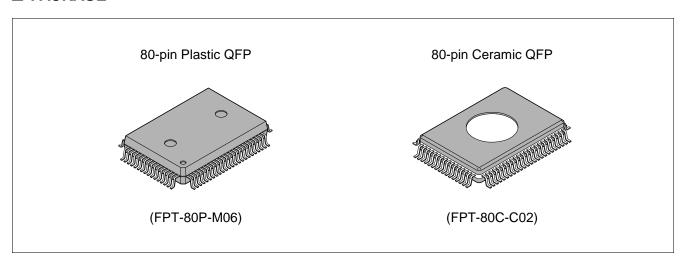
16-bit Proprietary Microcontroller

CMOS

F²MC-16F MB90210 Series

MB90214/P214A/P214B/W214A/W214B/V210

■ OUTLINE


The MB90210 series is a line of 16-bit microcontrollers particularly suitable for system control of video cameras, VTRs, and copiers. The F²MC-16F CPU integrated in this series is based on the F²MC*-16, while providing enhanced instructions for high-level languages and supporting extended addressing modes.

The MB90210 series incorporates a variety of peripheral resources such as a PWC timer with 4 channels, a 10-bit A/D converter with 8 channels, UART serial ports with 3 channels (1 channel for CTS and 1 channel for dual input/output pin switching), 16-bit reload timers with 8 channels, and an 8-bit PPG timer with 1 channel.

MB90P214B/W214B is under development.

*: F2MC stands for FUJITSU Flexible Microcontroller.

■ PACKAGE

■ FEATURES

F²MC-16F CPU

- Minimum execution time: 62.5 ns/16-MHz oscillation (using a duty control system)
- · Instruction sets optimized for controllers

Upward object-compatible with the F²MC-16(H)

Various data types (bit, byte, word, and long-word)

Instruction cycle improved to speed up operation

Extended addressing modes: 25 types

High coding efficiency

Access method (bank access with linear pointer)

Enhanced multiplication and division instructions (with signed instructions added)

Higher-precision operation using a 32-bit accumulator

- Extended intelligent I/O service (Automatic transfer function independent of instructions) access area expanded to 64 Kbytes
- Enhanced instruction set applicable to high-level language (C) and multitasking

System stack pointer

Enhanced pointer-indirect instructions

Barrel shift instruction

Stack check function

- Increased execution speed: 8-byte instruction queue
- Powerful interrupt functions: 8 levels and 29 sources

Integrated Peripheral Resources

• ROM : 64 Kbytes (MB90214)

EPROM: 64 Kbytes (MB90W214A/W214B) OTPROM: 64Kbytes (MB90P214A/P214B)

• RAM: 3 Kbytes (MB90214)

4 Kbytes (MB90P214A/P214B/W214A/W214B/V210)

- General-purpose ports: max. 65 channels
- PWC timer with time measurement function: 4 channels
- 10-bit A/D converter: 8 channels
- UART: 3 channels
- Including: 1 channel with CTS function

1 channel with I/O pin switching function

• 16-bit reload timer

Toggled output, external clock, and gate functions: 4 channels External clock and gate functions: 4 channels

• 8-bit PPG timer: 1 channel

• DTP/External-interrupt inputs: 4 channels

Write-inhibit RAM: 256 bytes (MB90V210: 512 bytes)

- Timebase counter: 18 bits
- · Clock gear function
- Low-power consumption mode

Sleep mode

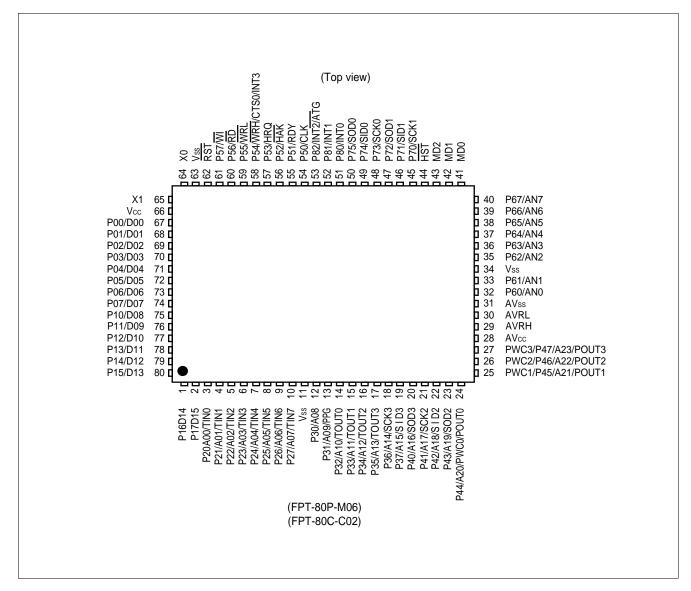
Stop mode

Hardware standby mode

Product Description

- MB90214 is a mask ROM product.
- MB90P214A/P214B are OTPROM products.
- MB90W214A/W214B are EPROM products. ES only.
- Operating temperature of MB90P214A/W214A is -40° C to $+85^{\circ}$ C. (However, the AC characteristics is assured in -40° C to $+70^{\circ}$ C)
- MB90V210 is a evaluation device for the program development. ES only.

■ PRODUCT LINEUP


Part number	MB90214	MB90P214A MB90P214B	MB90W214A MB90W214B	MB90V210			
Classification	Mask ROM product	OTPROM product	EPROM product	For evaluation			
ROM size	64 Kbytes	64 Kbytes	64 Kbytes	_			
RAM size	3 Kbytes	4 Kbytes	4 Kbytes	4 Kbytes			
CPU functions	The number of instructions: Instruction bit length: Instruction length: Data bit length: Minimum execution time: Interrupt processing time: 412 8 or 16 bits 1 to 7 bytes 1, 4, 8, 16, or 32 bits 62.5 ns/16 MHz 1.0 µs/16 MHz (min.)						
Ports	I/O ports (N-c I/O ports (CM Total:		8 57 65				
PWC timer	16-bit pulse-width cou	timer operation (opera nt operation (Allowing o	channels: 4 ting clock cycle: 0.25 μ continuous/one-shot me t, and divided-frequenc	easurement, H/L width			
10-bit A/D converter	Scan conversion Continuous co	Resolution: 10 or 8 bits, Number of inputs: 8 Single conversion mode (conversion for each input channel) Scan conversion mode (continuous conversion for up to 8 consecutive channels) Continuous conversion mode (repeated conversion for a selected channel) Stop conversion mode (conversion every fixed cycle)					
UART	Number of channels: 3 (1 channel with CTS function; 1 channel with I/O pin switching function) Clock-synchronous transfer mode (full-duplex double buffering, 7- to 9-bit data length, 2400 to 62500 bps) Asynchronous transfer mode (full-duplex double buffering, 7- to 9-bit data length, 2400 to 62500 bps)						
Timer	16-bit reload		4 channels × 2 types ating clock cycle: 0.25 p	us to 1.05 s)			
8-bit PPG timer	8-bit F		channels: 1 ng clock cycle: 0.25 μs	to 6 s)			
DTP/External interrupt	Number of inputs: 4 External interrupt mode (allowing interrupts to activate at four different request levels) Simple DMA start mode (allowing extended I ² OS to activate at two different request levels)						
Write-inhibit RAM	RAM size: 256 bytes (MB90V210 <u>: 5</u> 12 bytes) RAM write-protectable with WI pin						
Standby mode	Stop mod	de (activated by softwa	re or hardware) and sle	eep mode			
Gear function	Machine clock opera	ting frequency switchin	ng: 16, 8, 4, or 1 MHz (a	at 16 MHz oscillation)			
Package	FPT-80	P-M06	FPT-80C-C02	PGA-256C-A02			

■ DIFFERENCES BETWEEN MB90214 (MASK ROM PRODUCT) AND MB90P214A/P214B/W214A/W214B

Part number	MB90214	MB90P214A MB90P214B	MB90W214A MB90W214B
ROM	Mask ROM 64 Kbytes	OTPROM 64 Kbytes	EPROM 64 Kbytes
Pin function 43 pins	MD2 pin	MD2/\	√ _{PP} pin

Note: MB90V210, device used for evaluation, is not warranted for electrical specifications.

■ PIN ASSIGNMENT

■ PIN DESCRIPTION

Pin no. QFP*	Pin name	Circuit type	Function
64, 65	X0, X1	А	Crystal oscillator pins (16 MHz)
62	RST	Н	External reset request input pin
66	Vcc	Power supply	Digital circuit power supply pin
11, 34, 63	Vss	Power supply	Digital circuit grounding level
67 to 74	P00 to P07	В	General-purpose I/O ports These ports are available only in the single-chip mode.
	D00 to D07		I/O pins for the lower eight bits of external data bus These pins are available in an external-bus mode.
75 to 80, 1, 2	P10 to P15, P16, P17	В	General-purpose I/O ports These ports are available in the single-chip mode and in an external-bus mode with the 8-bit data bus specified.
	D08 to D13, D14, D15		I/O pins for the upper eight bits of external data bus These pins are available in an external-bus mode with the 16-bit data bus specified.
3 to 6	P20 to P23	Е	General-purpose I/O ports These ports are available only in the single-chip mode.
	A00 to A03		Output pins for external address buses A00 to A03 These pins are available in an external-bus mode.
	TIN0 to TIN3		16-bit reload timer 1 (ch.0 to ch.3) input pins These pins are available when the 16-bit reload timer 1 (ch.0 to ch.3) input specification is "enabled". The data on the pin is read as the 16-bit reload timer 1 (ch.0 to ch.3) input (TIN0 to TIN3).
7 to 10	P24 to P27	E	General-purpose I/O ports These ports are available only in the single-chip mode.
	A04 to A07		Output pins for external address buses A04 to A07 These pins are available in an external-bus mode.
	TIN4 to TIN7		16-bit reload timer 2 (ch.4 to ch.7) input pins These pins are available when the 16-bit reload timer 2 (ch.4 to ch.7) input specification is "enabled". The data on the pin is read as the 16-bit reload timer 2 (ch.4 to ch.7) input (TIN4 to TIN7).
12	P30	Е	General-purpose I/O port This port is available in the single-chip mode or when the middle address control register setting is "port."
	A08		Output pin for external address bus A08 This pin is available in an external-bus mode and when the middle address control register set to "address."

^{* :} FPT-80P-M06, FPT-80C-C02

Pin no.		Circuit	
QFP*	Pin name	type	Function
13	P31	Е	General-purpose I/O port This port is available in the single-chip mode or when the middle address control register setting is "port", with the 8-bit PPG output is disabled.
	A09		Output pin for external address bus A09 This pin is available in an external-bus mode and when the middle address control register setting is "address."
	PPG		PPG timer output pin This pin is available when the PPG operation mode control register specification is the PPG output pin.
14 to 17	P32 to P35	E	General-purpose I/O ports These ports are available in the single-chip mode or when the middle address control register setting is "port", with the 16-bit reload timer 1 (ch.0 to ch.3) output is disabled.
	A10 to A13		Output pins for external address buses A10 to A13 These pins are available in an external-bus mode and when the middle address control register setting is "address."
	TOUT0 to TOUT3		16-bit reload timer 1 (ch.0 to ch.3) output pin These pins are available when the 16-bit reload timer 1 (ch.0 to ch.3) is output operation.
18	P36	E	General-purpose I/O port This port is available when the UART (ch.2) clock output is disabled either in the single-chip mode or when the middle address control register setting is "port."
	A14		Output pin for external address bus A14 This pin is available when the UART (ch.2) clock output is disabled in an external-bus mode and when the middle address control register setting is "address."
	SCK3		UART (ch.2) clock output pin (SCK3) This pin is available when the UART (ch.2) clock output is enabled. UART (ch.2) external clock input pin (SCK3) This pin is available when the port is in input mode and the UART (ch.2) specification is external clock mode.
19	P37	E	General-purpose I/O port This port is available in the single-chip mode or when the middle address control register setting is "port."
	A15		Output pin for external address bus A15 This pin is available in an external-bus mode and when middle address control register setting is "address."
	SID3		UART (ch.2) serial data input pin (SID3) Since this input is used whenever the SID3 is in input operation, the output by any other function must be suspended unless the output is intentionally performed.

^{*:} FPT-80P-M06, FPT-80C-C02

Pin no.		Circuit	
QFP*	Pin name	type	Function
20	P40	E	General-purpose I/O port This port is available when the UART (ch.2) serial data output from SOD3 is disabled either in the single-chip mode or when the upper address control register setting is "port."
	A16		Output pin for external address bus A16 This pin is available when the UART (ch.2) serial data output from SOD3 is disabled in an external-bus mode and when the upper address control register setting is "address."
	SOD3		UART (ch.2) serial data output pin (SOD3) This pin is available when the UART (ch.2) serial data output is enabled.
21	P41	E	General-purpose I/O port This port is available when the UART (ch.2) clock output is disabled either in the single-chip mode or when the upper address control register setting is "port."
	A17		Output pin for external address bus A17 This pin is available when the UART (ch.2) clock output is disabled in an external-bus mode and when the upper address control register setting is "address."
	SCK2		UART (ch.2) clock output pin (SCK2) This pin is available when the UART (ch.2) clock output is enabled. UART (ch.2) external clock input pin (SCK2) This pin is available when the port is in input mode and the UART (ch.2) specification is external clock mode.
22	P42	Е	General-purpose I/O port This port is available in the single-chip mode or when the upper address control register setting is "port."
	A18		Output pin for external address bus A18 This pin is available in an external-bus mode and when the upper address control register setting is "address."
	SID2		UART (ch.2) serial data input pin (SID2) Since this input is used whenever the SID2 is in input operation, the output by any other function must be suspended unless the output is intentionally performed.
23	P43	E	General-purpose I/O port This port is available when the UART (ch.2) serial data output from SOD2 is disabled either in the single-chip mode or when the upper address control register setting is "port."
	A19		Output pin for external address bus A19 This pin is available when the UART (ch.2) serial data output from SOD2 is disabled in an external-bus mode and when the upper address control register setting is "address."
	SOD2		UART (ch.2) serial data output pin (SOD2) This pin is available when the UART (ch.2) serial data output from SOD2 is enabled.

^{*:} FPT-80P-M06, FPT-80C-C02

Pin no.	Pin name	Circuit	Function
QFP*	- Fill flame	type	FullCtion
24	PWC0	E	PWC timer input pin Since this input is used whenever the PWC0 timer is in input operation, the output by any other function must be suspended unless the output is intentionally performed.
	POUT0		PWC timer output pin This pin is available when the PWC0 is output operation.
25	P45	Е	General-purpose I/O port This port is available in the single-chip mode or when the upper address control register setting is "port."
	A21		Output pin for external address bus A21 This pin is available in an external-bus mode and when the upper address control register setting is "address."
	PWC1		PWC timer data sample input pin Since this input is used whenever the PWC1 timer is in input operation, the output by any other function must be suspended unless the output is intentionally performed.
	POUT1		PWC timer output pin This pin is available when the PWC1 is output operation.
26	P46	Е	General-purpose I/O port This port is available in the single-chip mode or when the upper address control register setting is "port."
	A22		Output pin for external address bus A22 This pin is available in an external-bus mode and when the upper address control register setting is "address."
	PWC2		PWC timer input pin Since this input is used whenever the PWC2 timer is in input operation, the output by any other function must be suspended unless the output is intentionally performed.
	POUT2		PWC timer output pin This pin is available when the PWC2 is output operation.
27	P47	Е	General-purpose I/O port This port is available in the single-chip mode or when the upper address control register setting is "port."
	A23		Output pin for external address bus A23 This pin is available in an external-bus mode and when the upper address control register setting is "address."
	PWC3		PWC timer input pin Since this input is used whenever the PWC3 timer is in input operation, the output by any other function must be suspended unless the output is intentionally performed.
	POUT3		PWC timer output pin This pin is available when the PWC3 is output operation.

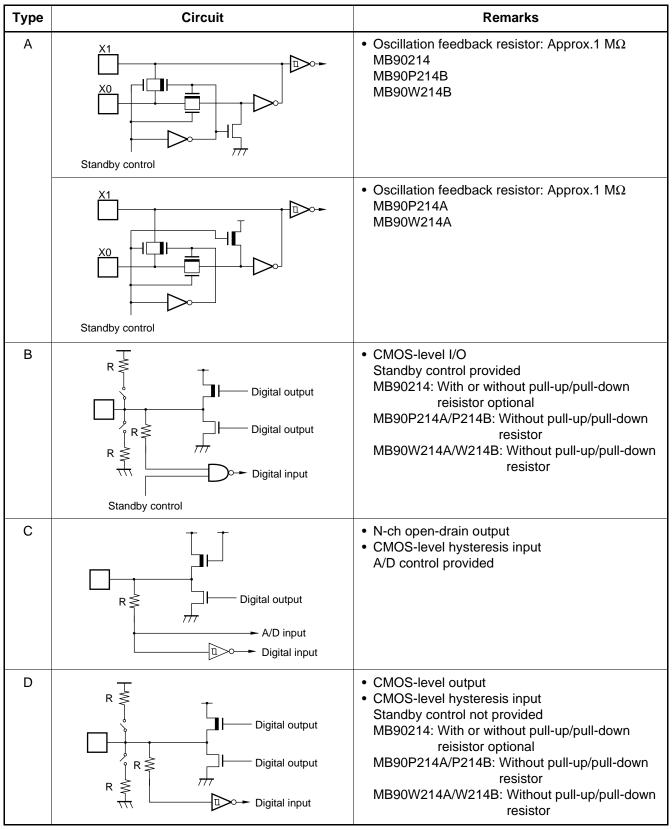
^{*:} FPT-80P-M06, FPT-80C-C02

Pin no.	Pin name	Circuit	Function
QFP*	1 III Hallic	type	i dilotion
54	P50	Е	General-purpose I/O port This port is available in the single-chip mode and when the CLK output is disabled.
	CLK		CLK output pin This pin is available in an external-bus mode with the CLK output enabled.
55	P51	E	General-purpose I/O port This port is available in the single-chip mode or when the ready function is disable.
	RDY	_	Ready signal input pin This pin is available in an external-bus mode and when the ready function is enabled.
56	P52	E	General-purpose I/O port This port is available in the single-chip mode or when the hold function is disabled.
	HAK		Hold acknowledge output pin This pin is available in an external-bus mode and when the hold function is enabled.
57	P53	E	General-purpose I/O port This port is available in the single-chip mode or when the hold function is disabled in an external-bus mode.
	HRQ		Hold request input pin This pin is available in an external-bus mode and when the hold function is enabled. Since this input is used during this operation at any time, the output by any other function must be suspended unless the output is intentionally performed.
58	P54	D	General-purpose I/O port This port is available in the single-chip mode, in the external bus 8-bit mode, or when the WRH pin output is disabled. When these pins are open in input mode, through current may leak in stop mode/reset mode, be sure to fix these pins to Vcc/Vss level to use these pins in input mode.
	CTS0		UART (ch.0) clear-to-send input pin Since this input is used whenever the UART (ch.0) CTS function is enabled, the output by any other function must be suspended unless the output is intentionally performed. When these pins are open in input mode, through current may leak in stop mode/reset mode, be sure to fix these pins to Vcc/Vss level to use these pins in input mode.
	WRH		Write strobe output pin for the upper eight bits of data bus This pin is available in the external bus 16-bit mode with the WRH pin output enabled in an external-bus mode.

