is zero, 12 + (a) when word (eam) is not zero.
Mnemonic
#
~
B
Operation
LH AH
I
S
T
N
Z
V
C RMW
DIVU
A
DIVU
A, ear
DIVU
A, eam
DIVUW
A, ear
DIVUW
A, eam
MULU
A
MULU
A, ear
MULU
A, eam
MULUW A
MULUW A, ear
MULUW A, eam
1
2
2 +
2
2+
1
2
2 +
1
2
2 +
*1
*2
*3
*4
*5
*8
*9
*10
*11
*12
*13
0
0
*6
0
*7
0
0
(b)
0
0
(c)
word (AH) /byte (AL)
Quotient
byte (AL)
Remainder
byte (AH)
word (A)/byte (ear)
Quotient
byte (A)
Remainder
byte (ear)
word (A)/byte (eam)
Quotient
byte (A)
Remainder
byte (eam)
long (A)/word (ear)
Quotient
word (A)
Remainder
word (ear)
long (A)/word (eam)
Quotient
word (A)
Remainder
word (eam)
byte (AH) byte (AL)
word (A)
byte (A) byte (ear)
word (A)
byte (A) byte (eam)
word (A)
word (AH) word (AL)
long (A)
word (A) word (ear)
long (A)
word (A) word (eam)
long (A)
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
*
*
*
*
*
­
­
­
­
­
­
*
*
*
*
*
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
MB90210 Series
86
Table 13 Signed multiplication/division (Word, Long) [11 Instructions]
For (b) and (c), refer to "Table 5 Correction Values for Number of Cycles for Calculating Actual Number of Cycles."
*1: Set to 3 for divide-by-0, 8 or 18 for an overflow, and 18 for normal operation.
*2: Set to 3 for divide-by-0, 10 or 21 for an overflow, and 22 for normal operation.
*3: Set to 4 + (a) for divide-by-0, 11 + (a) or 22 + (a) for an overflow, and 23 + (a) for normal operation.
*4: Positive divided: Set to 4 for divide-by-0, 10 or 29 for an overflow, and 30 for normal operation.
Negative divided: Set to 4 for divide-by-0, 11 or 30 for an overflow, and 31 for normal operation.
*5: Positive divided: Set to 4 + (a) for divide-by-0, 11 + (a) or 30 + (a) for an overflow, and 31 + (a) for normal operation.
Negative divided: Set to 4 + (a) for divide-by-0, 12 + (a) or 31 + (a) for an overflow, and 32 + (a) for normal
operation.
*6: Set to (b) when the division-by-0 or an overflow, and 2
×
(b) for normal operation.
*7: Set to (c) when the division-by-0 or an overflow, and 2
×
(c) for normal operation.
*8: Set to 3 when byte (AH) is zero, 12 when the result is positive, and 13 when the result is negative.
*9: Set to 3 when byte (ear) is zero, 12 when the result is positive, and 13 when the result is negative.
*10:Set to 4 + (a) when byte (eam) is zero, 13 + (a) when the result is positive, and 14 + (a) when the result is negative.
*11:Set to 3 when word (AH) is zero, 12 when the result is positive, and 13 when the result is negative.
*12:Set to 3 when word (ear) is zero, 16 when the result is positive, and 19 when the result is negative.
*13:Set to 4 + (a) when word (eam) is zero, 17 + (a) when the result is positive, and 20 + (a) when the result is negative.
Note: When overflow occurs during DIV or DIVW instruction execution, the number of execution cycles takes two
values because of detection before and after an operation.
When overflow occurs during DIV or DIVW instruction execution, the contents of AL are destroyed.
Mnemonic
#
~
B
Operation
LH AH
I
S
T
N
Z
V
C RMW
DIV
A
2
*1
0
word (AH)/byte (AL)
Z
­
­
­
­
­
­
*
*
­
Quotient
byte (AL)
Remainder
byte (AH)
DIV
A, ear
2
*2
0
word (A)/byte (ear)
Z
­
­
­
­
­
­
*
*
­
Quotient
byte (A)
Remainder
byte (ear)
DIV
A, eam
2 + *3
*6 word (A)/byte (eam)
Z
­
­
­
­
­
­
*
*
­
Quotient
byte (A)
Remainder
byte (eam)
DIVW
A, ear
2
*4
0
long (A)/word (ear)
­
­
­
­
­
­
­
*
*
­
Quotient
word (A)
Remainder
word (ear)
DIVW
A, eam
2 + *5
*7 long (A)/word (eam)
­
­
­
­
­
­
­
*
*
­
Quotient
word (A)
Remainder
word (eam)
MUL
A
2
*8
0
byte (AH)
×
byte (AL)
word (A)
­
­
­
­
­
­
­
­
­
­
MUL
A, ear
2
*9
0
byte (A)
×
byte (ear)
word (A)
­
­
­
­
­
­
­
­
­
­
MUL
A, eam
2 + *10 (b)
byte (A)
×
byte (eam)
word (A)
­
­
­
­
­
­
­
­
­
­
MULW
A
2
*11
0
word (AH)
×
word (AL)
long (A)
­
­
­
­
­
­
­
­
­
­
MULW
A, ear
2
*12
0
word (A)
×
word (ear)
long (A)
­
­
­
­
­
­
­
­
­
­
MULW
A, eam
2 + *13 (b) word
(A)
×
word
(eam)
long
(A)
­
­
­
­
­
­
­
­
­
­
87
MB90210 Series
Table 14 Logic 1 (Byte, Word) [39 Instructions]
Note: For (a) to (c), refer to "Table 4 Number of Execution Cycles in Addressing Modes" and "Table 5 Correction
Values for Number of Cycles for Calculating Actual Number of Cycles."