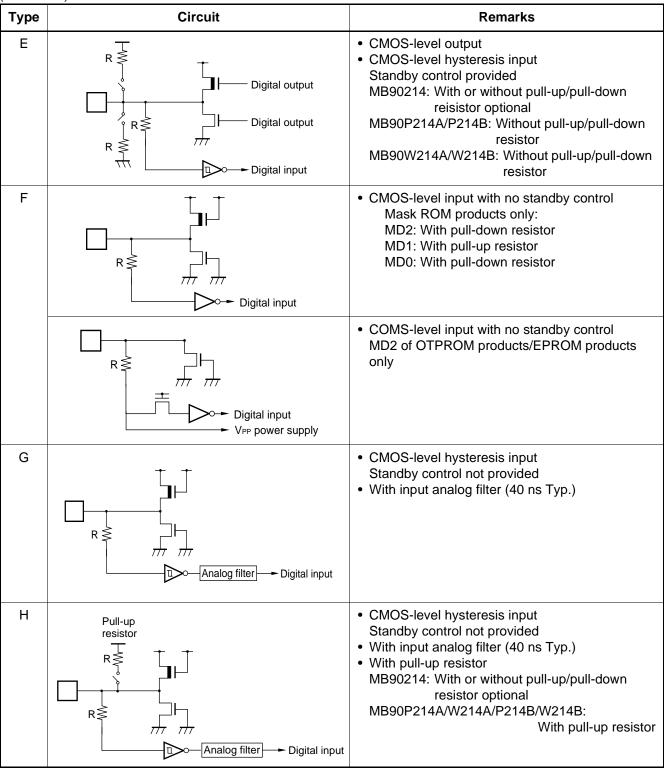
^{*:} FPT-80P-M06, FPT-80C-C02

Pin no.	Din nama	Circuit	Function
QFP*	Pin name	type	Function
58	INT3	D	External interrupt request input pin Since this input is used whenever external interrupts are enabled, the output by any other function must be suspended unless the output is intentionally performed. When these pins are open in input mode, through current may leak in stop mode/reset mode, be sure to fix these pins to Vcc/Vss level to use these pins in input mode.
59	P55	Е	General-purpose I/O port This port is available in the single-chip mode or when the WRL pin output is disabled.
	WRL		Write strobe output pin for the lower eight bits of data bus This pin is available in an external-bus mode and when the $\overline{\text{WRL}}$ pin output is enabled.
60	P56	Е	General-purpose I/O port This port is available in the single-chip mode.
	RD		Data bus read strobe output pin This pin is available in an external-bus mode.
61	P57	D	General-purpose I/O port This port is always available. When these pins are open in input mode, through current may leak in stop mode/reset mode, be sure to fix these pins to Vcc/Vss level to use these pins in input mode.
	WI		RAM write disable request input Since this input is used during this operation at any time, the output by any other function must be suspended unless the output is intentionally performed. When these pins are open in input mode, through current may leak in stop mode/reset mode, be sure to fix these pins to Vcc/Vss level to use these pins in input mode.
32, 33, 35 to 40	P60, P61, P62 to P67	С	Open-drain I/O ports These ports are available when the analog input enable register setting is "port."
	AN0, AN1, AN2 to AN7		10-bit A/D converter analog input pins These pins are available when the analog input enable register setting is "analog input."
41 to 43	MD0 to MD2	F	Operation mode select signal input pins Connect these pins directly to Vcc or Vss.
44	HST	G	Hardware standby input pin
45	P70	E	General-purpose I/O port This port is available when the UART (ch.1) clock output is disabled.

^{*:} FPT-80P-M06, FPT-80C-C02


Pin no.	Pin name	Circuit type	Function
QFP*			
45	SCK1	E	UART (ch.1) clock output pin This pin is available when the UART (ch.1) clock output is enabled. UART (ch.1) external clock input pin This pin is available when the port is in input mode and the UART (ch.1) specification is external clock mode.
46	P71	Е	General-purpose I/O port This port is always available.
	SID1		UART (ch.1) serial data input pin Since this input is used whenever the UART (ch.1) is in input operation, the output by any other function must be suspended unless the output is intentionally performed.
47	P72	E	General-purpose I/O port This port is available when the UART (ch.1) serial data output is disabled.
	SOD1		UART (ch.1) serial data output pin This pin is available when the UART (ch.1) serial data output is enabled.
48	P73	Е	General-purpose I/O port This port is available when the UART (ch.0) clock output is disabled.
	SCK0	-	UART (ch.0) clock output pin This pin is available when the UART (ch.0) clock output is enabled. UART (ch.0) external clock input pin This pin is available when the port is in input mode and the UART (ch.0) specification is external clock mode.
49	P74	Е	General-purpose I/O port This port is always available.
	SID0		UART (ch.0) serial data input pin Since this input is used whenever the UART (ch.0) is in input operation, the output by any other function must be suspended unless the output is intentionally performed.
50	P75	E	General-purpose I/O port This port is available when the UART (ch.0) serial data output is disabled.
	SOD0		UART (ch.0) serial data output pin This pin is available when the UART (ch.0) serial data output is enabled.
51, 52	P80, P81	D	General-purpose I/O port This port is always available. When these pins are open in input mode, through current may leak in stop mode/reset mode, be sure to fix these pins to Vcc/Vss level to use these pins in input mode.

^{*:} FPT-80P-M06, FPT-80C-C02


Pin no.	Pin name	Circuit	Function
QFP*	- Fin name	type	Function
51, 52	INTO, INT1	D	External interrupt request input pin Since this input is used whenever external interrupts are enabled, the output by any other function must be suspended unless the output is intentionally performed. When these pins are open in input mode, through current may leak in stop mode/reset mode, be sure to fix these pins to Vcc/Vss level to use these pins in input mode.
53	P82	D	General-purpose I/O port This port is always available. When these pins are open in input mode, through current may leak in stop mode/reset mode, be sure to fix these pins to Vcc/Vss level to use these pins in input mode.
	INT2		External interrupt request input pin Since this input is used whenever external interrupts are enabled, the output by any other function must be suspended unless the output is intentionally performed. When these pins are open in input mode, through current may leak in stop mode/reset mode, be sure to fix these pins to Vcc/Vss level to use these pins in input mode.
	ATG		10-bit A/D converter trigger input pin When these pins are open in input mode, through current may leak in stop mode/reset mode, be sure to fix these pins to Vcc/Vss level to use these pins in input mode.
28	AVcc	Power supply	Analog circuit power supply pin This power supply must be turned on or off with a potential equal to or higher than AVcc applied to Vcc. Be sure that AVcc= Vcc before use and during operation.
29	AVRH	Power supply	Analog circuit reference voltage input pin This pins must be turned on or off with a potential equal to or higher than AVRH applied to AVcc.
30	AVRL	Power supply	Analog circuit reference voltage input pin
31	AVss	Power supply	Analog circuit grounding level

^{*:} FPT-80P-M06, FPT-80C-C02

■ I/O CIRCUIT TYPE

(Continued)

Note: The pull-up and pull-down resistors are always connected, regardless of the state.

■ HANDLING DEVICES

1. Preventing Latchup

CMOS ICs may cause latchup when a voltage higher than Vcc or lower than Vss is applied to input or output pins, or when a voltage exceeding the rating is applied between Vcc and Vss.

If latch-up occurs, the power supply current increases rapidly, sometimes resulting in thermal breakdown of the device. Use meticulous care not to let any voltage exceed the maximum rating.

Also, take care to prevent the analog power supply (AVcc and AVRH) and analog input from exceeding the digital power supply (Vcc) when the analog system power supply is turned on and off.

2. Treatment of Unused Input Pins

Leaving unused input pins open could cause malfunctions. They should be connected to a pull-up or pull-down resistor.

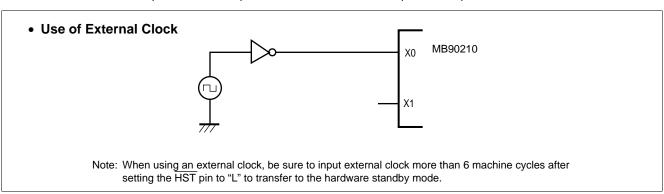
3. Treatment of Pins when A/D is not Used

Connect to be AVcc = AVRH = Vcc and AVss = AVRL = Vss even if the A/D converter is not in use.

4. Precautions when Using an External Clock

To reset the internal circuit properly by the Low-level input to the \overline{RST} pin, the "L" level input to the \overline{RST} pin must be maintained for at least five machine cycles. Pay attention to it if the chip uses external clock input.

5. Vcc and Vss Pins


Apply equal potential to the Vcc and Vss pins.

6. Supply Voltage Variation

The operation assurance range for the $V_{\rm CC}$ supply voltage is as given in the ratings. However, sudden changes in the supply voltage can cause misoperation, even if the voltage remains within the rated range. Therefore, it is important to supply a stable voltage to the IC. The recommended power supply control guidelines are that the commercial frequency (50 to 60 Hz) ripple variation (P-P value) on $V_{\rm CC}$ should be less than 10% of the standard $V_{\rm CC}$ value and that the transient rate of change during sudden changes, such as during power supply switching, should be less than 0.1 V/ms.

7. Notes on Using an External Clock

When using an external clock, drive the X0 pin as illustrated below. When an external clock is used, oscillation stabilization time is required even for power-on reset and wake-up from stop mode.

8. Power-on Sequence for A/D Converter Power Supplies and Analog Inputs

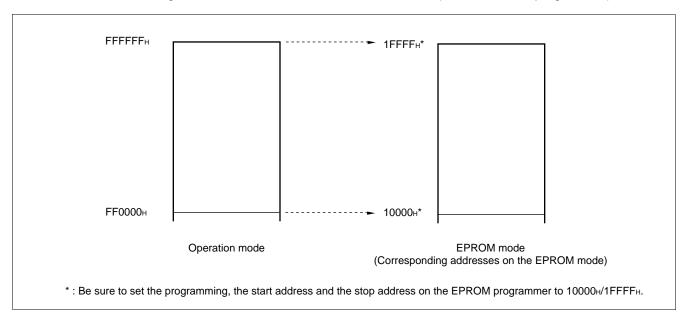
Be sure to turn on the digital power supply (Vcc) before applying voltage to the A/D converter power supplies (AVcc, AVRH, and AVRL) and analog inputs (AN0 to AN7).

When turning power supplies off, turn off the A/D converter power supplies (AVcc, AVRH, and AVRL) and analog inputs (AN0 to AN7) first, then the digital power supply (Vcc).

When turning AVRH on or off, be careful not to let it exceed AVcc.

■ PROGRAMMING FOR MB90P214A/P214B/W214A/W214B

In EPROM mode, the MB90P214A/P214B/W214A/W214B functions equivalent to the MBM27C1000. This allows the EPROM to be programmed with a general-purpose EPROM programmer by using the dedicated socket adapter (do not use the electronic signature mode).


1. Program Mode

When shipped from Fujitsu, and after each erasure, all bits (64 K \times 8 bits) in the MB90P214A/P214B/W214A/W214B are in the "1" state. Data is written to the ROM by selectively programming "0's" into the desired bit locations. Bits cannot be set to "1" electrically.

2. Programming Procedure

- (1) Set the EPROM programmer to MBM27C1000.
- (2) Load program data into the EPROM programmer at 10000H to 1FFFFH.

Note that ROM addresses FF0000H to FFFFFH in the operation mode in the MB90P214A/P214B/W214A/W214B series assign to 10000H to 1FFFFH in the EPROM mode (on the EPROM programmer).

- (3) Mount the MB90P214A/P214B/W214A/W214B on the adapter socket, then fit the adapter socket onto the EPROM programmer. When mounting the device and the adapter socket, pay attention to their mounting orientations.
- (4) Start programming the program data to the device.
- (5) If programming has not successfully resulted, connect a capacitor of approx. 0.1 μF between Vcc and GND, between VPP and GND.
- (6) Since the MB90P214A and MB90W214A have CMOS-level input, programming to them may be impossible depending on the output level of the general-purpose programmer. In that case, connect a pull-up resistor to the adapter socket side.

Note: The mask ROM products (MB90214) does not support EPROM mode. Data cannot, therefore, be read by the EPROM programmer.

3. EPROM Programmer Socket Adapter and Recommended Programmer Manufacturer

Part No.			MB90P214B		
Package			QFP-80		
Compatible socket adapter Sun Hayato Co., Ltd.			ROM-80QF-32DP-16F		
Recommended programmer manufacturer and programmer name	Advantest corp.	R4945A (main unit) + R49451A (adapter)	Recommended		

Inquiry: Sun Hayato Co., Ltd.: TEL: (81)-3-3986-0403

FAX: (81)-3-5396-9106

Advantest Corp.: TEL: Except JAPAN (81)-3-3930-4111

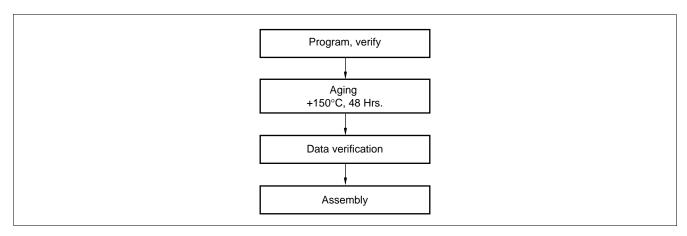
4. Erase Procedure

Data written in the MB90W214A/W214B are erased (from "0" to "1") by exposing the chip to ultraviolet rays with a wavelength of 2,537 Å through the translucent cover.

Recommended irradiation dosage for exposure is 10 Wsec/cm². This amount is reached in 15 to 20 minutes with a commercial ultraviolet lamp positioned 2 to 3 cm above the package (when the package surface illuminance is $1200 \, \mu \text{W/cm}^2$).

If the ultraviolet lamp has a filter, remove the filter before exposure. Attaching a mirrored plate to the lamp increases the illuminance by a factor of 1.4 to 1.8, thus shortening the required erasure time. If the translucent part of the package is stained with oil or adhesive, transmission of ultraviolet rays is degraded, resulting in a longer erasure time. In that case, clean the translucent part using alcohol (or other solvent not affecting the package).

The above recommended dosage is a value which takes the guard band into consideration and is a multiple of the time in which all bits can be evaluated to have been erased. Observe the recommended dosage for erasure; the purpose of the guard band is to ensure erasure in all temperature and supply voltage ranges. In addition, check the life span of the lamp and control the illuminance appropriately.


Data in the MB90W214A/W214B are erased by exposure to light with a wavelength of 4000 Å or less.

Data in the device is also erased even by exposure to fluorescent lamp light or sunlight although the exposure results in a much lower erasure rate than exposure to 2537 Å ultraviolet rays. Note that exposure to such lights for an extended period will therefore affect system reliability. If the chip is used where it is exposed to any light with a wavelength of 4000 Å or less, cover the translucent part, for example, with a protective seal to prevent the chip from being exposed to the light.

Exposure to light with a wavelength of 4,000 to 5,000 Å or more will not erase data in the device. If the light applied to the chip has a very high illuminance, however, the device may cause malfunction in the circuit for reasons of general semiconductor characteristics. Although the circuit will recover normal operation when exposure is stopped, the device requires proper countermeasures for use in a place exposed continuously to such light even though the wavelength is 4,000 Å or more.

5. Recommended Screening Conditions

High temperature aging is recommended as the pre-assembly screening procedure.

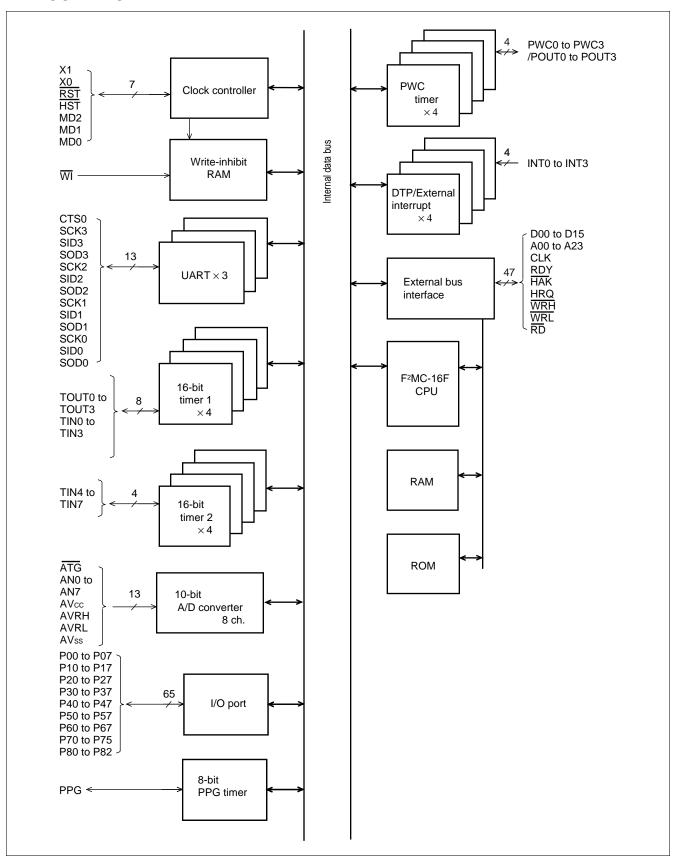
6. Programming Yeild

MB90P214A/P214B cannot be write-tested for all bits due to their nature. Therefore the write yield cannot always be guaranteed to be 100%.