Mnemonic
#
~
B
Operation
LH AH
I
S
T
N
Z
V
C RMW
AND
A, #imm8
AND
A, ear
AND
A, eam
AND
ear, A
AND
eam, A
OR
A, #imm8
OR
A, ear
OR
A, eam
OR
ear, A
OR
eam, A
XOR
A, #imm8
XOR
A, ear
XOR
A, eam
XOR
ear, A
XOR
eam, A
NOT
A
NOT
ear
NOT
eam
2
2
2 +
2
2 +
2
2
2 +
2
2 +
2
2
2 +
2
2 +
1
2
2 +
2
2
3 + (a)
3
3 + (a)
2
2
3 + (a)
3
3 + (a)
2
2
3 + (a)
3
3 + (a)
2
2
3 + (a)
0
0
(b)
0
2
×
(b)
0
0
(b)
0
2
×
(b)
0
0
(b)
0
2
×
(b)
0
0
2
×
(b)
byte (A)
(A) and imm8
byte (A)
(A) and (ear)
byte (A)
(A) and (eam)
byte (ear)
(ear) and (A)
byte (eam)
(eam) and (A)
byte (A)
(A) or imm8
byte (A)
(A) or (ear)
byte (A)
(A) or (eam)
byte (ear)
(ear) or (A)
byte (eam)
(eam) or (A)
byte (A)
(A) xor imm8
byte (A)
(A) xor (ear)
byte (A)
(A) xor (eam)
byte (ear)
(ear) xor (A)
byte (eam)
(eam) xor (A)
byte (A)
not (A)
byte (ear)
not (ear)
byte (eam)
not (eam)
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
*
*
­
­
­
*
*
­
­
­
*
*
­
*
*
ANDW A
ANDW A, #imm16
ANDW A, ear
ANDW A, eam
ANDW ear, A
ANDW eam, A
ORW
A
ORW
A, #imm16
ORW
A, ear
ORW
A, eam
ORW
ear, A
ORW
eam, A
XORW A
XORW A, #imm16
XORW A, ear
XORW A, eam
XORW ear, A
XORW eam, A
NOTW A
NOTW ear
NOTW eam
1
3
2
2 +
2
2 +
1
3
2
2 +
2
2 +
1
3
2
2 +
2
2 +
1
2
2 +
2
2
2
3 + (a)
3
3 + (a)
2
2
2
3 + (a)
3
3 + (a)
2
2
2
3 + (a)
3
3 + (a)
2
3
3 + (a)
0
0
0
(c)
0
2
×
(c)
0
0
0
(c)
0
2
×
(c)
0
0
0
(c)
0
2
×
(c)
0
0
2
×
(c)
word (A)
(AH) and (A)
word (A)
(A) and imm16
word (A)
(A) and (ear)
word (A)
(A) and (eam)
word (ear)
(ear) and (A)
word (eam)
(eam) and (A)
word (A)
(AH) or (A)
word (A)
(A) or imm16
word (A)
(A) or (ear)
word (A)
(A) or (eam)
word (ear)
(ear) or (A)
word (eam)
(eam) or (A)
word (A)
(AH) xor (A)
word (A)
(A) xor imm16
word (A)
(A) xor (ear)
word (A)
(A) xor (eam)
word (ear)
(ear) xor (A)
word (eam)
(eam) xor (A)
word (A)
not (A)
word (ear)
not (ear)
word (eam)
not (eam)
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
*
*
­
­
­
­
*
*
­
­
­
­
*
*
­
*
*
MB90210 Series
88
Table 15 Logic 2 (Long) [6 Instructions]
Note: For (a) and (d), refer to "Table 4 Number of Execution Cycles in Addressing Modes" and "Table 5 Correction
Values for Number of Cycles for Calculating Actual Number of Cycles."
Table 16 Sign Reverse (Byte, Word) [6 Instructions]
Note: For (a) and (d), refer to "Table 4 Number of Execution Cycles in Addressing Modes" and "Table 5 Correction
Values for Number of Cycles for Calculating Actual Number of Cycles."
Table 17 Absolute Values (Byte, Word, Long) [3 Instructions]
Table 18 Normalize Instruction (Long) [1 Instruction]
* : Set to 5 when the accumulator is all "0", otherwise set to 5 + (R0).
Mnemonic
#
~
B
Operation
LH AH
I
S
T
N
Z
V
C RMW
ANDL
A, ear
ANDL
A, eam
ORL
A, ear
ORL
A, eam
XORL
A, ear
XORL
A, eam
2
2 +
2
2 +
2
2 +
5
6 + (a)
5
6 + (a)
5
6 + (a)
0
(d)
0
(d)
0
(d)
long (A)
(A) and (ear)
long (A)
(A) and (eam)
long (A)
(A) or (ear)
long (A)
(A) or (eam)
long (A)
(A) xor (ear)
long (A)
(A) xor (eam)
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
*
*
*
*
*
*
*
*
*
*
*
*
R
R
R
R
R
R
­
­
­
­
­
­
­
­
­
­
­
­
Mnemonic
#
~
RG
B
Operation
LH AH
I
S
T
N
Z
V
C
RMW
NEG
A
NEG
ear
NEG
eam
1
2
2 +
2
3
5 + (a)
0
2
0
0
0
2
×
(b)
byte (A)
0 ­ (A)
byte (ear)
0 ­ (ear)
byte (eam)
0 ­ (eam)
X
­
­
­
­
­
­
­
­
­
­
­
­
­
­
*
*
*
*
*
*
*
*
*
*
*
*
­
­
*
NEGW A
NEGW ear
NEGW eam
1
2
2 +
2
3
5 + (a)
0
2
0
0
0
2
×
(c)
word (A)
0 ­ (A)
word (ear)
0 ­ (ear)
word (eam)
0 ­ (eam)
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
*
*
*
*
*
*
*
*
*
*
*
*
­
­
*
Mnemonic
#
~
B
Operation
LH AH
I
S
T
N
Z
V
C RMW
ABS
A
ABSW
A
ABSL
A
2
2
2
2
2
4
0
0
0
byte (A)
Absolute value (A)
word (A)
Absolute value (A)
long (A)
Absolute value (A)
Z
­
­
­
­
­
­
­
­
­
­
­
­
­
­
*
*
*
*
*
*
*
*
*
­
­
­
­
­
­
Mnemonic
#
~
RG
B
Operation
LH AH
I
S
T
N
Z
V
C
RMW
NRML
A, R0
2
*1
1
0
long (A)
Shift to where "1"
is originally located
byte (R0)
Number of shifts
in the operation
­
­
­
­
­
­
*
­
­
­
89
MB90210 Series
Table 19 Shift Type Instruction (Byte, Word, Long) [27 Instructions]
Note: For (a) and (b), refer to "Table 4 Number of Execution Cycles in Addressing Modes" and "Table 5 Correction
Values for Number of Cycles for Calculating Actual Number of Cycles."
*1: Set to 3 when R0 is 0, otherwise 3 + (R0).
*2: Set to 3 when R0 is 0, otherwise 4 + (R0).
*3: Set to 3 when imm8 is 0, otherwise 3 + imm8.
*4: Set to 3 when imm8 is 0, otherwise 4 + imm8.
Mnemonic
#
~
B
Operation
LH AH
I
S
T
N
Z
V C
RMW
RORC A
ROLC A
RORC ear
RORC eam
ROLC ear
ROLC eam
ASR
A, R0
LSR
A, R0
LSL
A, R0
ASR
A, #imm8
LSR
A, #imm8
LSL
A, #imm8
2
2
2
2 +
2
2 +
2
2
2
3
3
3
2
2
2
3 + (a)
2
3 + (a)
*1
*1
*1
*3
*3
*3
0
0
0
2
×
(b)
0
2
×
(b)
0
0
0
0
0
0
byte (A)
With right-rotate carry
byte (A)
With left-rotate carry
byte (ear)
With right-rotate carry
byte (eam)
With right-rotate carry
byte (ear)
With left-rotate carry
byte (eam)
With left-rotate carry
byte (A)
Arithmetic right barrel shift (A, R0)
byte (A)
Logical right barrel shift (A, R0)
byte (A)
Logical left barrel shift (A, R0)
byte (A)
Arithmetic right barrel shift (A, imm8)
byte (A)
Logical right barrel shift (A, imm8)
byte (A)
Logical left barrel shift (A, imm8)
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
*
*
­
*
*
­
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
­
­
­
­
­
­
­
­
­
­
­
­
*
*
*
*
*
*
*
*
*
*
*
*
­
­
*
*
*
*
­
­
­
­
­
­
ASRW A
LSRW
A/SHRW A
LSLW
A/SHLW A
ASRW A, R0
LSRW A, R0
LSLW A, R0
ASRW
A, #imm8
LSRW
A, #imm8
LSLW
A, #imm8
1
1
1
2
2
2
3
3
3
2
2
2
*1
*1
*1
*3
*3
*3
0
0
0
0
0
0
0
0
0
word (A)
Arithmetic right shift (A, 1 bit)
word (A)
Logical right shift (A, 1 bit)
word (A)
Logical left shift (A, 1 bit)
word (A)
Arithmetic right barrel shift (A, R0)
word (A)
Logical right barrel shift (A, R0)
word (A)
Logical left barrel shift (A, R0)
word (A)
Arithmetic right barrel shift (A, imm8)
word (A)
Logical right barrel shift (A, imm8)
word (A)
Logical left barrel shift (A, imm8)
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
*
*
­
*
*
­
*
*
­
*
R
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
­
­
­
­
­
­
­
­
­
*
*
*
*
*
*
*
*
*
­
­
­
­
­
­
­
­
­
ASRL A, R0
LSRL A, R0
LSLL
A, R0
ASRL
A, #imm8
LSRL
A, #imm8
LSLL
A, #imm8
2
2
2
3
3
3
*2
*2
*2
*4
*4
*4
0
0
0
0
0
0
long (A)
Arithmetic right barrel shift (A, R0)
long (A)
Logical right barrel shift (A, R0)
long (A)
Logical left barrel shift (A, R0)
long (A)
Arithmetic right barrel shift (A, imm8)
long (A)
Logical right barrel shift (A, imm8)
long (A)
Logical left barrel shift (A, imm8)
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
*
*
­
*
*
­
*
*
*
*
*
*
*
*
*
*
*
*
­
­
­
­
­
­
*
*
*
*
*
*
­
­
­
­
­
­
MB90210 Series
90
Table 20 Branch 1 [31 Instructions]
Note: For (a), (c) and (d), refer to "Table 4 Number of Execution Cycles in Addressing Modes" and "Table 5 Correction
Values for Number of Cycles for Calculating Actual Number of Cycles."