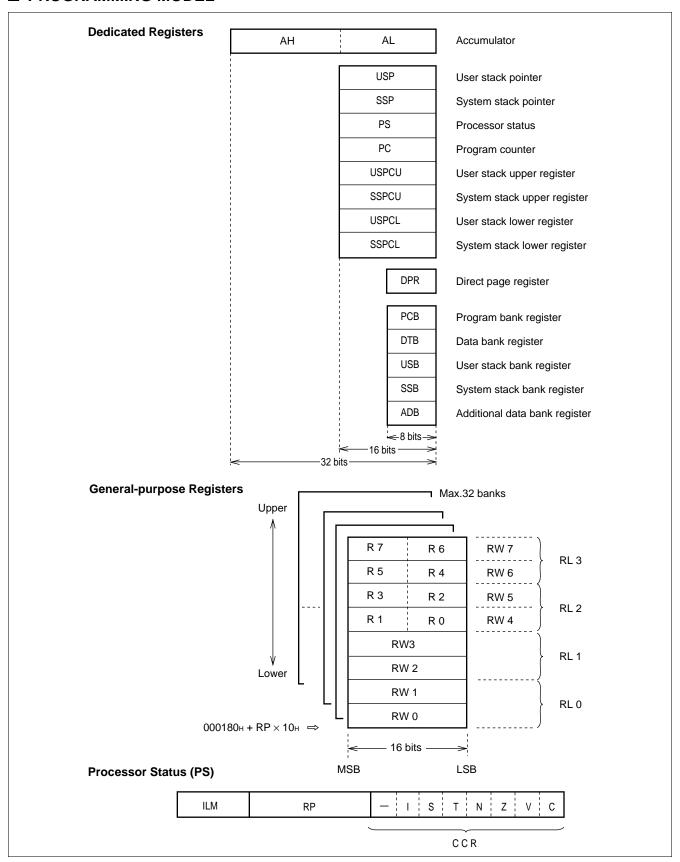
7. Pin Assignment in EPROM Mode

(1) Pins compatible with MBM27C1000

MBM2	7C1000	MB90P214A, MB90P214B, MB90W214A, MB90W214B MBM27C1000		7C1000	MB90P214A MB90W214A	, MB90P214B, , MB90W214B	
Pin no.	Pin name	Pin no.	Pin name	Pin no.	Pin name	Pin no.	Pin name
1	V _{PP}	43	MD2 (Vpp)	32	Vcc		
2	OE	59	P55	31	PGM	60	P56
3	A15	19	P37	30	N.C.		
4	A12	16	P34	29	A14	18	P36
5	A07	10	P27	28	A13	17	P35
6	A06	9	P26	27	A08	12	P30
7	A05	8	P25	26	A09	13	P31
8	A04	7	P24	25	A11	15	P33
9	A03	6	P23	24	A16	20	P40
10	A02	5	P22	23	A10	14	P32
11	A01	4	P21	22	CE	58	P54
12	A00	3	P20	21	D07	74	P07
13	D00	67	P00	20	D06	73	P06
14	D01	68	P01	19	D05	72	P05
15	D02	69	P02	18	D04	71	P04
16	GND			17	D03	70	P03


(2) Power supply and ground connection pins

Туре	Pin no.	Pin name
Power supply	41	MD0
	42	MD1
	44	HST
	66	Vcc
GND	11	Vss
	30	AVRL
	31	AVss
	34	Vss
	56	P52
	57	P53 RST
	62	
	63	Vss


(3) Pins other than MBM27C1000-compatible pins

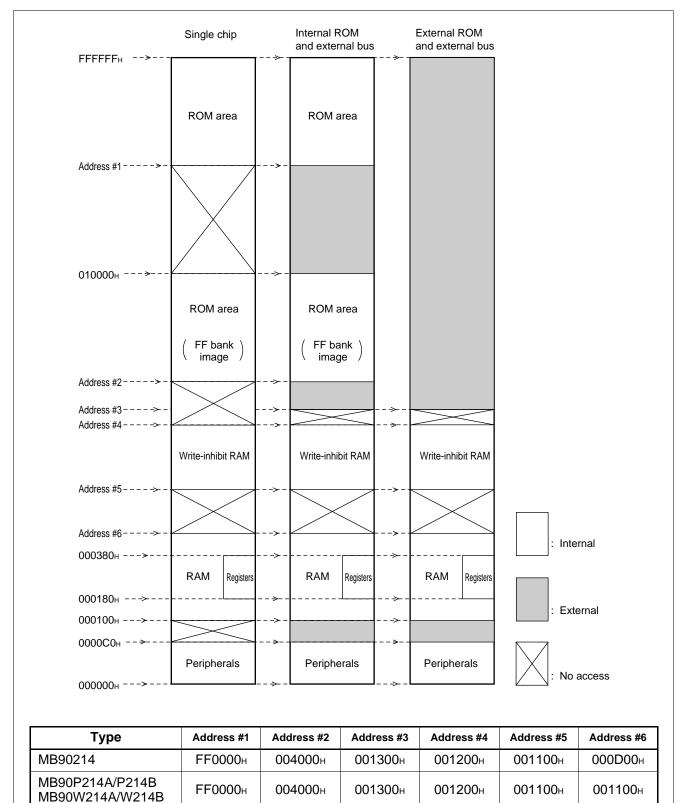
Pin no.	Pin name	Treatment				
64	X0	Pull up to 4.7 k Ω .				
65	X1	Open				
1 2 21 to 27 28 29 32 33 35 to 40 45 to 50 51 to 53 54 55 61 75 to 80	P16 P17 P41 to P47 AVcc AVRH P60 P61 P62 to P67 P70 to P75 P80 to P82 P50 P51 P57 P10 to P15	Connect a pull-up resistor of approximately 1 $M\Omega$ to each pin.				

■ BLOCK DIAGRAM

■ PROGRAMMING MODEL

■ MEMORY MAP

MB90V210


(FE0000H)

004000н

001300н

001300н

001100н

001100н

■ I/O MAP

Address	Register	Register name	Access	Resource name	Initial value
000000н *3	Port 0 data register	PDR0	R/W	Port 0	XXXXXXX
000001н *3	Port 1 data register	PDR1	R/W	Port 1	XXXXXXX
000002н *3	Port 2 data register	PDR2	R/W	Port 2	XXXXXXX
000003н *3	Port 3 data register	PDR3	R/W	Port 3	XXXXXXX
000004н *3	Port 4 data register	PDR4	R/W	Port 4	XXXXXXX
000005н *3	Port 5 data register	PDR5	R/W	Port 5	XXXXXXX
000006н	Port 6 data register	PDR6	R/W	Port 6	11111111
000007н	Port 7 data register	PDR7	R/W	Port 7	XXXXXX
000008н	Port 8 data register	PDR8	R/W	Port 8	XXX
000009н to 0Fн	(Reserved area	ı) *1		
000010н *3	Port 0 data direction register	DDR0	R/W	Port 0	00000000
000011н *3	Port1 data direction register	DDR1	R/W	Port 1	00000000
000012н *3	Port 2 data direction register	DDR2	R/W	Port 2	00000000
000013н *3	Port 3 data direction register	DDR3	R/W	Port 3	00000000
000014н *3	Port 4 data direction register	DDR4	R/W	Port 4	00000000
000015н *3	Port 5 data direction register	DDR5	R/W	Port 5	00000000
000016н	Analog input enable register	ADER	R/W	Port 6	11111111
000017н	Port 7 data direction register	DDR7	R/W	Port 7	000000
000018н	Port 8 data direction register	DDR8	R/W	Port 8	000
000019н to 1Fн	(Reserved area	i) *1		
000020н	Mode control register 0	UMC0	R/W	UART (ch.0)	00000100
000021н	Status register 0	USR0	R/W		00010000
000022н	Input data register 0/output data register 0	UIDR0/ UODR0	R/W		xxxxxxx
000023н	Rate and data register 0	URD0	R/W		00000000
000024н	Mode control register 1	UMC1	R/W	UART (ch.1)	00000100
000025н	Status register 1	USR1	R/W		00010000
000026н	Input data register 1/output data register 1	UIDR1/ UODR1	R/W		xxxxxxx
000027н	Rate and data register 1	URD1	R/W		00000000

Address	Register	Register name	Access	Resource name	Initial value
000028н	Mode control register 2	UMC2	R/W	UART (ch.2)	00000100
000029н	Status register 2	USR2	R/W		00010000
00002Ан	Input data register 2/output data register 2	UIDR2/ UODR2	R/W		XXXXXXX
00002Вн	Rate and data register 2	URD2	R/W		00000000
00002Сн	UART redirect control register	URDR	R/W	UART (ch.0/2)	00000
00002Dн to 2Fн		(Reserved area) *1		
000030н	Interrupt/DTP enable register	ENIR	R/W	DTP/external	0000
000031н	Interrupt/DTP factor register	EIRR	R/W	interrupt	0000
000032н	Request level setting register	ELVR	R/W		00000000
000033н		(Reserved area	ı) *1		
000034н	AD control status register	ADCS	R/W	10-bit A/D converter	0000000
000035н					0000000
000036н to 37н	AD data register	ADCD	R/W *4		XXXXXXXX 0XX
000038н to 39н	Timer control status register 0	TMCSR0	R/W	16-bit reload timer 1 (ch.0)	0000000
00003Ан to 3Вн	Timer control status register 1	TMCSR1	R/W	16-bit reload timer 1 (ch.1)	0000000
00003Сн to 3Dн	Timer control status register 2	TMCSR2	R/W	16-bit reload timer 1 (ch.2)	0000000
00003Eн to 3Fн	Timer control status register 3	TMCSR3	R/W	16-bit reload timer 1 (ch.3)	0000000
000040н	Timer 0 timer register	TMR0	R	16-bit reload	XXXXXXXX
000041н				timer 1 (ch.0)	XXXXXXX
000042н	Timer 0 reload register	TMRLR0	W		XXXXXXX
000043н					XXXXXXX
000044н	Timer 1 timer register	TMR1	R	16-bit reload	XXXXXXX
000045н				timer 1 (ch.1)	XXXXXXX
000046н	Timer 1 reload register	TMRLR1	W		XXXXXXX
000047н					XXXXXXX

Address	Register	Register name	Access	Resource name	Initial value
000048н	Timer 2 timer register	TMR2	R	16-bit reload	XXXXXXX
000049н				timer 1 (ch.2)	XXXXXXX
00004Ан	Timer 2 reload register	TMRLR2	W	-	XXXXXXX
00004Вн					XXXXXXX
00004Сн	Timer 3 timer register	TMR3	R	16-bit reload	XXXXXXX
00004Dн				timer 1 (ch.3)	XXXXXXX
00004Ен	Timer 3 reload register	TMRLR3	W		XXXXXXX
00004Fн					XXXXXXX
000050н	Timer 4 timer register	TMR4	R	16-bit reload	XXXXXXXX
000051н				timer 2 (ch.4)	XXXXXXXX
000052н	Timer 4 reload register	TMRLR4	W	-	XXXXXXXX
000053н					XXXXXXXX
000054н	Timer 5 timer register	TMR5	R	16-bit reload	XXXXXXXX
000055н				timer 2 (ch.5)	XXXXXXXX
000056н	Timer 5 reload register	TMRLR5	W	-	XXXXXXXX
000057н					XXXXXXXX
000058н	Timer 6 timer register	TMR6	R	16-bit reload	XXXXXXXX
000059н				timer 2 (ch.6)	XXXXXXXX
00005Ан	Timer 6 reload register	TMRLR6	W	-	XXXXXXXX
00005Вн					XXXXXXXX
00005Сн	Timer 7 timer register	TMR7	R	16-bit reload	XXXXXXXX
00005Dн				timer 2 (ch.7)	XXXXXXXX
00005Ен	Timer 7 reload register	TMRLR7	W	-	XXXXXXXX
00005Fн					XXXXXXXX
000060н	Timer control status register 4	TMCSR4	R/W	16-bit reload timer 2 (ch.4)	00000000
000061н		(Reserved area	i) *1	1	1
000062н	Timer control status register 5	TMCSR5	R/W	16-bit reload timer 2 (ch.5)	00000000
000063н		(Reserved area	n) *1	1	
000064н	Timer control status register 6	TMCSR6	R/W	16-bit reload timer 2 (ch.6)	00000000
000065н		(Reserved area	n) *1	•	

Address	Register	Register name	Access	Resource name	Initial value				
000066н	Timer control status register 7	TMCSR7	R/W	16-bit reload timer 2 (ch.7)	0000000				
000067н		(Reserved area	ı) *1						
000068н	PWC0 divide ratio register	DIVR0	R/W	PWC timer (ch.0)	00				
000069н		(Reserved area) *1		1				
00006Ан	PWC1 divide ratio register	DIVR1	R/W	PWC timer (ch.1)	00				
00006Вн		(Reserved area	ı) *1	l	1				
00006Сн	PWC2 divide ratio register	DIVR2	R/W	PWC timer (ch.2)	00				
00006Dн		(Reserved area	ı) *1	l	1				
00006Ен	PWC3 divide ratio register	DIVR3	R/W	PWC timer (ch.3)	00				
00006Fн		(Reserved area	i) *1						
000070н	PWC0 control status register	PWCSR0	R/W	PWC timer	00000000				
000071н				(ch.0)	00000000				
000072н	PWC0 data buffer register	PWCR0	R/W		00000000				
000073н					0000000				
000074н	PWC1 control status register	PWCSR1	R/W	PWC timer	00000000				
000075н				(ch.1)	00000000				
000076н	PWC1 data buffer register	PWCR1	R/W		00000000				
000077н					0000000				
000078н	PWC2 control status register	PWCSR2	R/W	PWC timer	00000000				
000079н				(ch.2)	00000000				
00007Ан	PWC2 data buffer register	PWCR2	R/W		00000000				
00007Вн					00000000				
00007Сн	PWC3 control status register	PWCSR3	R/W	PWC timer	00000000				
00007Dн				(ch.3)	0000000				
00007Ен	PWC3 data buffer register	PWCR3	R/W		0000000				
00007Fн					0000000				
000080н to 87н		(Reserved area) *1						
000088н	PPG operation mode control register	PPGC	R/W	8-bit PPG timer	000001				
000089н		(Reserved area) *1							

Address	Register	Register name	Access	Resource name	Initial value			
00008Ан	PPG reload register	PRL	R/W	8-bit PPG timer	XXXXXXX			
00008Вн					XXXXXXX			
00008Сн to 8Dн	(Reserved area) *1							
00008Ен	WI control register	WICR	R/W	Write-inhibit RAM	X			
00008Fн to 9Eн	((Reserved area) *1					
00009Fн	Delayed interrupt source generate/ release register	DIRR	R/W	Delayed interrupt generation module	0			
0000А0н	Standby control register	STBYC	R/W	Low-power consumption mode	0001***			
0000A1н to A2н		(Reserved area) *1					
0000АЗн	Middle address control register	MACR	W	External pin	#######			
0000А4н	Upper address control register	HACR	W		#######			
0000А5н	External pin control register	EPCR	W		##0-0#00			
0000A6н to A7н	((Reserved area) *1					
0000А8н	Watchdog timer control register	WTC	R/W	Watchdog timer	XXXXXXX			
0000А9н	Timebase timer control register	TBTC	R/W	Timebase timer	100000			
0000AAн to AFн		(Reserved area) *1					
0000В0н	Interrupt control register 00	ICR00	R/W	Interrupt	00000111			
0000В1н	Interrupt control register 01	ICR01	R/W	controller	00000111			
0000В2н	Interrupt control register 02	ICR02	R/W		00000111			
0000ВЗн	Interrupt control register 03	ICR03	R/W		00000111			
0000В4н	Interrupt control register 04	ICR04	R/W		00000111			
0000В5н	Interrupt control register 05	ICR05	R/W		00000111			
0000В6н	Interrupt control register 06	ICR06	R/W		00000111			
0000В7н	Interrupt control register 07	ICR07	R/W		00000111			
0000В8н	Interrupt control register 08	ICR08	R/W		00000111			
0000В9н	Interrupt control register 09	ICR09	R/W		00000111			

(Continued)

Address	Register	Register name	Access	Resource name	Initial value
0000ВАн	Interrupt control register 10	ICR10	R/W	Interrupt	00000111
0000ВВн	Interrupt control register 11	ICR11	R/W	controller	00000111
0000ВСн	Interrupt control register 12	ICR12	R/W		00000111
0000ВDн	Interrupt control register 13	ICR13	R/W		00000111
0000ВЕн	Interrupt control register 14	ICR14	R/W		00000111
0000ВFн	Interrupt control register 15	ICR15	R/W		00000111
0000С0н to FFн	(External area) *2				

Initial value

- 0: The initial value of this bit is 0.
- 1: The initial value of this bit is 1.
- X: The initial value of this bit is undefined.
- -: This bit is not used. The initial value is undefined.
- *: The initial value of this bit varies with the reset source.
- #: The initial value of this bit varies with the operation mode.
- *1: Access inhibited
- *2: The only area available for the external access below address 0000FFH is this area. Accesses to these addresses are handled as accesses to an external I/O area.
- *3: When the external bus is enabled, do not access any register not serving as a general-purpose port in the areas from address 000000H to 000005H and from 000010H to 000015H.
- *4: Writing to bit 15 is possible. Writing to other bits is used as a test function.

■ INTERRUPT SOURCES AND INTERRUPT VECTORS/INTERRUPT CONTROL REGISTERS

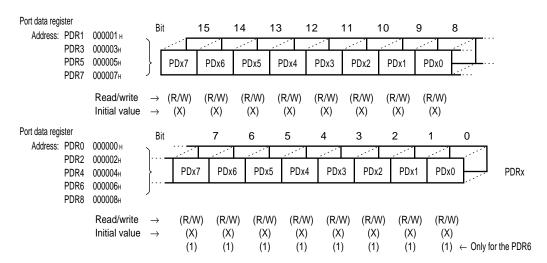
Interrupt accord	El ² OS	lı	nterrup	t vector	Interrupt control register	
Interrupt source	support	No.		Address	ICR	Address
Reset	×	# 08	08н	FFFFDCH	_	_
INT9 instruction	×	# 09	09н	FFFFD8 _H	_	_
Exceptional	×	# 10	ОАн	FFFFD4 _H	_	_
UART interrupt #0	Δ	# 11	0Вн	FFFFD0 _H	ICR00	000В0н
UART interrupt #1	Δ	# 12	0Сн	FFFFCCH	101100	ОООВОН
UART interrupt #2	Δ	# 13	0Дн	FFFFC8 _H	ICR01	000В1н
UART interrupt #3	Δ	# 14	0Ен	FFFFC4 _H	ICIXUT	OOODTH
PWC timer # 0 · count completed	Δ	# 15	0Fн	FFFFC0 _H	ICR02	00000
PWC timer # 0 · overflow	Δ	# 16	10н	FFFFBCH	- ICRUZ	000В2н
PWC timer # 1 · count completed	Δ	# 17	11н	FFFFB8 _H	ICR03	000ВЗн
PWC timer # 1 · overflow	Δ	# 18	12н	FFFFB4 _H	ICKUS	000B3H
PWC timer # 2 · count completed	Δ	# 19	13н	FFFFB0 _H	ICR04	000В4н
PWC timer # 2 · overflow	Δ	# 20	14н	FFFFACH		
PWC timer # 3 · count completed	Δ	# 21	15н	FFFFA8 _H	ICR05	000В5н
PWC timer # 3 · overflow	Δ	# 22	16н	FFFFA4 _H	ICRUS	
16-bit reload timer 1 # 0 overflow	Δ	# 23	17н	FFFFA0 _H	ICR06	000В6н
16-bit reload timer 1 # 1 overflow	Δ	# 24	18н	FFFF9C _H	ICRUO	ОООБОН
16-bit reload timer 1 # 2 overflow	Δ	# 25	19н	FFFF98 _H	IOD07	00007
16-bit reload timer 1 # 3 overflow	Δ	# 26	1Ан	FFFF94 _H	ICR07	000В7н
16-bit reload timer 2 # 4 overflow	Δ	# 27	1Вн	FFFF90 _H	ICDOS	00000
16-bit reload timer 2 # 5 overflow	Δ	# 28	1Сн	FFFF8C _H	ICR08	000В8н
16-bit reload timer 2 # 6 overflow	Δ	# 29	1Dн	FFFF88 _H	ICDOO	00000
16-bit reload timer 2 # 7 overflow	Δ	# 30	1Ен	FFFF84 _H	ICR09	000В9н
A/D converter count completed	Δ	# 31	1Fн	FFFF80 _H	ICP10	00000
Timebase timer interval interrupt	Δ	# 32	20н	FFFF7C _H	ICR10	000ВАн
UART2 · transmission completed	Δ	# 33	21н	FFFF78 _H	ICD44	00000
UART2 · reception completed	Δ	# 34	22н	FFFF74 _H	ICR11	000ВВн

Interrupt source	El ² OS	lr	nterrupt	tvector	Interrupt control register	
interrupt source	support	N	0.	Address	ICR	Address
UART1 · transmission completed	0	# 35	23н	FFFF70⊦	ICR12	0000ВСн
UART1 · reception completed	0	# 36	24н	FFFF6C _H	IONIZ	
UART0 · transmission completed	0	# 37	25н	FFFF68 _H	ICR13	0000ВDн
UART0 · reception completed	0	# 39	27н	FFFF60 _H	ICR14	0000ВЕн
Delayed interrupt generation module	×	# 42	2Ан	FFFF54 _H	ICR15	0000ВFн
Stack fault	×	# 255	FFн	FFFC00h	_	_

- ©: El²OS is supported (with stop request).
- O: El²OS is supported; however, since two interrupt sources are allocated to a single ICR, in case El²OS is used for one of the two, El²OS and ordinary interrupt are not both available for the other (with stop request).
- △: El²OS is supported; however, since two interrupt sources are allocated to a single ICR, in case El²OS is used for one of the two, El²OS and ordinary interrupt are not both available for the other (with no stop request).
- \times : El²OS is not supported.