*1: Set to 3 when branch is executed, and 2 when branch is not executed.
*2: 3
×
(c) + (b)
*3: Reads (word) of the branch destination address.
*4: W pushes to stack (word), and R reads (word) of the branch destination address.
*5: Pushes to stack (word).
*6: W pushes to stack (long), and R reads (long) of the branch destination address.
*7: Pushes to stack (long).
Mnemonic
#
~
B
Operation
LH AH
I
S
T
N
Z
V C RMW
BZ/BEQ rel
BNZ/BNE rel
BC/BLO rel
BNC/BHS rel
BN
rel
BP
rel
BV
rel
BNV
rel
BT
rel
BNT
rel
BLT
rel
BGE
rel
BLE
rel
BGT
rel
BLS
rel
BHI
rel
BRA
rel
JMP
@
A
JMP
addr16
JMP
@ear
JMP
@eam
JMPP
@ear *
3
JMPP
@eam *
3
JMPP
addr24
CALL
@ear *
4
CALL
@eam *
4
CALL
addr16 *
5
CALLV
#vct4 *
5
CALLP
@ear *
6
CALLP
@eam *
6
CALLP
addr24 *
7
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
1
3
2
2 +
2
2 +
4
2
2 +
3
1
2
2 +
4
*1
*1
*1
*1
*1
*1
*1
*1
*1
*1
*1
*1
*1
*1
*1
*1
*1
2
2
3
4 + (a)
3
4 + (a)
3
4
5 + (a)
5
5
7
8 + (a)
7
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
(c)
0
(d)
0
(c)
2
×
(c)
(c)
2
×
(c)
2
×
(c)
*2
2
×
(c)
Branch if (Z) = 1
Branch if (Z) = 0
Branch if (C) = 1
Branch if (C) = 0
Branch if (N) = 1
Branch if (N) = 0
Branch if (V) = 1
Branch if (V) = 0
Branch if (T) = 1
Branch if (T) = 0
Branch if (V) xor (N) = 1
Branch if (V) xor (N) = 0
Branch if ((V) xor (N)) or (Z) = 1
Branch if ((V) xor (N)) or (Z) = 0
Branch if (C) or (Z) = 1
Branch if (C) or (Z) = 0
Branch unconditionally
word (PC)
(A)
word (PC)
addr16
word (PC)
(ear)
word (PC)
(eam)
word (PC)
(ear), (PCB)
(ear + 2)
word (PC)
(eam), (PCB)
(eam + 2)
word (PC)
ad24 0 ­ 15,
(PCB)
ad24 16 ­ 23
word (PC)
(ear)
word (PC)
(eam)
word (PC)
addr16
Vector call instruction
word (PC)
(ear) 0 ­ 15
(PCB)
(ear) 16 ­ 23
word (PC)
(eam) 0 ­ 15
(PCB)
(eam) 16 ­ 23
word (PC)
addr0 ­ 15,
(PCB)
addr16 ­ 23
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
91
MB90210 Series
Table 21 Branch 2 [20 Instructions]
Note: For (a) to (d), refer to "Table 4 Number of Execution Cycles in Addressing Modes" and "Table 5 Correction
Values for Number of Cycles for Calculating Actual Number of Cycles."
*1: Set to 4 when branch is executed, and 3 when branch is not executed.
*2: Set to 5 when branch is executed, and 4 when branch is not executed.
*3: Set to 5 + (a) when branch is executed, and 4 + (a) when branch is not executed.
*4: Set to 6 + (a) when branch is executed, and 5 + (a) when branch is not executed.
*5: Set to 3
×
(b) + 2
×
(c) when an interrupt request is issued, and 6
×
(c) for return.
*6: This is a high-speed interrupt return instruction. In the instruction, an interrupt request is detected. When an
interrupt occurs, stack operation is not performed, with this instruction branching to the interrupt vector.
*7: Return from stack (word).
*8: Return from stack (long).