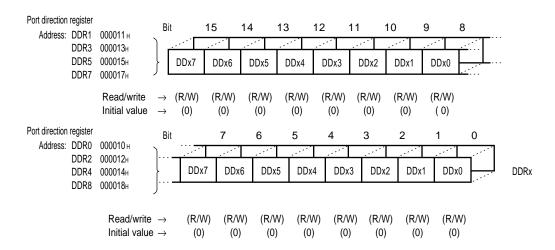
■ PERIPHERAL RESOURCES

1. Parallel Ports

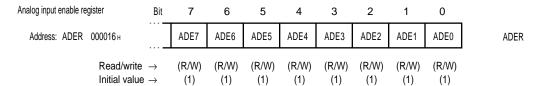

The MB90210 series has 57 I/O pins and 8 open-drain I/O pins.

Ports 0 to 5, 7, and 8 are I/O ports. Each of these ports serves as an input port when the data direction register value is 0 and as an output port when the value is 1.

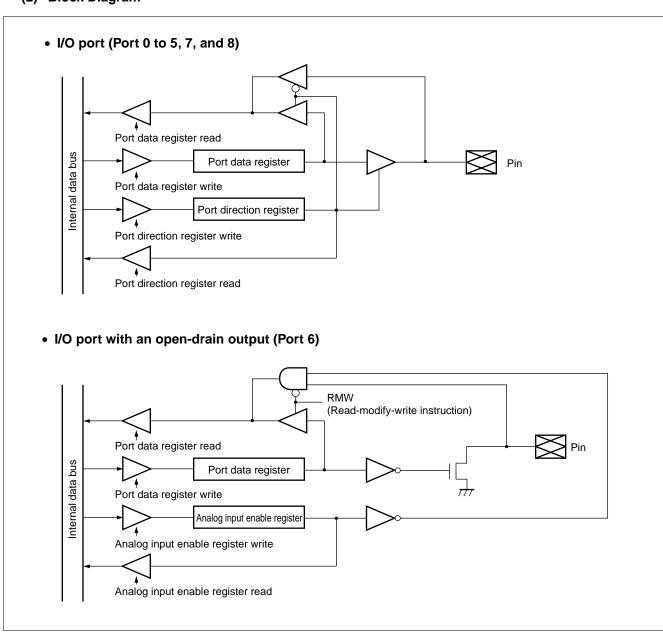
Port 6 is an open-drain port, which may be used as a port when the analog input enable register value is 0.


(1) Register Configuration

• Port data registers 0 to 8 (PDR0 to PDR8)


Note: No register bit is included in bits 7 and 6 of port 7 or bits 7 to 3 of port 8.

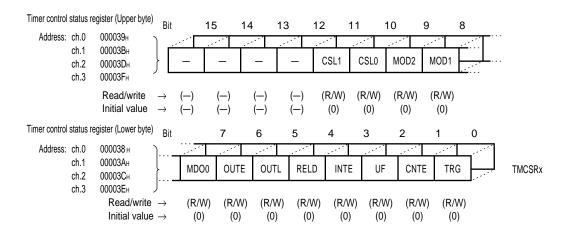
• Port direction registers 0 to 5, 7, and 8 (DDR0 to DDR5, DDR7, and DDR8)



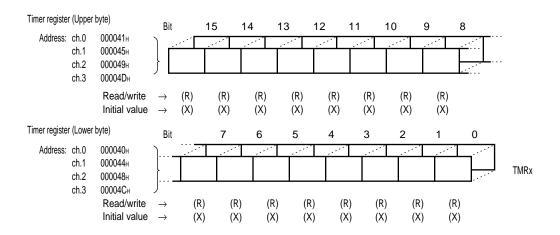
Note: No register bit is included in bits 7 and 6 of port 7 or bits 7 to 3 of port 8. Port 6 has no DDR.

• Analog input enable register (ADER)

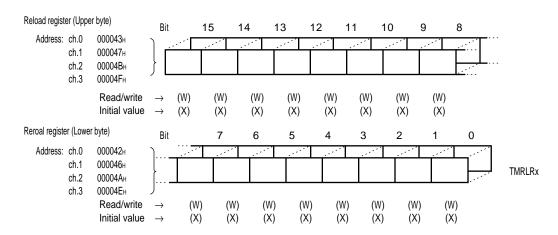
(2) Block Diagram

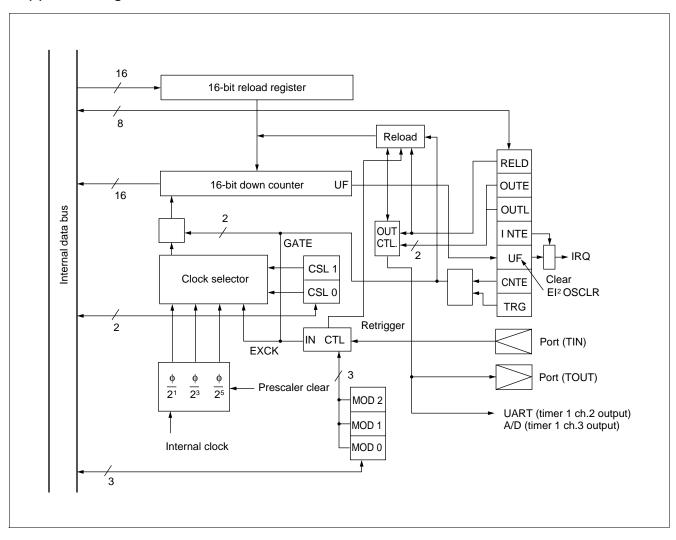

2. 16-bit Reload Timer 1 (with Event Count Function)

The 16-bit reload timer 1 consists of a 16-bit down counter, a 16-bit reload register, an input pin (TIN), an output pin (TOUT), and a control register. The input clock can be selected from among three internal clocks and one external clock. At the output pin (TOUT), the pulses in the toggled output waveform are output in the reload mode; the rectangular pulses indicating that the timer is counting are in the single-shot mode. The input pin (TIN) can be used for event input in the event count mode, and for trigger input or gate input in the internal clock mode.


MB90210 series contains four channels for this timer.

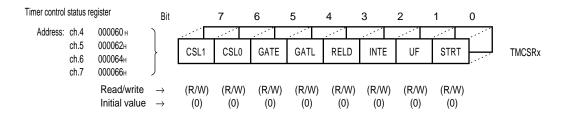
(1) Register Configuration


• Timer control status register (TMCSR)

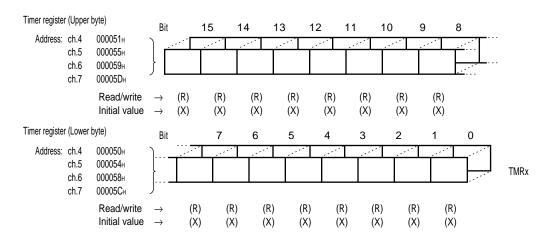


Timer register (TMR)

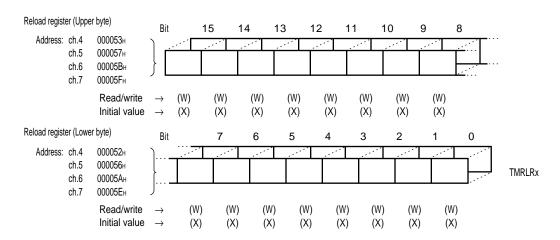
• Reload register (TMRLR)

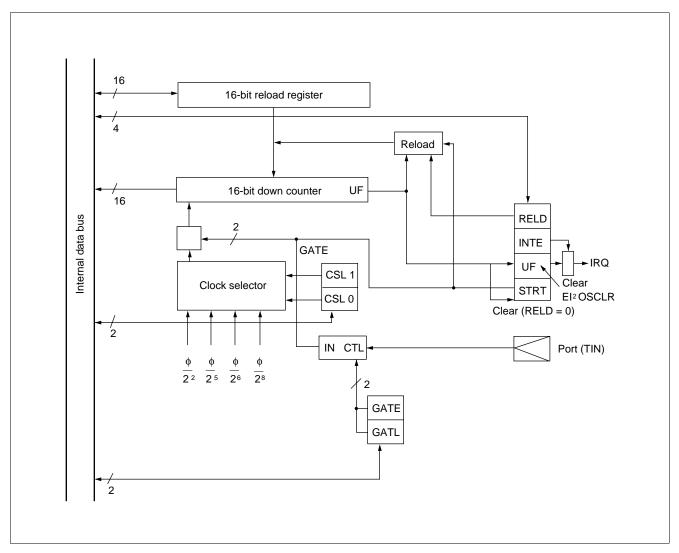

3. 16-bit Reload Timer 2 (with Gate Mode)

The 16-bit reload timer 2 consists of a 16-bit down counter, a 16-bit reload register, an input pin (TIN), and an 8-bit control register. The input clock can be selected from among four internal clocks.


The MB90210 series contains four channels for this timer.

(1) Register Configuration

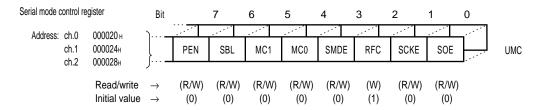

• Timer control status register (TMCSR)



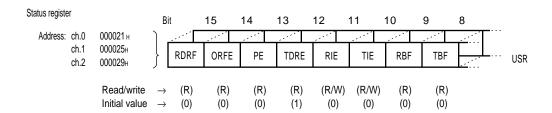
• Timer register (TMR)

• Reload register (TMRLR)

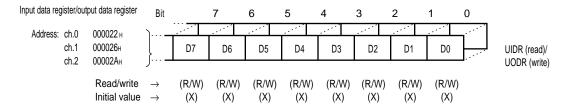
4. UART

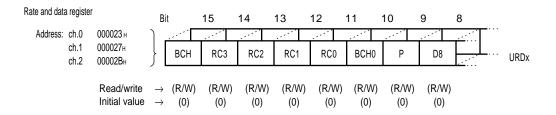

The UART is a serial I/O port for synchronous or asynchronous communication with external resources. It has the following features:

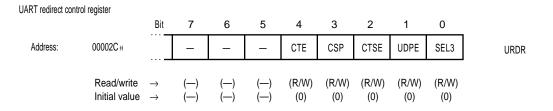
- Full duplex double buffer
- Data transfer synchronous or asynchronous with clock pulses
- Multiprocessor mode support (Mode 2)
- Built-in dedicated baud-rate generator (Nine types)
- Arbitrary baud-rate setting from external clock input or internal timer (Use the 16-bit reroad timer 1 channel 2 for internal timer.)
- Variable data length (7 to 9 bits (without parity bit); 6 to 8 bits (with parity bit))
- Variable data length (7 to 9 bit no parity, 6 to 8 bit with parity)
- Error detection function (Framing, overrun, parity)
- Interrupt function (Two sources for transmission and reception)
- · Transfer in NRZ format

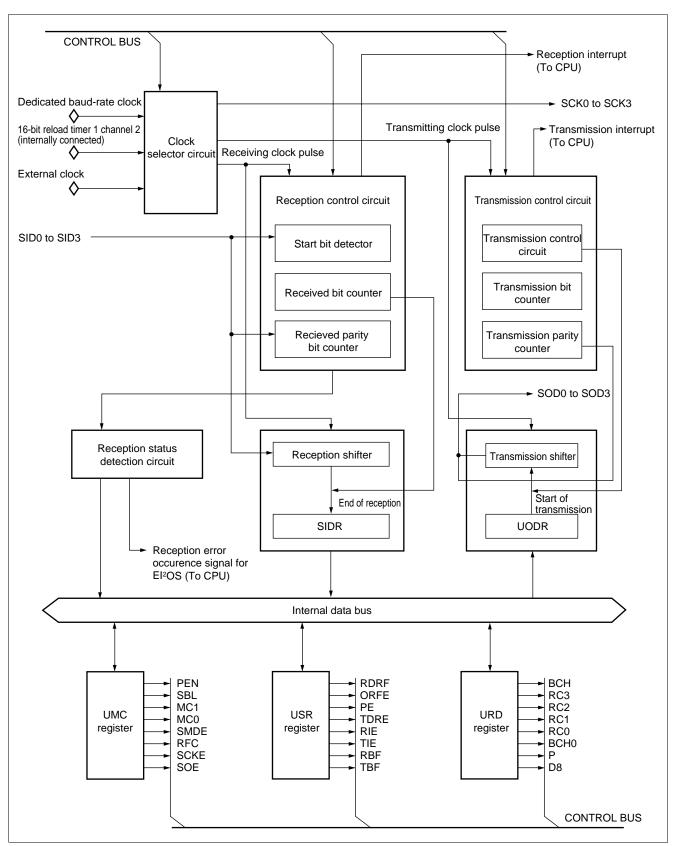

The MB90210 series contains three channels for the UART. UART channel 0 has the CTS function. UART channel 2 provides dual I/O pin switching.

(1) Register Configuration


Serial mode control register (UMC)

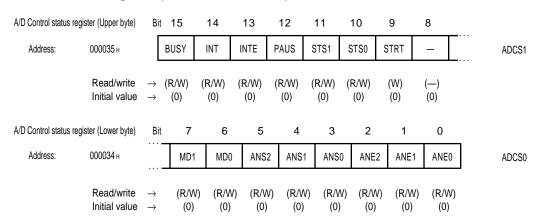

• Status register (USR)


Input data register (UIDR)/output data register (UODR)

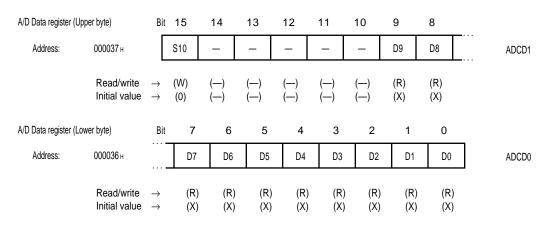


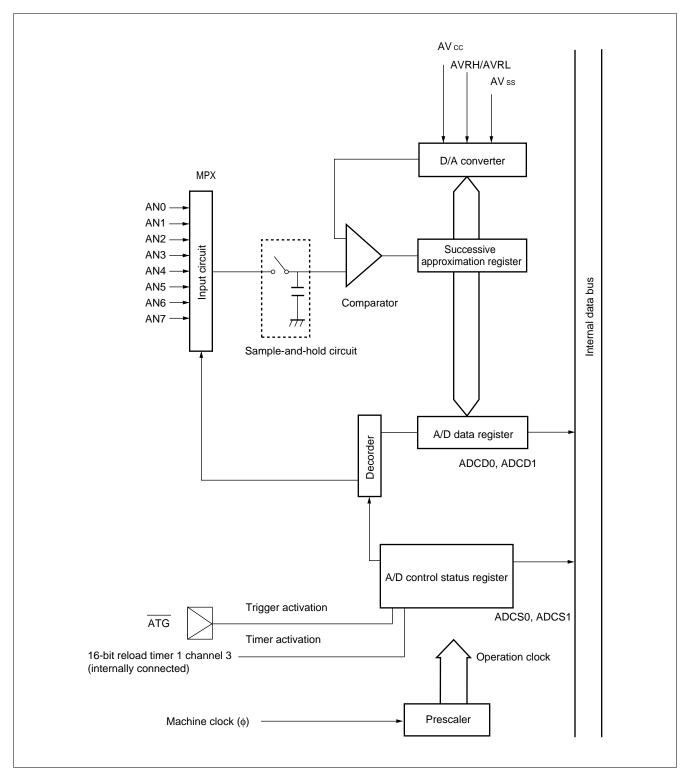
• Rate and data register (URD)

• UART redirect control register (URDR)


5. 10-bit A/D Converter

The 10-bit A/D converter converts the analog input voltage to a digital value. It has the following features:


- Conversion time: min.6.125 μs per channel (at 16-MHz machine clock)
- RC-type successive approximation with built-in sample-and-hold circuit
- 10-bit or 8-bit resolution
- Eight analog input channels programmable for selection
 - Single conversion mode: Selects and converts one channel.
 - Scan conversion mode: Converts multiple consecutive channels (up to eight channels programmable).
 - Consecutive conversion mode: Converts a specified channel repeatedly.
 - Stop conversion mode: Converts one channel and suspends its own operation until the next activation (allowing synchronized conversion start).
- On completion of A/D conversion, the converter can generate an interrupt request to the CPU. This interrupt generation can activate the El²OS to transfer the A/D conversion result to memory, making the converter suitable for continuous operation.
- Conversion can be activated by software, external trigger (falling edge), and/or timer (rising edge) as selected. Use the 16-bit reroad timer 1 channel 3 for the timer.


(1) Register Configuration

A/D Control status register (ADCS1 and ADCS0)

• A/D Data registers (ADCD1 and ADCD0)

6. PWC(Pulse Width Count) Timer

The PWC (pulse width count) timer is a 16-bit multifunction up-count timer with an input-signal pulse-width count function and a reload timer function. The hardware configuration of this module is a 16-bit up-count timer, an input pulse divider with divide ratio control register, four count input pins, and a 16-bit control register. Using these components, the PWC timer provides the following features:

• Timer functions: An interrupt request can be generated at set time intervals.

Pulse signals synchronized with the timer cycle can be output.

The reference internal clock can be selected from among three internal clocks.

• Pulse-width count functions: The time between arbitrary pulse input events can be counted.

The reference internal clock can be selected from among three internal clocks.

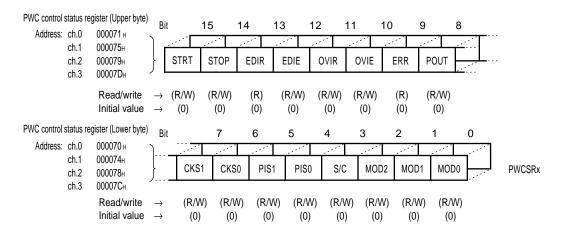
Various count modes:

"H" pulse width (\uparrow to \downarrow) /"L" pulse width (\uparrow to \downarrow) Rising-edge cycle (\uparrow to \uparrow) /Falling-edge cycle (\downarrow to \downarrow)

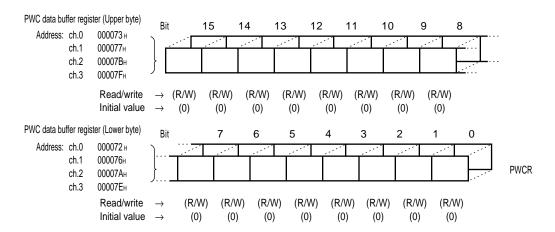
Count between edges (\uparrow or \downarrow to \downarrow or \uparrow)

Cycle count can be performed by 22n division (n = 1, 2, 3, 4) of the input

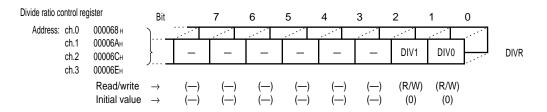
pulse, with an 8 bit input divider.

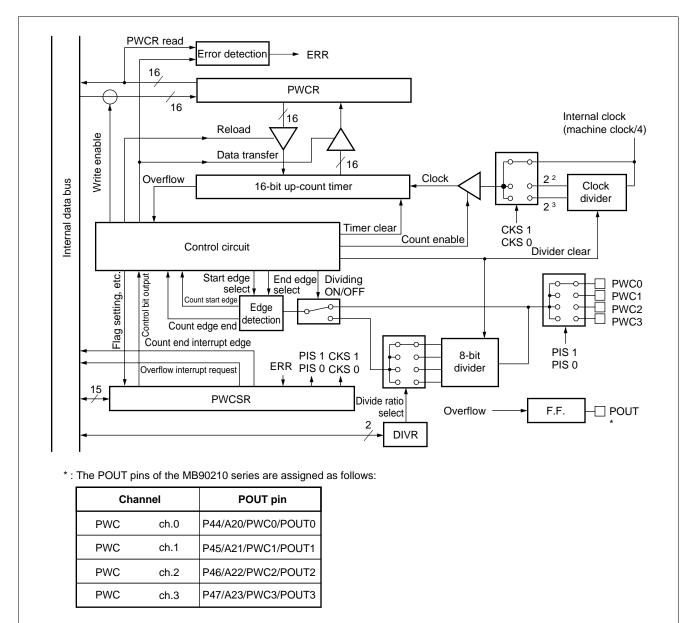

An interrupt request can be generated once counting has been performed. The number of times counting is to be performed (once or subsequently) can

be selected.


The MB90210 series contains four channels for the PWC timer.

(1) Register Configuration

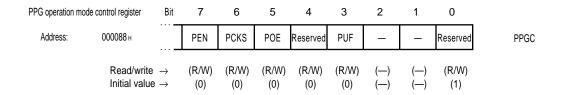

• PWC control status register (PWCSR)



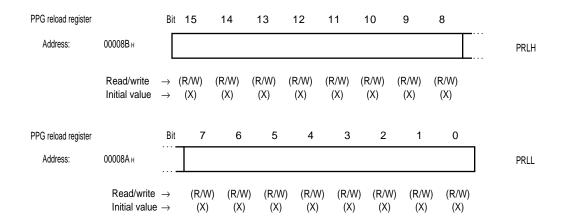
• PWC data buffer register (PWCR)

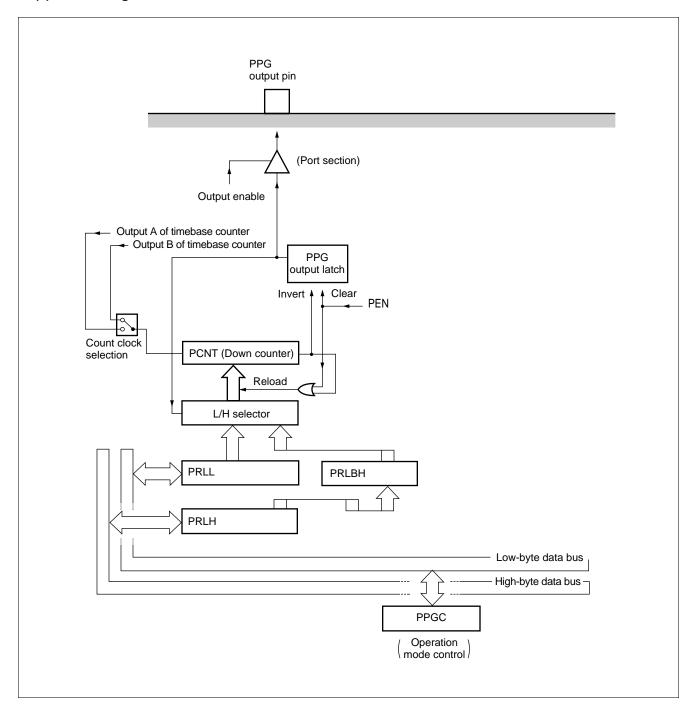
• PWC divide ratio control register (DIVR)

7. 8-bit PPG Timer


This block is an 8-bit reload timer module for PPG output by controlling pulse output according to the timer operation.

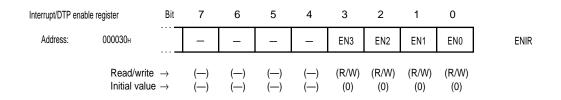
The hardware configuration of this block is an 8-bit down counter, two 8-bit reload registers, an 8-bit control register, and an external pulse output pin. Using these components, the module provides the following features:


PPG output operation: The module outputs pulse waves of any period and duty factor. It can also be used as a D/A converter using an external circuit.

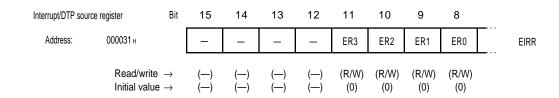

(1) Register Configuration

PPG operation mode control register (PPGC)

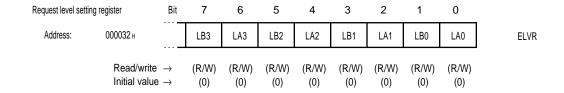
• PPG reload registers (PRLL and RRLH)

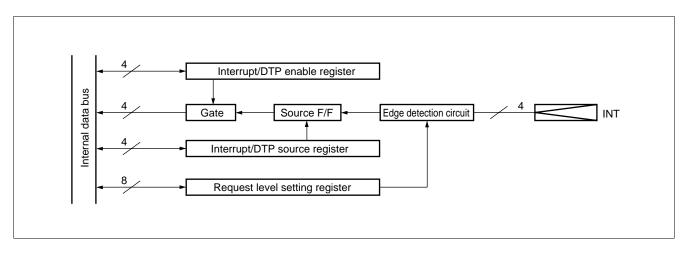


8. DTP/External Interrupt


The data transfer peripheral (DTP) is located between external peripherals and the F²MC-16F CPU. It receives a DMA request or an interrupt request generated by the external peripherals and reports it to the F²MC-16F CPU to activate the extended intelligent I/O service or interrupt handler. The user can select two request levels of "H" and "L" for extended intelligent I/O service or, and four request levels of "H," "L," rising edge and falling edge for external interrupt requests.

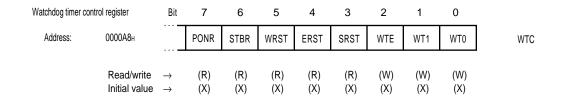
(1) Register Configuration


• Interrupt/DTP enable register (ENIR)

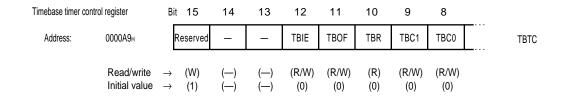


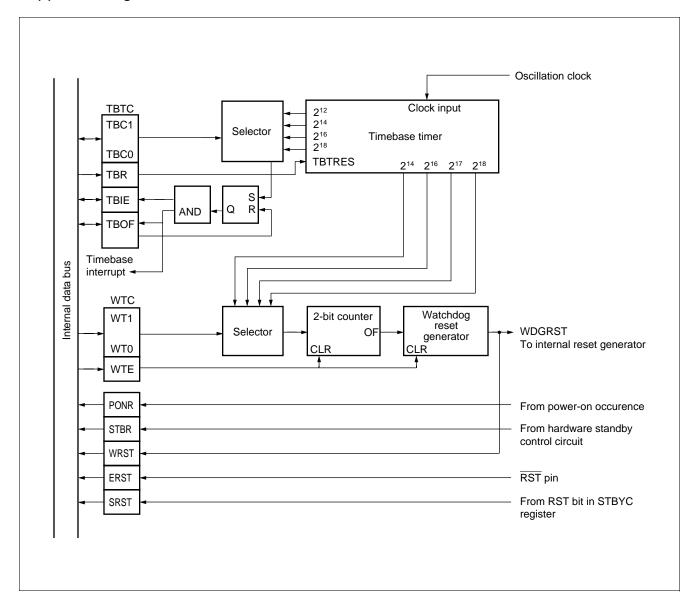
• Interrupt/DTP source register (EIRR)

• Request level setting register (ELVR)



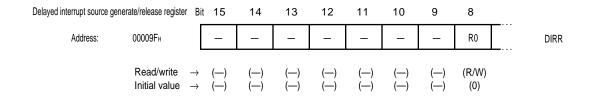
9. Watchdog Timer and Timebase Timer

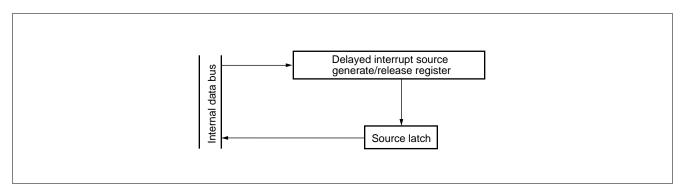

The watchdog timer consists of a 2-bit watchdog counter using carry signals from an 18-bit timebase timer as the clock source, a control register, and a watchdog reset control section. The timebase timer consists of an 18-bit timer and an interval interrupt control circuit.


(1) Register Configuration

Watchdog timer control register (WTC)

• Timebase timer control register (TBTC)

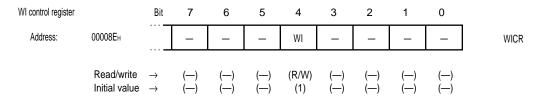



10. Delayed Interrupt Generation Module

The delayed interrupt generation module is used to generate an interrupt for task switching. Using this module allows an interrupt request to the F²MC-16F CPU to generate or cancel by software.

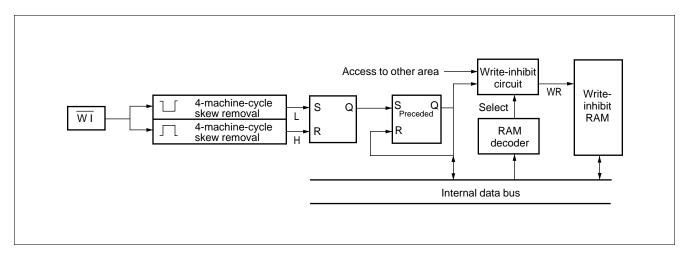
(1) Register Configuration

• Delayed interrupt source generate/release register (DIRR)



11. Write-inhibit RAM

The write-inhibit RAM is write-protectable with the \overline{WI} pin input. Maintaining the "L" level input to the \overline{WI} pin prevents a certain area of RAM from being written. The \overline{WI} pin has a 4-machine-cycle filter.


(1) Register Configuration

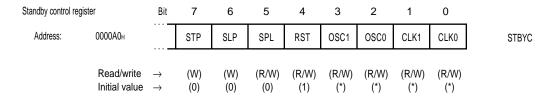
• WI control register (WICR)

(2) Write-inhibit RAM Area

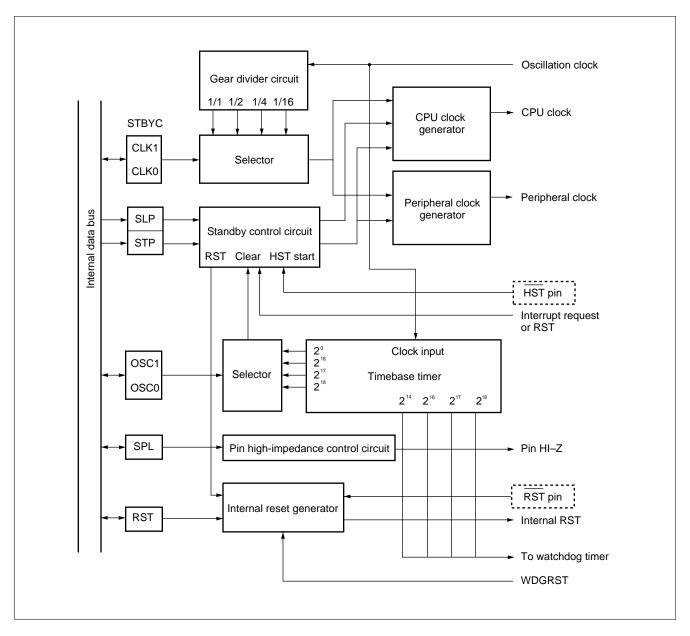
Write-inhibit RAM area 001100н to 0011FFн (МВ90214/Р214А/Р214В/W214A/W214B) 001100н to 0012FFн (МВ90V210)

12. Low-power Consumption Modes, Oscillation Stabilization Delay Time, and Gear Function

The MB90210 series has three low-power consumption modes: the sleep mode, the stop mode, the hardware standby mode, and gear function.


Sleep mode is used to suspend only the CPU operation clock; the other components remain in operation. Stop mode and hardware standby mode stop oscillation, minimizing the power consumption while holding data.

The clock gear function divides the external clock frequency, which is used usually as it is, to provide a lower machine clock frequency. This function can therefore lower the overall operation speed without changing the oscillation frequency. The function can select the machine clock as a division of the frequency of crystal oscillation or external clock input by 1, 2, 4, or 16.


The OSC1 and OSC0 bits can be used to set the oscillation stabilization delay time for wake-up from stop mode or hardware standby mode.

(1) Register Configuration

Standby control register (STBYC)

Note: The initial value(*) of bit0 to bit3 is changed by reset source.

■ ELECTRICAL CHARACTERISTICS (MB90V210, device used for evaluation, is excluded)

1. Absolute Maximum Ratings

(Vss = AVss = 0.0 V)

Parameter	Symbol	Pin	Va	lue	Unit	Remarks
Parameter	Symbol	name	Min.	Max.	Offic	Remarks
Power supply voltage	Vcc	Vcc	Vss-0.3	Vss + 7.0	V	
Program voltage	VPP	V _{PP}	Vss - 0.3	13.0	V	MB90P214A/W214A MB90P214B/W214B
Analog power supply voltage	AVcc	AVcc	Vss - 0.3	Vcc + 0.3	V	Power supply voltage for A/D converter
Arialog power supply voltage	AVRH AVRL	AVRH AVRL	Vss - 0.3	AVcc	V	Reference voltage for A/D converter
Input voltage	Vı *1	_	Vss-0.3	Vcc + 0.3	V	
Output voltage	Vo	*2	Vss-0.3	Vcc + 0.3	V	
"L" level output current	lol	*3	_	20	mA	Rush current
"L" level total output current	ΣΙοι	*3	_	50	mA	Total output current
"H" level output current	Іон	*2	_	-10	mA	Rush current
"H" level total output current	ΣІон	*2	_	-48	mA	Total output current
Power consumption	Pd	_	_	650	mW	
Operating temperature	TA		-40	+105	°C	MB90214/P214B/W214B
Operating temperature	IA	_	-40	+85	°C	MB90P214A/W214A
Storage temperature	Tstg	_	- 55	+150	°C	

^{*1:} V_I and V_O must not exceed V_{CC} + 0.3 V.

P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P50 to P57, P70 to P75, P80 to P82

P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P75, P80 to P82

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

^{*2:} Output pins

^{*3:} Output pins

2. Recommended Operating Conditions

(Vss = AVss = 0.0 V)

Parameter	Symbol	Pin	Va	lue	Unit	Remarks
Parameter	Syllibol	name	Min.	Max.	Oilit	Remarks
			4.5	5.5	V	When operating
Power supply voltage	Vcc	Vcc	3.0	5.5	V	Retains the RAM state in stop mode
Analog power supply	AVcc	AVcc	4.5	Vcc + 0.3	V	Power supply voltage for A/D converter
voltage	AVRH	AVRH	AVRL	AVcc	V	Reference voltage for A/D
	AVRL	AVRL	AVss	AVRH	V	converter
Clock frequency	Fc	_	10	16	MHz	
			-40	+105	°C	Single-chip mode MB90214/P214B/W214B
Operating temperature	T _A *	_	-40	+85	°C	Single-chip mode MB90P214A/W214A
			-40	+70	°C	External bus mode

^{*:} Excluding the temperature rise due to the heat produced.

WARNING: Recommended operating conditions are normal operating ranges for the semiconductor device. All the device's electrical characteristics are warranted when operated within these ranges.

Always use semiconductor devices within the recommended operating conditions. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representative beforehand.