Mnemonic
#
~
B
Operation
LH AH
I
S
T
N
Z
V
C RMW
CBNE
A, #imm8, rel
CWBNE A, #imm16, rel
CBNE
ear, #imm8, rel
CBNE
eam, #imm8, rel
CWBNE ear, #imm16, rel
CWBNE eam, #imm16, rel
DBNZ
ear, rel
DBNZ
eam, rel
DWBNZ ear, rel
DWBNZ eam, rel
INT
#vct8
INT
addr16
INTP
addr24
INT9
RETI
RETIQ *
6
LINK
#imm8
UNLINK
RET *
7
RETP *
8
3
4
4
4 +
5
5 +
3
3 +
3
3 +
2
3
4
1
1
2
2
1
1
1
*1
*1
*1
*3
*1
*3
*2
*4
*2
*4
14
12
13
14
9
11
6
5
4
5
0
0
0
(b)
0
(c)
0
2
×
(b)
0
2
×
(c)
8
×
(c)
6
×
(c)
6
×
(c)
8
×
(c)
6
×
(c)
*5
(c)
(c)
(c)
(d)
Branch if byte (A)
imm8
Branch if word (A)
imm16
Branch if byte (ear)
imm8
Branch if byte (eam)
imm8
Branch if word (ear)
imm16
Branch if word (eam)
imm16
byte (ear) = (ear) ­ 1,
Branch if (ear)
0
byte (eam) = (eam) ­ 1,
Branch if (eam)
0
word (ear) = (ear) ­ 1,
Branch if (ear)
0
word (eam) = (eam) ­ 1,
Branch if (eam)
0
Software interrupt
Software interrupt
Software interrupt
Software interrupt
Return from interrupt
Return from interrupt
Stores old frame pointer in
the beginning of the
function, set new frame
pointer, and reserves local
pointer area
Restore old frame pointer
from stack in the end of
the function
Return from subroutine
Return from subroutine
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
R
R
R
R
*
*
­
­
­
­
­
­
­
­
­
­
­
­
­
­
S
S
S
S
*
*
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
*
*
­
­
­
­
*
*
*
*
*
*
*
*
*
*
­
­
­
­
*
*
­
­
­
­
*
*
*
*
*
*
*
*
*
*
­
­
­
­
*
*
­
­
­
­
*
*
*
*
*
*
*
*
*
*
­
­
­
­
*
*
­
­
­
­
*
*
*
*
*
*
­
­
­
­
­
­
­
­
*
*
­
­
­
­
­
­
­
­
­
­
­
*
­
*
­
­
­
­
­
­
­
­
­
­
MB90210 Series
92
Table 22 Miscellaneous Control Types (Byte, Word, Long) [36 Instructions]
Note: For (a) and (c), refer to "Table 4 Number of Execution Cycles in Addressing Modes" and "Table 5 Correction
Values for Number of Cycles for Calculating Actual Number of Cycles."
*1: PCB, ADB, SSB, USB, and SPB : 1 state
DTB
: 2 states
DPR
: 3 states
*2: 3 + 4
×
(number of POPs)
*3: 3 + 4
×
(number of PUSHes)
*4: (Number of POPs)
×
(c), or (number of PUSHes)
×
(c)
*5: Set to 3 when AL is 0, 5 when AL is not 0.
*6: Set to 4 when AL is 0, 6 when AL is not 0.
*7: Set to 5 when AL is 0, 7 when AL is not 0.
Mnemonic
#
~
B
Operation
LH AH
I
S
T
N
Z
V C RMW
PUSHW A
PUSHW AH
PUSHW PS
PUSHW rlst
POPW
A
POPW
AH
POPW
PS
POPW
rlst
JCTX
@A
AND
CCR, #imm8
OR
CCR, #imm8
MOV
RP, #imm8
MOV
ILM, #imm8
MOVEA RWi, ear
MOVEA RWi, eam
MOVEA A, ear
MOVEA A, eam
ADDSP #imm8
ADDSP #imm16
MOV
A, brgl
MOV
brg2, A
MOV
brg2, #imm8
NOP
ADB
DTB
PCB
SPB
NCC
CMR
MOVW SPCU, #imm16
MOVW SPCL, #imm16
SETSPC
CLRSPC
BTSCN A
BTSCNS
A
BTSCND
A
1
1
1
2
1
1
1
2
1
2
2
2
2
2
2 +
2
2 +
2
3
2
2
3
1
1
1
1
1
1
1
4
4
2
2
2
2
2
3
3
3
*3
3
3
3
*2
9
3
3
2
2
3
2 + (a)
2
1 + (a)
3
3
*1
1
2
1
1
1
1
1
1
1
2
2
2
2
*5
*6
*7
(c)
(c)
(c)
*4
(c)
(c)
(c)
*4
6
×
(c)
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
word (SP)
(SP) ­ 2, ((SP))
(A)
word (SP)
(SP) ­ 2, ((SP))
(AH)
word (SP)
(SP) ­ 2, ((SP))
(PS)
(PS)
(PS) ­ 2n, ((SP))
(rlst)
word (A)
((SP)), (SP)
(
SP) + 2
word (AH)
((SP)), (SP)
(
SP) + 2
word (PS)
((SP)), (SP)
(
SP) + 2
(rlst)
((SP)), (SP)
(SP) + 2n
Context switch instruction
byte (CCR)
(CCR) and imm8
byte (CCR)
(CCR) or imm8
byte (RP)
imm8
byte (ILM)
imm8
word (RWi)
ear
word (RWi)
eam
word(A)
ear
word (A)
eam
word (SP)
(SP) + ext (imm8)
word (SP)
(SP) + imm16
byte (A)
(brgl)
byte (brg2)
(A)
byte (brg2)
imm8
No operation
Prefix code for accessing AD space
Prefix code for accessing DT space
Prefix code for accessing PC space
Prefix code for accessing SP space
Prefix code for no change in flag
Prefix for common register bank
word (SPCU)
(imm16)
word (SPCL)
(imm16)
Enables stack check operation.