3. DC Characteristics

		5.			Value			
Parameter	Symbol	Pin name	Condition	Min.	Тур.	Max.	Unit	Remarks
	ViH	*1	_	0.7 Vcc	_	Vcc + 0.3	V	CMOS level input
"H" level input voltage	Vihs	*2	_	0.8 Vcc	_	Vcc + 0.3	V	Hysteresis input
Tonago	Vінм	MD0 to MD2	_	Vcc - 0.3	_	Vcc + 0.3	V	
	VIL	*1	_	Vss- 0.3	_	0.3 Vcc	V	CMOS level input
"L" level input voltage	VILS	*2	_	Vss - 0.3	_	0.2 Vcc	V	Hysteresis input
	VILM	MD0 to MD2	_	Vss - 0.3	_	Vss+ 0.3	V	
"H" level output	Vон	*3	$V_{CC} = 4.5 \text{ V}$ IoH = -4.0 mA	Vcc - 0.5	— Vcc		V	
voltage	V _{OH1}	X1	$V_{CC} = 4.5 \text{ V}$ IoH = -2.0 mA	Vcc - 2.3	_	Vcc	V	
"L" level output	Vol	*4	Vcc = 4.5 V loL = 4.0 mA	0	_	0.4	V	
voltage	V _{OL1}	X1	Vcc = 4.5 V loL = 2.0 mA	0	_	Vcc - 2.3	V	
Input leakage current	lı	*1 *2	Vcc =5.5 V 0.2 Vcc < Vi < 0.8 Vcc	_	_	±10	μΑ	Except pins with pull-up/pull-down resistor and RST pin
	l ₁₂	X0	Vcc =5.5 V 0.2 Vcc < ViH < 0.8 Vcc	_	_	±25	μΑ	
Analog power	IA		Fc = 16 MHz	_	3	7	mA	
supply voltage	Іан	AVcc	_	_	_	5 * ⁵	μΑ	In stop mode, T _A = +25°C
Input capacitance	CIN	*6	_	_	10	_	pF	
Pull-up resistor	R _{pul} U	RST	_	22	50	110	kΩ	*7 MB90214 MB90P214A/ W214A/P214B/ W214B
T all ap recicion	Ττραίο	MD1	_	110	300	650	kΩ	*7 MB90214
		Generic pin	_	22	50	110	kΩ	*7 MB90214
Dull down register	D	MD0, MD2	_	110	300	650	kΩ	*7 MB90214
Pull-down resistor	r √pulD	Generic pin	_	22	50	110	kΩ	*7 MB90214

(Continued)

(Continued)

Parameter	Symbol	Pin name	Condition		Value		Unit	Remarks
Parameter	Syllibol	Finitianie	Condition	Min.	Тур.	Max.	Oilit	Remarks
				_	50*8	80	mA	MB90214
Power cupply	Icc	Vcc	Fc = 16 MHz	_	70*8	100	mA	MB90P214A/ W214A MB90P214B/ W214B
Power supply voltage*9	Iccs	Vcc	Fc = 16 MHz	_	_	40	mA	In sleep mode
voltage	Іссн	Vcc	_	_	5	10	μА	T _A = +25°C In stop mode In hardware standby input time

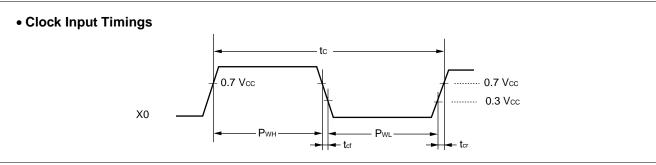
- *1: CMOS level input (P00 to P07, P10 to P17, X0)
- *2: Hysteresis input pins (RST, HST, P20 to P27, P30 to P37, P40 to P47, P50 to P57, P60 to P67 P70 to P75, P80 to P82)
- *3: Output pins (P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P50 to P57, P70 to P75, P80 to P82)
- *4: Output pins (P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P75, P80 to P82)
- *5: The current value applies to the CPU stop mode with A/D converter inactive (Vcc = AVcc = AVRH = +5.5 V).
- *6: Other than Vcc, Vss, AVcc and AVss
- *7: A list of availabilities of pull-up/pull-down resistors

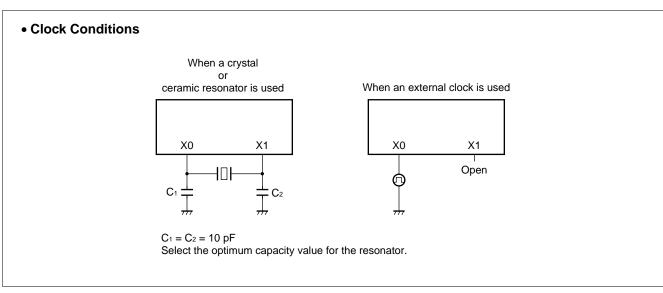
Pin name	MB90214	MB90P214A/W214A	MB90P214B/W214B
RST	Availability of pull-up resistors is optionally defined.	Pull-up resistors available	Pull-up resistors available
MD1	Pull-up resistors available	Unavailable	Unavailable
MD0, MD2	Pull-down resistors available	Unavailable	Unavailable
Generic pin	Availability of pull-up/pull-down resistors is optionally defined.	Unavailable	Unavailable

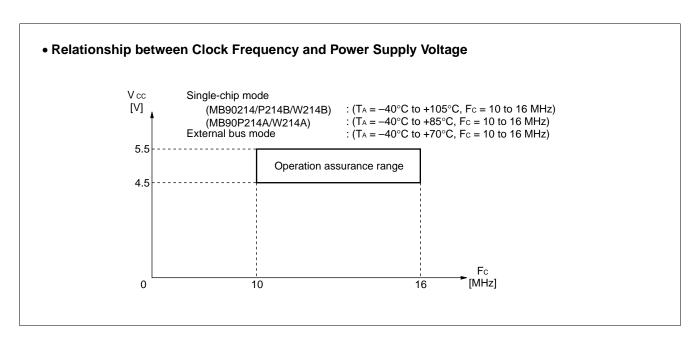
^{*8:} $V_{CC} = +5.0 \text{ V}$, $V_{SS} = 0.0 \text{ V}$, $T_A = +25^{\circ}\text{C}$, $F_C = 16 \text{ MHz}$

^{*9:} Measurement condition of power supply current; external clock pin and output pin are open. Measurement condition of Vcc; see the table above mentioned.

2. AC Characteristics

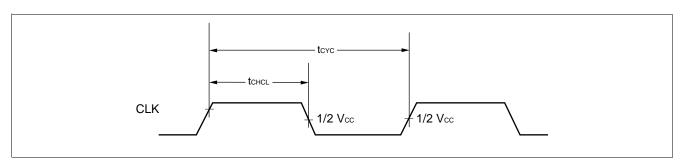

(1) Clock Timing Standards


Single-chip mode MB90214/P214B/W214B : (Vcc = +4.5 V to +5.5 V, Vss = 0.0 V, $T_A = -40^{\circ}\text{C to } +105^{\circ}\text{C}$) MB90P214A/W214A : (Vcc = +4.5 V to +5.5 V, Vss = 0.0 V, $T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$)


External bus mode

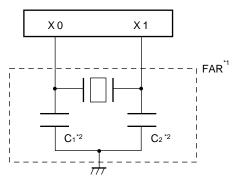
: $(Vcc = +4.5 \text{ V to } +5.5 \text{ V}, \text{ Vss} = 0.0 \text{ V}, \text{ Ta} = -40^{\circ}\text{C to } +85^{\circ}\text{C})$: $(Vcc = +4.5 \text{ V to } +5.5 \text{ V}, \text{ Vss} = 0.0 \text{ V}, \text{ Ta} = -40^{\circ}\text{C to } +70^{\circ}\text{C})$

		\							
Parameter	Symbol	Pin	Condition		Value		Unit	Remarks	
Parameter	Syllibol	name	Condition	Min.	Тур.	Max.	Offic		
Clock frequency	Fc	X0, X1	_	10	_	16	MHz		
Clock cycle time	t c	X0, X1	_	62.5		100	ns	1/Fc	
Input clock pulse width	Pwh PwL	X0	_	0.4 tc	_	0.6 tc	ns	Duty ratio: 60%	
Input clock rising/falling time	t _{cr}	X0	_	_	_	8	ns	tcr + tcf	



(2) Clock Output Timing Standards

External mode: $(Vcc = +4.5 \text{ to } +5.5 \text{ V}, Vss = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +70^{\circ}\text{C})$


Parameter	Symbol Pin		Condition		Value	Unit	Remarks	
	Symbol	name	Condition	Min.	Тур.	Max.	Oilit	Remarks
Machine cycle time	tcyc		Load condition: 80 pF	62.5	_	1600	ns	*
$CLK \uparrow \to CLK \downarrow$	tchcl	CLK		tcyc/ 2 – 20	_	tcvc/2	ns	

^{*:} tcyc = n/Fc, n gear ratio (1, 2, 4, 16)

(3) Recommended Resonator Manufacturers

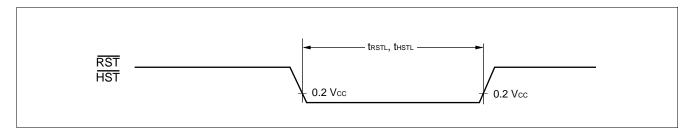
• Sample Application of Piezoelectric Resonator (FAR Series)

*1: Fujitsu Acoustic Resonator

FAR part number (built-in capacitor type)	Frequency	Initial deviation of FAR frequency (T _A = +25°C)	Temperature characteristics of FAR frequency (T _A = -20°C to +60°C)	Load capacitance*2	
FAR-C4C F-1 6000-□02	16.00	±0.5%	±0.5%	Built-in	
FAR-C4C F-1 6000-□12	10.00	±0.5%	±0.5%	Duill-III	

Inquiry: FUJITSU LIMITED

(4) Reset and Hardware Standby Input Standards


Single-chip mode MB90214/P214B/W214B : (Vcc = +4.5 V to +5.5 V, Vss = 0.0 V, T_A = -40°C to +105°C) MB90P214A/W214A : (Vcc = +4.5 V to +5.5 V, Vss = 0.0 V, T_A = -40°C to +85°C)

External bus mode

: $(V_{CC} = +4.5 \text{ V to } +5.5 \text{ V}, V_{SS} = 0.0 \text{ V}, T_{A} = -40 ^{\circ}\text{C to } +70 ^{\circ}\text{C})$

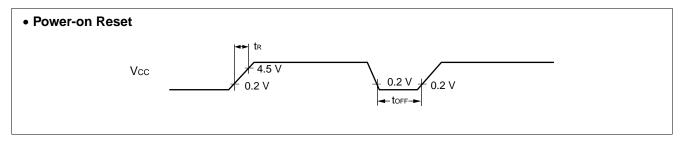
Parameter	Symbol	Pin	Condition		Value	Unit	Remarks	
Parameter	Syllibol	name	Condition	Min.	Тур.	Max.	Oilit	iveillai ks
Reset input time	t RSTL	RST		5 tcyc	_	_	ns	
Hardware standby input time	t HSTL	HST	_	5 tcyc	_	_	ns	*

^{*:} The machine cycle (tcyc) at hardware standby input is set to 1/16 divided oscillation.

(5) Power on Supply Specifications (Power-on Reset)

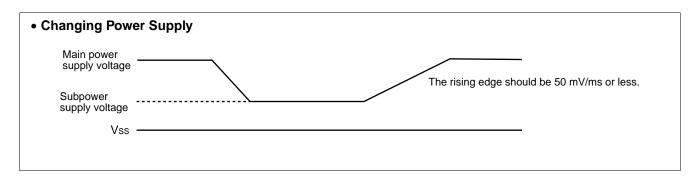
Single-chip mode MB90214/P214B/W214B : (Vcc = +4.5 V to +5.5 V, Vss = 0.0 V, $T_A = -40^{\circ}\text{C to } +105^{\circ}\text{C}$) MB90P214A/W214A : (Vcc = +4.5 V to +5.5 V, Vss = 0.0 V, $T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$)

External bus mode


: $(Vcc = +4.5 \text{ V to } +5.5 \text{ V}, Vss = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +70^{\circ}\text{C})$

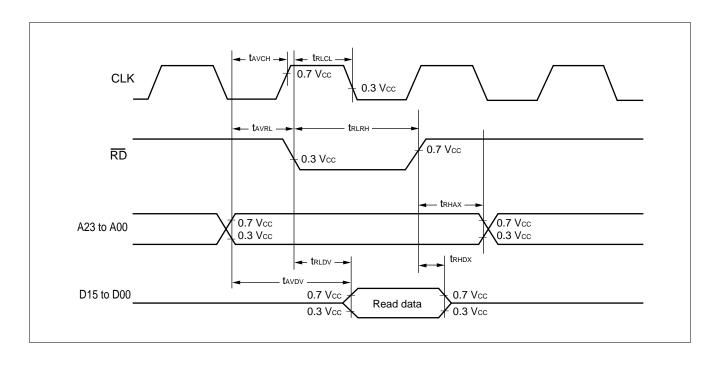
Parameter	Symbol Pin		Condition		Value	Unit	Remarks	
Parameter	Syllibol	name	Condition	Min.	Тур.	Max.	Offic	iveillai ka
Power supply rising time	t R	Vcc	_	_	_	30	ms	*
Power supply cut-off time	toff	Vcc	_	1	_	_	ms	

^{* :} Before the power rising, Vcc must be less than +0.2 V.


Notes: • The above specifications are for the power-on reset.

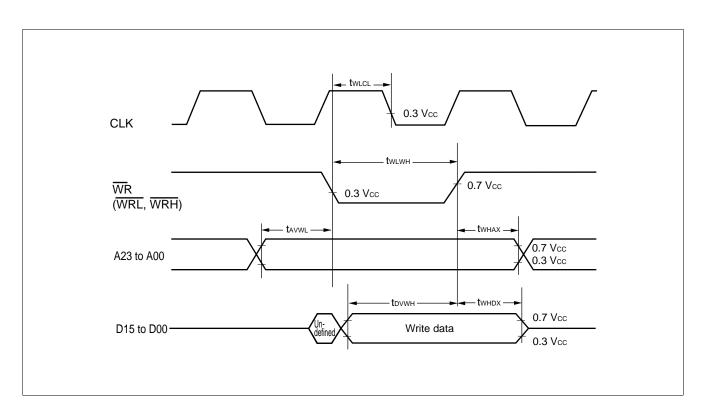
- Always apply power-on reset using these specifications, regardless of whether or not the power-on reset is needed.
- There are some internal registers (such as STBYC) which are only initialized by the power-on reset.

Note: Caution on switching power supply


Abrupt change of supply voltage may initiate power-on reset, even if the above requirements are not met. It is, therefore, recommended to power up gradually during the instantaneous change of power supply as shown in the figure below.

(6) Bus Read Timing

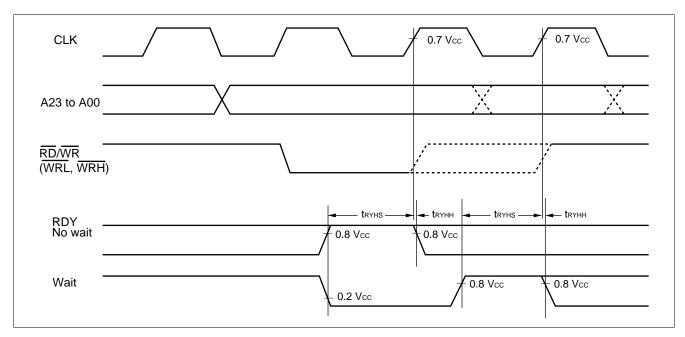
 $(Vcc = +4.5 \text{ to } +5.5 \text{ , } Vss = 0.0 \text{ V, } T_A = -40^{\circ}\text{C to } +70^{\circ}\text{C})$


	T	T.					
Parameter	Symbol	Pin	Condition	Va	lue	Unit	Remarks
raidilietei	Symbol	name	Condition	Min.	Max.	Oilit	iveillai ks
Valid address $ ightarrow \overline{RD} \downarrow$ time	t avrl	A23 to A00		tcyc/2 - 20	_	ns	
RD pulse width	t rlrh	RD		tcyc - 25	_	ns	
$\overline{RD} \downarrow \to valid$ data input	trldv			_	tcyc - 30	ns	
$\overline{RD} \uparrow \to data \; hold \; time$	t RHDX	D15 to D00	Load	0	_	ns	
Valid address→ valid data input	tavdv		condition: 80 pF	_	3 tcyc/2 - 40	ns	
$\overline{RD} \uparrow \to address\ valid\ time$	t RHAX	A23 to A00		tcyc/2 - 20	_	ns	
Valid address → CLK ↑ time	t avch	A23 to A00 CLK		tcyc/2 - 25	_	ns	
$\overline{RD} \downarrow \to CLK \downarrow time$	t rlcl	RD, CLK		tcyc/2 - 25	_	ns	

(7) Bus Write Timing

 $(Vcc = +4.5 \text{ to } +5.5 \text{ V}, Vss = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +70^{\circ}\text{C})$

Parameter	Symbol	Pin name	Condition	Val	ue	Unit	Remarks
rarameter	Syllibol	Fili lialile	Condition	Min.	Max.	Oilit	
$Valid\;address\to\overline{WR}\;\!\downarrowtime$	tavwl	A23 to A00		tcyc/2 - 20	_	ns	
WR ↓ pulse width	twlwh	WRL, WRH		tcyc - 25	_	ns	
Valid data output \rightarrow $\overline{\text{WR}}$ \uparrow time	tovwh	D15 to D00	Load condition:	tcyc - 40	_	ns	
$\overline{\mathrm{WR}} \uparrow \rightarrow \mathrm{data} \ \mathrm{hold} \ \mathrm{time}$	twhox		80 pF	tcyc/2 - 20	_	ns	
$\overline{ m WR} \uparrow \rightarrow { m address} \ { m valid} \ { m time}$	twhax	A23 to A00		tcyc/2 - 20	_	ns	
$\overline{WR} \downarrow \to CLK \downarrow time$	twlch	WRL, WRH, CLK		tcyc/2 - 25	_	ns	

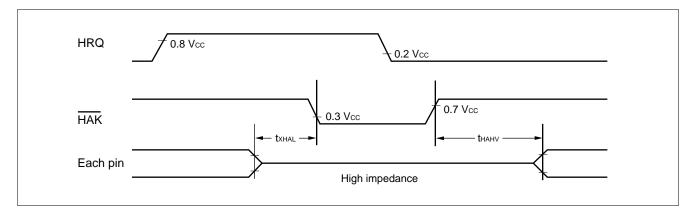


(8) Ready Signal Input Timing

 $(Vcc = +4.5 \text{ to } +5.5 \text{ V}, Vss = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +70^{\circ}\text{C})$

Doromotor	Symbol	Pin name	Pin name Condition	Va	lue	Unit	Remarks
Parameter	Symbol	Fili liallie	Condition	Min.	Max.		
RDY setup time	t RYHS	RDY	Load condition:	40	_	ns	
RDY hold time	t RYHH	INDI	80 pF	0	_	ns	

Note: Use the auto-ready function if the RDY setup time is insufficient.

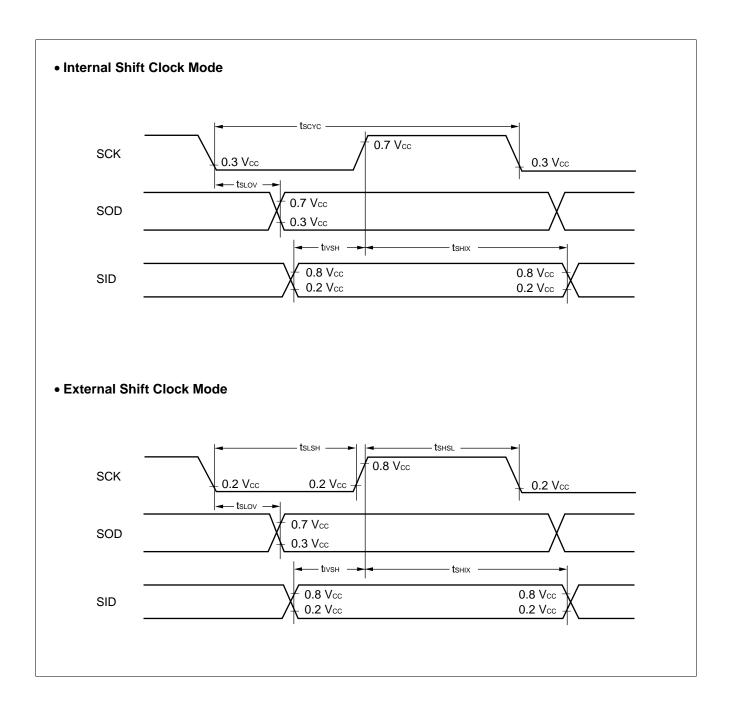


(9) Hold Timing

 $(Vcc = +4.5 \text{ to } +5.5 \text{ V}, Vss = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +70^{\circ}\text{C})$

Parameter	Symbol	Pin	Condition	Va	lue	Unit	Remarks
rarameter	Syllibol	name	Condition	Min.	Max.		
Pin floating \rightarrow HAK \downarrow time	t xhal	HAK	Load condition:	30	t cyc	ns	
$\overline{HAK} \uparrow \to pin \ valid \ time$	t hahv	HAR	80 pF	t cyc	2tcyc	ns	

Note: It takes at least one cycle for HAK to vary after HRQ is fetched.

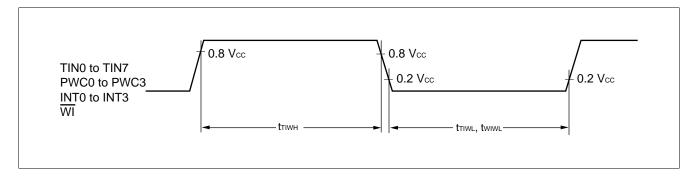

(10) UART Timing

Single-chip mode MB90214/P214B/W214B : (Vcc = +4.5 V to +5.5 V, Vss = 0.0 V, $T_A = -40 ^{\circ}\text{C}$ to $+105 ^{\circ}\text{C}$)

External bas me			. (100	I	1, 1,	- 40 0 10 170 0		
Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks	
			Condition	Min.	Max.	Offic	Nemarks	
Serial clock cycle time	tscyc		Load condition: 80 pF	8 tcyc	_	ns		
$\begin{array}{c} SCLK \downarrow \to SOUT \\ delay \ time \end{array}$	tsLov			-80	80	ns	Internal shift	
Valid SIN \rightarrow SCLK ↑	tıvsн	İ		100	_	ns	clock mode output pin	
$\begin{array}{c} SCLK \uparrow \to Valid \; SIN \\ hold \; time \end{array}$	tsнıx			60	_	ns		
Serial clock "H" pulse width	tshsl	_		4 tcyc	_	ns		
Serial clock "L" pulse width	tslsh			4 tcyc	_	ns	External shift	
$\begin{array}{c} SCLK \downarrow \to SOUT \\ delay \ time \end{array}$	tslov			_	150	ns	clock mode output pin	
Valid SIN \rightarrow SCLK \uparrow	tivsh			60	_	ns		
$\begin{array}{c} SCLK \uparrow \to Valid \; SIN \\ hold \; time \end{array}$	tsнıx	i		60	_	ns		

Notes: • These AC characteristics assume the CLK synchronous mode.

• tcyc is the machine cycle (unit: ns).



(11) Resource Input Timing

Single-chip mode MB90214/P214B/W214B : $(Vcc = +4.5 \text{ V to } +5.5 \text{ V}, Vss = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +105^{\circ}\text{C})$ MB90P214A/W214A : $(Vcc = +4.5 \text{ V to } +5.5 \text{ V}, Vss = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

External bus mode : $(Vcc = +4.5 \text{ V to } +5.5 \text{ V}, Vss = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +70^{\circ}\text{C})$

Parameter	Symbol	Pin name	Condition	Value			Unit	Remarks	
				Min.	Тур.	Max.	Oill	Nemarks	
Input pulse width	tтіwн tтіwL	TIN0 to TIN3	Load condition: 80 pF	4 tcyc	_	_	ns	External event count input mode	
				2 tcyc	_	_	115	Trigger input/ Gate input mode	
		TIN4 to TIN7		2 tcyc	_	_	ns	Gate input mode	
		PWC0 to PWC3		2 tcyc	_	_	ns		
		INT0 to INT3		3 tcyc	_	_	ns		
		ĀTG		2 tcyc	_	_	ns		
	twiwL	WI		4 tcyc			ns		

(12) Resource Output Timing

Single-chip mode MB90214/P214B/W214B : (Vcc = +4.5 V to +5.5 V, Vss = 0.0 V, $T_A = -40^{\circ}\text{C}$ to $+105^{\circ}\text{C}$)

MB90P214A/W214A : $(V_{CC} = +4.5 \text{ V to } +5.5 \text{ V}, V_{SS} = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$ External bus mode : $(V_{CC} = +4.5 \text{ V to } +5.5 \text{ V}, V_{SS} = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +70^{\circ}\text{C})$

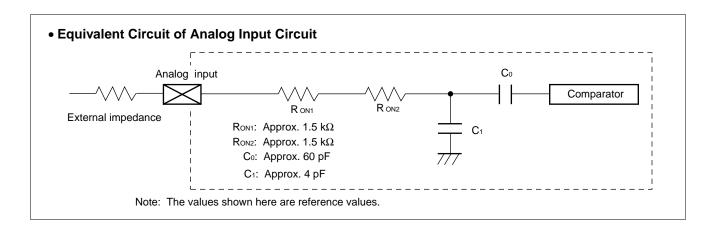
Value Symbol **Parameter** Pin name Condition Unit Remarks Min. Max. TOUT0 to TOUT3 $CLK \uparrow \rightarrow$ Load condition: PPG 30 ns **t**TO Tout transition time 80 pF POUT0 to POUT3

5. A/D Converter Electrical Characteristics

Single-chip mode MB90214/P214B/W214B:

(AVcc = Vcc = $+5.0\pm10\%$, AVss = Vss = 0.0 V, T_A = -40° C to $+105^{\circ}$ C, +4.5 V \leq AVRH - AVRL) Single-chip mode MBP90214A/W214A:

(AVcc = Vcc = $+5.0\pm10\%$, AVss = Vss = 0.0 V, T_A = -40° C to $+85^{\circ}$ C, +4.5 V $\stackrel{\leq}{=}$ AVRH - AVRL) External bus mode:

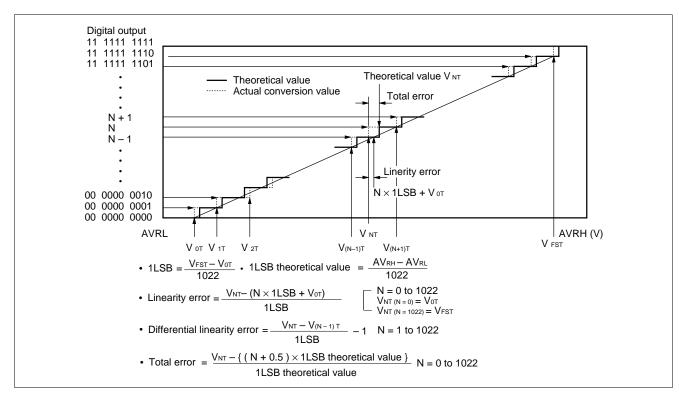

 $(AVcc = Vcc = +5.0\pm10\%, AVss = Vss = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +70^{\circ}\text{C}, +4.5 \text{ V} \le AVRH - AVRL)$

Parameter	Symbol	Pin name	Condition	Value				Remarks	
Parameter	Syllibol			Min.	Тур.	Max.	Unit	Remarks	
Resolution	n	_	_	_	_	10	bit		
Total error	_	_	_	-3.0	_	+3.0	LSB		
Linearity error	_	_	_	-2.0	_	+2.0	LSB		
Differential linearity error	_	_	_	_	_	±1.5	LSB		
Zero transition voltage	Vот	AN0 to AN7	_	AVRL – 1.5	AVRL + 0.5	AVRL + 2.5	LSB		
Full-scale transition voltage	V _{FST}	ANO IO AIN	_	AVRH – 3.5	AVRH – 1.5	AVRH+ 0.5	LSB		
Conversion time	Тсопу	_	- toyc = 62.5 ns	6.125	_	_	μs	98 machine cycles	
Sampling period	Тѕамр	_		3.75	_	_	μs	60 machine cycles	
Analog port input current	Iain	AN0 to AN7	_	_	_	±0.1	μΑ		
Analog input voltage	Vain	ANO IO AIN	_	AVRL	_	AVRH	V		
Analog reference	_		AVRH	_	AVRL	_	AVcc	V	
voltage		AVRL	_	AVss	_	AVRH	V		
Reference voltage supply current	IR	AVRH	_	_	200	500	μΑ		
	lпн	AVNII	_	_	_	5*	μΑ		
Interchannel disparity	_	AN0 to AN7	_	_	_	4	LSB		

^{*:} The current value applies to the CPU stop mode with the A/D converter inactive (Vcc = AVcc = AVRH = +5.5 V).

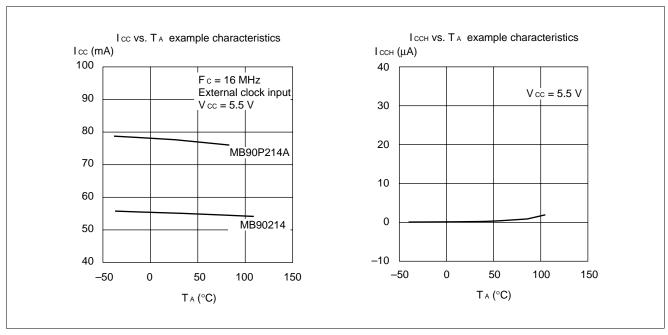
Notes: (1) The smaller the | AVRH – AVRL |, the greater the error would become relatively.

- (2) Use the output impedance of the external circuit for analog input under the following conditions: External circuit output impedance < approx. $10 \text{ k}\Omega$ (Sampling period = $3.75 \mu \text{s}$, teyc = 62.5 ns)
- (3) Precision values are standard values applicable to sleep mode.
- (4) If Vcc/AVcc or Vss/AVss is caused by a noise to drop to below the analog input voltage, the analog input current is likely to increase. In such cases, a bypass capacitor or the like should be provided in the external circuit to suppress the noise.

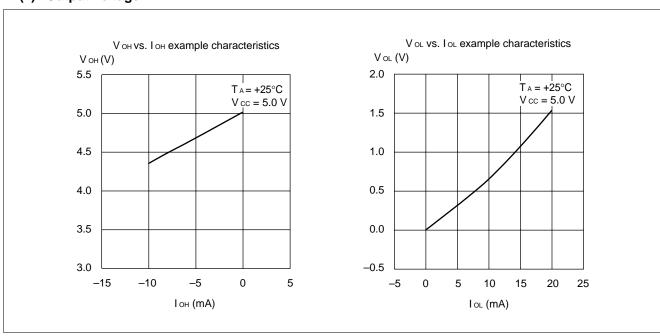

6. A/D Converter Glossary

Resolution: Analog changes that are identifiable with the A/D converter When the number of bits is 10, analog voltage can be divided into $2^{10} = 1024$.

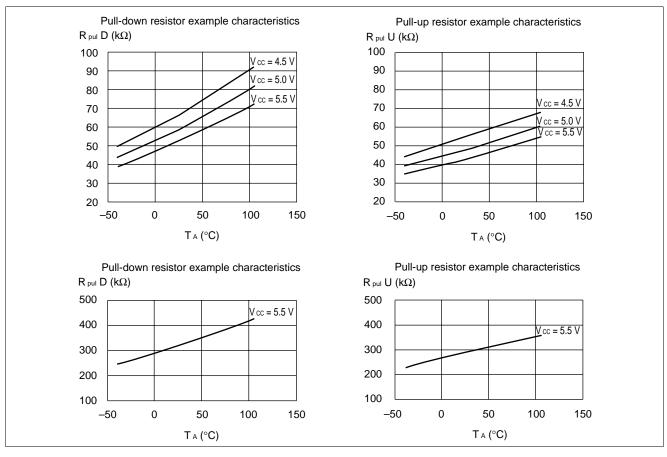
Total error: Difference between actual and logical values. This error is caused by a zero transition error, full-scale transition error, linearity error, differential linearity error, or by noise.


Linearity error: The deviation of the straight line connecting the zero transition point ("00 0000 0000" \leftrightarrow "00 0000 0001") with the full-scale transition point ("11 1111 1111" \leftrightarrow "11 1111 1110") from actual conversion characteristics

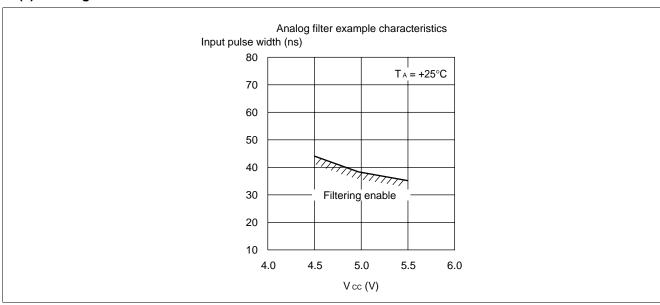
Differential linearity error: The deviation of input voltage needed to change the output code by 1 LSB from the theoretical value.


■ EXAMPLE CHARACTERISTICS

(1) Power Supply Current


Note: These are not assured value of characteristics but example characteristics.

(2) Output Voltage


Note: These are not assured value of characteristics but example characteristics.

(3) Pull-up/Pull-down Resistor

Note: These are not assured value of characteristics but example characteristics.

(4) Analog Filter

Note: These are not assured value of characteristics but example characteristics.

■ INSTRUCTIONS (421 INSTRUCTIONS)

Table 1 Description of Items in Instruction List

Item	Description
Mnemonic	English upper case and symbol: Described directly in assembler code. English lower case: Converted in assembler code. Number of letters after English lower case: Describes bit width in code.
#	Describes number of bytes.
~	Describes number of cycles. For other letters in other items, refer to table 4.
В	Describes correction value for calculating number of actual states. Number of actual states is calculated by adding value in the ~section.
Operation	Describes operation of instructions.
LH	Describes a special operation to 15 bits to 08 bits of the accumulator. Z: Transfer 0. X: Sign-extend and transfer. -: No transmission
АН	Describes a special operation to the upper 16-bit of the accumulator. * : Transmit from AL to AH. - : No transfer. Z : Transfer 00 _H to AH. X : Sign-extend AL and transfer 00 _H or FF _H to AH.
I	Describes status of I (interrupt enable), S (stack), T (sticky bit), N (negative), Z (zero),
S	V (overflow), and C (carry) flags. * : Changes after execution of instruction.
Т	-: No changes.
N	S: Set after execution of instruction. R: Reset after execution of instruction.
Z	
V	
С	
RMW	Describes whether or not the instruction is a read-modify-write type (a data is read out from memory etc. in single cycle, and the result is written into memory etc.). * : Read-modify-write instruction - : Not read-modify-write instruction Note: Not used to addresses having different functions for reading and writing operations.

Table 2 Description of Symbols in Instruction Table

Item	Description
A	32-bit accumlator The bit length is dependent on the instructions to be used. Byte: Lower 8-bit of AL Word:16-bit of AL Long: AL: 32-bit of AH
AH	Upper 16-bit of A
AL	Lower 16-bit of A
SP	Stack pointer (USP or SSP)
PC	Program counter
SPCU	Stack pointer upper limited register
SPCL	Stack pointer lower limited register
PCB	Program bank register
DTB	Data bank register
ADB	Additional data bank register
SSB	System stack bank register
USB	User stack bank register
SPB	Current stack bank register (SSB or USB)
DPR	Direct page register
brg1	DTB, ADB, SSB, USB, DPR, PCB
brg2	DTB, ADB, SSB, USB, DPR
Ri	R0, R1, R2, R3, R4, R5, R6, R7
RWi	RW0, RW1, RW2, RW3, RW4, RW5, RW6, RW7
RWj	RW0, RW1, RW2, RW3
RLi	RL0, RL1, RL2, RL3
dir addr16 addr24 ad24 0 to 15 ad24 16 to 23	Specify shortened direct address. Specify direct address. Specify physical direct address. bit0 to bit15 of addr24 bit16 to bit 23 of addr24
io	I/O area (000000н to 0000FFн)
#imm4 #imm8 #imm16 #imm32 ext (imm8)	4-bit immediate data 8-bit immediate data 16-bit immediate data 32-bit immediate data 16-bit data calculated by sign-extending an 8-bit immediate data
disp8 disp16	8-bit displacement 16-bit displacement
bp	Bit offset value
vct4 vct8	Vector number (0 to 15) Vector number (0 to 255)
()b	Bit address
rel ear eam	Specify PC relative branch. Specify effective address (code 00 to 07). Specify effective address (code 08 to 1F).
rlst	Register allocation

Table 3 Effective Address Field

Code	s	ymbol		Address type	Number of bytes in address extension block*
00 01 02 03 04 05 06 07	R1 R2 R3 R4 R5 R6	RW0 RW1 RW2 RW3 RW4 RW5 RW6 RW7	RL0 (RL0) RL1 (RL1) RL2 (RL2) RL3 (RL3)	Register direct "ea" corresponds to byte, word, and long word from left respectively.	_
08 09 0A 0B	0	@RW0 @RW1 @RW2 @RW3		Register indirect	0
0C 0D 0E 0F	@	RW0 + RW1 + RW2 + RW3 +		Register indirect with post increment	0
10 11 12 13 14 15 16 17	@RV @RV @RV @RV @RV	V0 + dis V1 + dis V2 + dis V3 + dis V4 + dis V5 + dis V6 + dis	sp8 sp8 sp8 sp8 sp8 sp8 sp8	Register indirect with 8-bit displacement	1
18 19 1A 1B	@RW @RW	/0 + dis /1 + dis /2 + dis /3 + dis	p16 p16	Register indirect with 16-bit displacement	2
1C 1D 1E 1F	@RV @PC	V0 + R\ V1 + R\ C + disp addr16	N7	Register indirect with index Register indirect with index PC indirect with 16-bit displacement Direct address	0 0 2 2

Note: Number of bytes for address extension corresponds to "+" in the # (number of bytes) part in the instruction table.

Table 4 Number of Execution Cycles in Addressing Modes

Code	Operand	(a)*
Code	Operand	Number of execution cycles for addressing modes
00 to 07	Ri RWi RLi	Listed in instruction table
08 to 0B	@RWj	1
0C to 0F	@RWj +	4
10 to 17	@RWi + disp8	1
18 to 1B	@RWj + disp16	1
1C 1D 1E 1F	@RW0 + RW7 @RW1 + RW7 @PC + disp16 addr16	2 2 2 1

Note: (a) is used for ~ (number of cycles) and B (correction value) in instruction table.