Disables stack check operation.
Bit position of 1 in byte (A) from word (A)
Bit position (
×
2) of 1 in byte (A) from word (A)
Bit position (
×
4) of 1 in byte (A) from word (A)
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
Z
­
­
­
­
­
­
­
­
­
­
­
­
­
Z
Z
Z
­
­
­
­
*
­
­
­
­
­
­
­
­
­
­
*
*
­
­
*
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
*
­
*
*
*
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
*
­
*
*
*
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
*
­
*
*
*
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
*
­
*
*
*
­
­
­
­
­
­
­
­
*
*
*
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
*
­
*
*
*
­
­
­
­
­
­
­
­
*
*
*
­
­
­
­
­
­
­
­
­
­
­
*
*
*
­
­
­
­
­
­
*
­
*
*
*
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
*
­
*
*
*
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
93
MB90210 Series
Table 23 Bit Manipulation Instruction [21 Instructions]
Note: For (b), refer to "Table 5 Correction Values for Number of Cycles for Calculating Actual Number of Cycles."
*1: Set to 5 when branch is executed, and 4 when branch is not executed.
*2: 7 if conditions are met, 6 when conditions are not met.
*3: Indeterminate times
*4: Until conditions are met
Mnemonic
#
~
B
Operation
LH AH
I
S
T
N
Z
V C RMW
MOVB A, dir:bp
MOVB A, addr16:bp
MOVB A, io:bp
MOVB dir:bp, A
MOVB addr16:bp, A
MOVB io:bp, A
SETB dir:bp
SETB addr16:bp
SETB io:bp
CLRB dir:bp
CLRB addr16:bp
CLRB io:bp
BBC
dir:bp, rel
BBC
addr16:bp, rel
BBC
io:bp, rel
BBS
dir:bp, rel
BBS
addr16:bp, rel
BBS
io:bp, rel
SBBS
addr16:bp, rel
WBTS io:bp
WBTC io:bp
3
4
3
3
4
3
3
4
3
3
4
3
4
5
4
4
5
4
5
3
3
3
3
3
4
4
4
4
4
4
4
4
4
*1
*1
*1
*1
*1
*1
*2
*3
*3
(b)
(b)
(b)
2
×
(b)
2
×
(b)
2
×
(b)
2
×
(b)
2
×
(b)
2
×
(b)
2
×
(b)
2
×
(b)
2
×
(b)
(b)
(b)
(b)
(b)
(b)
(b)
2
×
(b)
*4
*4
byte (A)
(dir:bp) b
byte (A)
(addr16:bp) b
byte (A)
(io:bp) b
bit (dir:bp) b
(A)
bit (addr16:bp) b
(A)
bit (io:bp) b
(A)
bit (dir:bp) b
1
bit (addr16:bp) b
1
bit (io:bp) b
1
bit (dir:bp) b
0
bit (addr16:bp) b
0
bit (io:bp) b
0
Branch if (dir:bp) b = 0
Branch if (addr16:bp) b = 0
Branch if (io:bp) b = 0
Branch if (dir:bp) b = 1
Branch if (addr16:bp) b = 1
Branch if (io:bp) b = 1
Branch if (addr16:bp) b = 1, bit = 1
Wait until (io:bp) b = 1
Wait until (io:bp) b = 0
Z
Z
Z
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
*
*
*
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
*
*
*
*
*
*
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
*
*
*
*
*
*
­
­
­
­
­
­
*
*
*
*
*
*
*
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
*
*
*
*
*
*
*
*
*
­
­
­
­
­
­
*
­
­
MB90210 Series
94
Table 24 Accumulator Manipulation Instruction (Byte, Word) [6 Instructions]
Table 25 String Instruction [10 Instructions]
m: RW0 value (counter value)
*1: 3 when RW0 is 0, 2 + 6
×
(RW0) when count out, and 6n + 4 when matched
*2: 4 when RW0 is 0, otherwise 2 + 6
×
(RW0)
*3: (b)
×
(RW0)
*4: (b)
×
n
*5: (b)
×
(RW0)
*6: (c)
×
(RW0)
*7: (c)
×
n
*8: (c)
×
(RW0)
Mnemonic
#
~
B
Operation
LH AH
I
S
T
N
Z
V
C RMW
SWAP
SWAPW/XCHW AL, AH
EXT
EXTW
ZEXT
ZEXTW
1
1
1
1
1
1
3
2
1
2
1
1
0
0
0
0
0
0
byte (A) 0 ­ 7
(A) 8 ­ 15
word (AH)
(AL)
byte sign-extension
word sign-extension
byte zero-extension
word zero-extension
­
­
X
­
Z
­
­
*
­
X
­
Z
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
*
*
R
R
­
­
*
*
*
*
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
Mnemonic
#
~
B
Operation
LH AH
I
S
T
N
Z
V
C RMW
MOVS/MOVSI
MOVSD
SCEQ/SCEQI
SCEQD
FISL/FILSI
2
2
2
2
2
*2
*2
*1
*1
5m + 6
*3
*3
*4
*4
*5
byte transfer @AH +
@AL +,
Counter = RW0
byte transfer @AH ­
@AL ­,
Counter = RW0
byte search (@AH +) ­ AL,
Counter = RW0
byte search (@AH ­) ­ AL,
Counter = RW0
byte fill @AH +
AL,
Counter = RW0
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
*
*
*
­
­
*
*
*
­
­
*
*
­
­
­
*
*
­
­
­
­
­
­
MOVSW/MOVSWI
MOVSWD
SCWEQ/SCWEQI
SCWEQD
FILSW/FILSWI
2
2
2
2
2
*2
*2
*1
*1
5m + 6
*6
*6
*7
*7
*8
word transfer @AH +
@AL +,
Counter = RW0
word transfer @AH ­
@AL ­,
Counter = RW0
word search (@AH +) ­ AL,
Counter = RW0
word search (@AH ­) ­ AL,
Counter = RW0
word fill @AH +
AL,
Counter = RW0
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
­
*
*
*
­
­
*
*
*
­
­
*
*
­
­
­
*
*
­
­
­
­
­
­
95
MB90210 Series
Table 26 Multiple Data Transfer Instructions [18 Instruction]
*1: 256 when 5 + imm8
×
5, imm8 is 0.
*2: 256 when 5 + imm8
×
5 + (a), imm8 is 0.
*3: (Number of transfer cycles)
×
(b)
×
2
*4: (Number of transfer cycles)
×
(c)
×
2
*5: The bank register specified by bnk is the same as that for the MOVS instruction.
Mnemonic
#
~
B
Operation
LH AH
I
S
T
N
Z
V
C RMW
MOVM @A, @RLi, #imm8
3
*1
*3 Multiple data transfer
byte ((A))
((RLi))
­
­
­
­
­
­
­
­
­
­
MOVM @A, eam, #imm8
3 +
*2
*3 Multiple data transfer
byte ((A))
(eam)
­
­
­
­
­
­
­
­
­
­
MOVM
addr16, @RLi, #imm8
5
*1
*3 Multiple data transfer
byte (addr16)
((RLi))
­
­
­
­
­
­
­
­
­
­
MOVM
addr16, @eam, #imm8
5 +
*2
*3 Multiple data transfer
byte (addr16)
(eam)
­
­
­
­
­
­
­
­
­
­
MOVMW
@A, @RLi, #imm8
3
*1
*4 Multiple data transfer
word ((A))
((RLi))
­
­
­
­
­
­
­
­
­
­
MOVMW
@A, eam, #imm8
3 +
*2
*4 Multiple data transfer
word ((A))
(eam)
­
­
­
­
­
­
­
­
­
­
MOVMWaddr16, @RLi, #imm8
5
*1
*4 Multiple data transfer
word (addr16)
((RLi))
­
­
­
­
­
­
­
­
­
­
MOVMWaddr16, @eam, #imm8
5 +
*2
*4 Multiple data transfer
word (addr16)
(eam)
­
­
­
­
­
­
­
­
­
­
MOVM @RLi, @A, #imm8
3
*1
*3 Multiple data transfer
byte ((RLi))
((A))
­
­
­
­
­
­
­
­
­
­
MOVM @eam, A, #imm8
3 +
*2
*3 Multiple data transfer
byte (eam)
((A))
­
­
­
­
­
­
­
­
­
­
MOVM
@RLi, addr16, #imm8
5
*1
*3 Multiple data transfer
byte ((RLi))
(addr16)
­
­
­
­
­
­
­
­
­
­
MOVM
@eam, addr16, #imm8
5 +
*2
*3 Multiple data transfer
byte (eam)
(addr16)
­
­
­
­
­
­
­
­
­
­
MOVMW
@RLi, @A, #imm8
3
*1
*4 Multiple data transfer
word ((RLi))
((A))
­
­
­
­
­
­
­
­
­
­
MOVMW
@eam, A, #imm8
3 +
*2
*4 Multiple data transfer
word (eam)
((A))
­
­
­
­
­
­
­
­
­
­
MOVMW@RLi, addr16, #imm8
5
*1
*4 Multiple data transfer
word ((RLi))
(addr16)
­
­
­
­
­
­
­
­
­
­
MOVMW@eam, addr16, #imm8
5 +
*2
*4 Multiple data transfer
word (eam)
(addr16)
­
­
­
­
­
­
­
­
­
­
MOVM bnk: addr16,
bnk: addr16, #imm8
*
5
7
*1
*3 Multiple data transfer
byte (bnk: addr16)
(bnk: addr16)
­
­
­
­
­
­
­
­
­
­
MOVMW
bnk: addr16,
bnk: addr16, #imm8
*
5
7
*1
*4 Multiple data transfer
word (bnk: addr16)
(bnk: addr16)
­
­
­
­
­
­
­
­
­
­
MB90210 Series
96
s
ORDERING INFORMATION
Part number
Type
Package
Remarks
MB90214
MB90P214A
MB90P214B
MB90214PF
MB90P214PF
MB90P214BPF
80-pin Plastic QFP
(FPT-80P-M06)
MB90W214A
MB90W214B
MB90W214ZF
MB90W214BZF
80-pin Ceramic QFP
(FPT-80C-C02)
Only ES level
MB90V210
MB90V210CR
256-pin Ceramic PGA
(PGA-256C-A02)
For evaluation
97
MB90210 Series
s
PACKAGE DIMENSIONS
"A"
LEAD No.
(.031±.008)
0.80±0.20
0.30(.012)
0.25(.010)
80
65
64
41
40
25
24
1
22.30±0.40(.878±.016)
18.40(.724)REF
M
0.16(.006)
(.014±.004)
0.35±0.10
0.80(.0315)TYP
(.705±.016)
(.551±.008)
14.00±0.20
17.90±0.40
20.00±0.20(.787±.008)
23.90±0.40(.941±.016)
INDEX
0.15±0.05(.006±.002)
(STAND OFF)
0.05(.002)MIN
3.35(.132)MAX
(.642±.016)
16.30±0.40
REF
12.00(.472)
Details of "B" part
0 10°
Details of "A" part
0.18(.007)MAX
0.58(.023)MAX
0.10(.004)
"B"
1994 FUJITSU LIMITED F80010S-3C-2
C
(Mounting height)
­0.20
+0.50
+.020
­.008
­.006
+.018
+0.45
­0.15
(.0315±.008)
(.878±.010)
(STAND OFF)
(.057±.008)
0.35±0.10
(.941±.012)
20.00
.787
.551
14.00
Ø8.89(.350)TYP
0.80±0.20
22.30±0.25
1.45±0.20
(.014±.004)
0.80(.0315)TYP
18.40(.724) REF
23.90±0.30
(.006±.002)
0.15±0.05
3.30(.130)MAX
0.05(.002)MIN
REF
12.00(.472)
(.642±.010)
16.30±0.25
(.705±.012)
17.90±0.30
INDEX AREA
1994 FUJITSU LIMITED F80018SC-1-2
C
(Mounting height)
80-pin Plastic QFP
(FPT-80P-M06)
Dimensions in mm (inches)
Dimensions in mm (inches)
80-pin Ceramic QFP
(FPT-80C-C02)
MB90210 Series
98
MEMO
99
MB90210 Series
MEMO
MB90210 Series
10
FUJITSU LIMITED
For further information please contact:
Japan
FUJITSU LIMITED
Corporate Global Business Support Division
Electronic Devices
KAWASAKI PLANT, 4-1-1, Kamikodanaka
Nakahara-ku, Kawasaki-shi
Kanagawa 211-88, Japan
Tel: (044) 754-3763
Fax: (044) 754-3329
http://www.fujitsu.co.jp/
North and South America
FUJITSU MICROELECTRONICS, INC.
Semiconductor Division
3545 North First Street
San Jose, CA 95134-1804, U.S.A.
Tel: (408) 922-9000
Fax: (408) 922-9179
Customer Response Center
Mon. - Fri.: 7 am - 5 pm (PST)
Tel: (800) 866-8608
Fax: (408) 922-9179
http://www.fujitsumicro.com/
Europe
FUJITSU MIKROELEKTRONIK GmbH
Am Siebenstein 6-10
D-63303 Dreieich-Buchschlag
Germany
Tel: (06103) 690-0
Fax: (06103) 690-122
http://www.fujitsu-ede.com/
Asia Pacific
FUJITSU MICROELECTRONICS ASIA PTE LTD
#05-08, 151 Lorong Chuan
New Tech Park
Singapore 556741
Tel: (65) 281-0770
Fax: (65) 281-0220
http://www.fmap.com.sg/
F9710
©
FUJITSU LIMITED Printed in Japan
All Rights Reserved.
The contents of this document are subject to change without
notice. Customers are advised to consult with FUJITSU sales
representatives before ordering.
The information and circuit diagrams in this document presented
as examples of semiconductor device applications, and are not
intended to be incorporated in devices for actual use. Also,
FUJITSU is unable to assume responsibility for infringement of
any patent rights or other rights of third parties arising from the
use of this information or circuit diagrams.
FUJITSU semiconductor devices are intended for use in
standard applications (computers, office automation and other
office equipment, industrial, communications, and measurement
equipment, personal or household devices, etc.).
CAUTION:
Customers considering the use of our products in special
applications where failure or abnormal operation may directly
affect human lives or cause physical injury or property damage,
or where extremely high levels of reliability are demanded (such
as aerospace systems, atomic energy controls, sea floor
repeaters, vehicle operating controls, medical devices for life
support, etc.) are requested to consult with FUJITSU sales
representatives before such use. The company will not be
responsible for damages arising from such use without prior
approval.
Any semiconductor devices have inherently a certain rate of
failure. You must protect against injury, damage or loss from
such failures by incorporating safety design measures into your
facility and equipment such as redundancy, fire protection, and
prevention of over-current levels and other abnormal operating
conditions.
If any products described in this document represent goods or
technologies subject to certain restrictions on export under the
Foreign Exchange and Foreign Trade Control Law of Japan, the
prior authorization by Japanese government should be required
for export of those products from Japan.