Table 5 Correction Value for Number of Cycles for Calculating Actual Number of Cycles

Operand	(b)*	(c)*	(d)*
Operand	byte	word	long
Internal register	+0	+0	+0
Internal RAM even address Internal RAM odd address	+0 +0	+0 +1	+0 +2
Other than internal RAM even address Other than internal RAM odd address	+1 +1	+1 +3	+2 +6
External data bus 8-bit	+1	+3	+6

Notes: (b), (c), (d) is used for ~ (number of cycles) and B (correction value) in instruction table.

Table 6 Transmission Instruction (Byte) [50 Instructions]

Mnemonic	#	~	В	Operation	LH	АН	I	S	T	N	Ζ	٧	С	RMW
MOV A, dir MOV A, addr16 MOV A, Ri MOV A, ear MOV A, eam MOV A, io MOV A, #imm8 MOV A, @A MOV A, @RLi + disp8 MOV A, @SP + disp8 MOVP A, addr24 MOVP A, @A MOVN A, #imm4	2 3 1 2 2+ 2 2 3 3 5 2	2 1 1 2+(a) 2 2 6 3 3 2	(b) (b) 0 (b) (b) (b) (b) (b) (b)	byte (A) \leftarrow (dir) byte (A) \leftarrow (addr16) byte (A) \leftarrow (Ri) byte (A) \leftarrow (ear) byte (A) \leftarrow (eam) byte (A) \leftarrow (io) byte (A) \leftarrow (imm8 byte (A) \leftarrow ((A)) byte (A) \leftarrow ((RLi) + disp8) byte (A) \leftarrow ((SP) + disp8) byte (A) \leftarrow (addr24) byte (A) \leftarrow ((A)) byte (A) \leftarrow (imm4	Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	* * * * * * * * * * * * * * * * * * * *				* * * * * * * * * * * * * * *	* * * * * * * * * * *			- - - - - - - - -
MOVX A, dir MOVX A, addr16 MOVX A, Ri MOVX A, ear MOVX A, eam MOVX A, io MOVX A, #imm8 MOVX A, @A MOVX A, @RWi + disp8 MOVX A, @SP + disp8 MOVX A, addr24 MOVPX A, @A	2 3 2 2 2 2 2 2 2 2 2 3 3 5 2	2 2 1 1 2+(a) 2 2 2 3 6 3 3 2	(b) (b) 0 0 (b) (b) (b) (b) (b) (b)	byte (A) \leftarrow (dir) byte (A) \leftarrow (addr16) byte (A) \leftarrow (Ri) byte (A) \leftarrow (ear) byte (A) \leftarrow (eam) byte (A) \leftarrow (io) byte (A) \leftarrow (imm8 byte (A) \leftarrow ((RWi) + disp8) byte (A) \leftarrow ((RLi) + disp8) byte (A) \leftarrow ((SP) + disp8) byte (A) \leftarrow (addr24) byte (A) \leftarrow ((A))	X X X X X X X X X X X X X X	* * * * * * * * * * * * * * * * * * * *				* * * * * * * * * * *	* * * * * * * * * * *			- - - - - - - -
MOV dir, A MOV addr16, A MOV Ri, A MOV ear, A MOV eam, A MOV io, A MOV @RLi + disp8, A MOV @SP + disp8, A MOVP addr24, A	2 3 1 2 2+ 2 3 3 5	2 2 1 2 2+(a) 2 6 3	(b) (b) (b) (b) (b) (b)	byte (dir) \leftarrow (A) byte (addr16) \leftarrow (A) byte (Ri) \leftarrow (A) byte (ear) \leftarrow (A) byte (eam) \leftarrow (A) byte (io) \leftarrow (A) byte ((RLi) + disp8) \leftarrow (A) byte (addr24) \leftarrow (A)	- - - - - -	- - - - - -				* * * * * * * *	* * * * * * * * * * * * * * * * * * *			- - - - - -
MOV Ri, ear MOV Ri, eam MOVP @A, Ri MOV ear, Ri MOV eam, Ri MOV Ri, #imm8 MOV io, #imm8 MOV dir, #imm8 MOV ear, #imm8 MOV eam, #imm8	2 2+ 2 2+ 2 3 3 3+	2 3+(a) 3 3+(a) 2 3 3 2 2+(a)	0 (b) (b) 0 (b)	byte (Ri) \leftarrow (ear) byte (Ri) \leftarrow (eam) byte ((A)) \leftarrow (Ri) byte (ear) \leftarrow (Ri) byte (eam) \leftarrow (Ri) byte (Ri) \leftarrow imm8 byte (io) \leftarrow imm8 byte (ear) \leftarrow imm8 byte (eam) \leftarrow imm8	- - - - - - -					* * * * * * -	* * * * * *			- - - - - -
MOV @AL, AH XCH A, ear XCH A, eam XCH Ri, ear XCH Ri, eam	2 2 + 2 2 +	4	0`	byte $((A)) \leftarrow (AH)$ byte $(A) \leftrightarrow (ear)$ byte $(A) \leftrightarrow (ear)$ byte $(Ri) \leftrightarrow (ear)$ byte $(Ri) \leftrightarrow (eam)$	_ Z Z _	_ _ _ _	_ _ _ _		_ _ _ _	* - - -	* - - -	- - - -	_ _ _ _	- - - -

Note: For (a) and (b), refer to "Table 4 Number of Execution Cycles in Addressing Modes" and "Table 5 Correction Values for Number of Cycles for Calculating Actual Number of Cycles."

Table 7 Transmission Instruction (Word) [40 Instructions]

N	I nemonic	#	~	В	Operation	LH	ΑН	I	S	Т	N	Z	٧	С	RMW
MOVW	A, dir	2	2	(c)	word (A) \leftarrow (dir)	_	*	_	-	-	*	*	_	-	_
MOVW	A, addr16	3	2	(c)	word (A) ← (addr16)	_	*	_	_	_	*	*	_	_	_
MOVW	A, SP	1	2	O	word $(A) \leftarrow (SP)$	_	*	_	_	_	*	*	_	_	_
MOVW	A, RWi	1	1	0	word $(A) \leftarrow (RWi)$	_	*	_	_	_	*	*	_	_	_
MOVW	A, ear	2	1	0	word (A) ← (ear)	_	*	_	_	_	*	*	_	_	_
MOVW	A, eam	2 +	2 + (a)	(c)	word (A) ← (eam)	_	*	_	_	_	*	*	_	_	_
MOVW	A, io	2	2	(c)	word $(A) \leftarrow (io)$	_	*	_	_	_	*	*	_	_	_
MOVW	A, @A	2	2	(c)	word $(A) \leftarrow ((A))$	_	_	_	_	_	*	*	_	_	_
MOVW	A, #imm16	3	2	0	word (A) \leftarrow imm16	_	*	_	_	_	*	*	_	_	_
MOVW	A, @RWi + disp8	2	3	(c)	word (A) \leftarrow ((RWi) +disp8)	_	*	_	_	_	*	*	_	_	_
MOVW	A, @RLi + disp8	3	6	(c)	word (A) \leftarrow ((RLi) +disp8)	_	*	_	_	_	*	*	_	_	_
MOVW	A, @SP + disp8	3	3	(c)	word (A) \leftarrow ((SP) + disp8)	_	*	_	_	_	*	*	_	_	_
	A, addr24	5	3	(c)	word (A) ← (addr24)	_	*	_	_	_	*	*	_	_	_
MOVPW	A, @A	2	2	(c)	word $(A) \leftarrow ((A))$	_	_	-	_	_	*	*	_	_	-
MOVW	dir, A	2	2	(c)	word (dir) \leftarrow (A)	_	_	_	_	_	*	*	_	_	_
MOVW	addr16, A	3	2	(c)	word (addr16) ← (A)	_	_	_	_	_	*	*	_	_	_
MOVW	SP, #imm16	4	2	`o´	word (SP) ← ímm16	_	_	_	_	_	*	*	_	_	_
MOVW	SP, A	1	2	0	word $(SP) \leftarrow (A)$	_	_	_	_	_	*	*	_	_	_
MOVW	RWi, A	1	1	0	word $(RWi) \leftarrow (A)$	_	_	_	_	_	*	*	_	_	_
MOVW	ear, A	2	2	0	word (ear) ← (À)	_	_	_	_	_	*	*	_	_	_
MOVW	eam, A	2 +	2 + (a)	(c)	word (eam) \leftarrow (A)	_	_	_	_	_	*	*	_	_	_
MOVW	io, A	2	2	(c)	word (io) \leftarrow (A)	_	_	_	_	_	*	*	_	_	_
MOVW	@RWi + disp8, A	2	3	(c)	word ((RWi) +disp8) \leftarrow (A)	_	_	_	_	_	*	*	_	_	_
MOVW	@RLi + disp8, A	3	6	(c)	word ((RLi) +disp8) \leftarrow (A)	_	_	_	_	_	*	*	_	_	_
MOVW	@SP + disp8, A	3	3	(c)	word ((SP) + disp8) \leftarrow (A)	_	_	_	_	_	*	*	_	_	_
MOVPW	,	5	3	(c)	word (addr24) \leftarrow (A)	_	_	_	_	_	*	*	_	_	_
MOVPW	@A, RWi	2	3	(c)	word $((A)) \leftarrow (RWi)$	_	_	_	_	_	*	*	_	_	_
MOVW	RWi, ear	2	2	0	word (RWi) ← (ear)	_	_	_	_	_	*	*	_	_	_
MOVW	RWi, eam	2+	3 + (a)	(c)	word (RWi) ← (eam)	_	_	_	_	_	*	*	_	_	_
MOVW	ear, RWi	2	3	0	word (ear) ← (RWi)	_	_	_	_	_	*	*	_	_	_
MOVW	eam, RWi	2 +	3 + (a)	(c)	word (eam) ← (RWi)	_	_	_	_	_	*	*	_	_	_
MOVW	RWi, #imm16	3	2	0	word (RWi) ← imm16	_	_	_	_	_	*	*	_	_	_
MOVW	io, #imm16	4	3	(c)	word (io) ← imm16	_	_	_	_	_	_	_	_	_	_
MOVW	ear, #imm16	4	2	0	word (ear) ← imm16	_	_	_	_	_	*	*	_	_	_
MOVW	eam, #imm16	4 +	2 + (a)	(c)	word (eam) ← imm16	_	_	-	_	_	_	_	_	_	-
MOVW	@AL, AH	2	2	(c)	word $((A)) \leftarrow (AH)$	-	-	-	-	_	*	*	_	_	_
XCHW	A, ear	2	3	0	word (A) \leftrightarrow (ear)	-	-	_	-	-	_	_	_	-	_
XCHW	A, eam	2 +	3 + (a)	2×(c)	word $(A) \leftrightarrow (eam)$	_	_	_	_	_	_	_	_	_	_
XCHW	RWi, ear	2	4 ′	0 ′	word (RWi) ↔ (ear)	_	_	_	_	_	_	_	_	_	_
XCHW	RWi, eam	2 +	5 + (a)	2×(c)	word (RWi) ↔ (eam)	_	_	_	_	_	_	_	_	_	_

Note: For (a) and (c), refer to "Table 4 Number of Execution Cycles in Addressing Modes" and "Table 5 Correction Values for Number of Cycles for Calculating Actual Number of Cycles."

Table 8 Transmission Instruction (Long) [11 Instructions]

Mnemonic	#	~	В	Operation	LH	АН	I	S	Т	N	Ζ	٧	С	RMW
MOVL A, ear	2	2	0	long (A) ← (ear)	_	-	-	-	1	*	*	-	-	_
MOVL A, eam	2+	3 + (a)	(d)	long (A) \leftarrow (eam)	_	_	_	_	_	*	*	_	_	_
MOVL A, #imm32	5	3	0	long (A) ← imm32	_	_	_	_	_	*	*	_	_	_
MOVL A, @SP + disp8	3	4	(d)	$long (A) \leftarrow ((SP) + disp8)$	_	_	_	_	_	*	*	_	_	_
MOVPL A, addr24	5	4	(d)	long (A) ← (addr24)	_	_	_	_	_	*	*	_	_	_
MOVPL A, @A	2	3	(d)	long $(A) \leftarrow ((A))$	_	_	_	_	_	*	*	_	_	_
MOVPL @A, RLi	2	5	(d)	$long ((A)) \leftarrow (RLi)$	_	_	-	_	1	*	*	_	-	_
MOVL @SP + disp8, A	3	4	(d)	$long ((SP) + disp8) \leftarrow (A)$	_	_	_	_	_	*	*	_	_	_
MOVPL addr24, A	5	4	(d)	long (addr24) ← (A)	_	_	_	_	_	*	*	_	_	_
MOVL ear, A	2	2	0	long (ear) \leftarrow (A)	_	_	_	_	_	*	*	_	_	_
MOVL eam, A	2+	3 + (a)	(d)	long (eam) \leftarrow (A)	_	_	ı	_	1	*	*	_	ı	_

Note: For (a) and (c), refer to "Table 4 Number of Execution Cycles in Addressing Modes" and "Table 5 Correction Values for Number of Cycles for Calculating Actual Number of Cycles."

Table 9 Add/Subtract (Byte, Word, Long) [42 Instructions]

Mne	monic	#	~	В	Operation	LH	АН	I	S	T	N	Z	٧	С	RMW
ADD	A,#imm8	2	2	0	byte (A) \leftarrow (A) +imm8	Z	-	_	_	_	*	*	*	*	_
ADD	A, dir	2	3	(b)	byte $(A) \leftarrow (A) + (dir)$	Ζ	_	_	_	_	*	*	*	*	_
ADD	A, ear	2	2	0	byte (A) \leftarrow (A) +(ear)	Ζ	_	_	_	_	*	*	*	*	_
ADD	A, eam	2 +	3 + (a)	(b)	byte (A) \leftarrow (A) $+$ (eam)	Ζ	_	_	_	_	*	*	*	*	-
ADD	ear, A	2	2	0	byte (ear) \leftarrow (ear) + (A)	_	_	-	_	_	*	*	*	*	*
ADD	eam, A	2+	3 + (a)			Z	_	-	_	_	*	*	*	*	*
ADDC	A	1	2	0	byte (A) \leftarrow (AH) + (AL) + (C)	Z	_	_	_	_	*	*	*	*	-
ADDC	A, ear	2	2	0	byte (A) \leftarrow (A) + (ear) + (C)	Z	-	-	_	_	*	*	*	*	_
ADDC	A, eam	2+	3 + (a)	(b)	byte (A) \leftarrow (A) + (eam) + (C)	Z	_	-	_	_	*	*	*	*	-
ADDDC		1	3	0	byte (A) \leftarrow (AH) + (AL) + (C) (decimal)	Z	_	-	_	_	*	*	*	*	-
SUB	A, #imm8	2	2	0	byte (A) \leftarrow (A) $-$ imm8	Z Z	_	-	_	_	*	*	*	*	-
SUB SUB	A, dir	2	3 2	(b)	byte (A) \leftarrow (A) $-$ (dir)	Z	_	_	_	_	*	*	*	*	_
SUB	A, ear A, eam	2+	2 3 + (a)	(b)	byte (A) \leftarrow (A) $-$ (ear) byte (A) \leftarrow (A) $-$ (eam)	Z	_	_	_	_	*	*	*	*	_
SUB	ear, A	2	2 2	0	byte (A) \leftarrow (A) – (earl) byte (ear) \leftarrow (ear) – (A)	_	_	_	_	_	*	*	*	*	*
SUB	ean, A	2+	3 + (a)	_	byte (ear) \leftarrow (ear) – (A)	_	_	_		_	*	*	*	*	*
SUBC	A	1	2 2	0	byte (A) \leftarrow (AH) $-$ (AL) $-$ (C)	Z	_	_		_	*	*	*	*	_
SUBC	A, ear	2	2	0	byte (A) \leftarrow (A) $-$ (ear) $-$ (C)	Z	_	_		_	*	*	*	*	_
SUBC	A, eam	2+	3 + (a)	(b)	byte (A) \leftarrow (A) $-$ (eam) $-$ (C)	Z	_	_	_	_	*	*	*	*	_
SUBDC		1	3	0	byte (A) \leftarrow (AH) $-$ (AL) $-$ (C) (decimal)	Z	_	_	_	_	*	*	*	*	-
ADDW	Α	1	2	0	word (A) \leftarrow (AH) + (AL)	_	-	_	_	_	*	*	*	*	_
ADDW	A, ear	2	2	0	word $(A) \leftarrow (A) + (ear)'$	_	_	_	_	_	*	*	*	*	_
ADDW	A, eam	2+	3 + (a)	(c)	word $(A) \leftarrow (A) + (eam)$	_	_	_	_	_	*	*	*	*	_
ADDW	A, #imm16	3	2 ′)O´	word $(A) \leftarrow (A) + imm16$	_	_	_	_	_	*	*	*	*	_
ADDW	ear, A	2	2	0	word (ear) - (ear) + (A)	_	_	_	_	_	*	*	*	*	*
ADDW	eam, A	2+	3 + (a)	$2 \times (c)$		_	_	_	_	_	*	*	*	*	*
ADDCW	A, ear	2	2	0	word (A) \leftarrow (A) + (ear) + (C)	_	_	_	_	_	*	*	*	*	_
ADDCW	A, eam	2 +	3 + (a)	(c)	word (A) \leftarrow (A) + (eam) + (C)	_	_	_	_	_	*	*	*	*	-
SUBW	Α	1	2	0	word (A) \leftarrow (AH) $-$ (AL)	_	_	_	_	_	*	*	*	*	_
SUBW	A, ear	2	2	0	word (A) \leftarrow (A) $-$ (ear)	_	_	_	_	_	*	*	*	*	-
SUBW	A, eam	2 +	3 + (a)	(c)	word (A) \leftarrow (A) $-$ (eam)	_	_	_	_	_	*	*	*	*	-
SUBW	A, #imm16	3	2	0	word $(A) \leftarrow (A) - imm16$	_	_	-	_	_	*	*	*	*	_
SUBW	ear, A	2	2	0	word (ear) \leftarrow (ear) $-$ (A)	_	_	_	_	_	*	*	*	*	*
SUBW	eam, A	2+		$2\times$ (c)		_	_	-	_	_	*	*	*	*	*
SUBCW		2	2	0	word (A) \leftarrow (A) $-$ (ear) $-$ (C)	_	_	_	_	_	*	*	*	*	_
SUBCW	A, eam	2+	3 + (a)	(c)	word (A) \leftarrow (A) $-$ (eam) $-$ (C)	_	-	_	_	_	*	*	*	*	_
ADDL	A, ear	2	5	0	$long (A) \leftarrow (A) + (ear)$	_	_	_	_	_	*	*	*	*	-]
ADDL	A, eam	2_+	6 + (a)	(d)	long (A) \leftarrow (A) + (eam)	_	_	-	_	_	*	*	*	*	-
ADDL	A, #imm32	5	4	0	long (A) \leftarrow (A) + imm32	_	_	-	_	_	*	*		*	-
SUBL	A, ear	2	5	0	long (A) \leftarrow (A) $-$ (ear)	_	_	-	_	_	*	*	*	*	-
SUBL	A, eam	2+	6 + (a)	(d)	long (A) \leftarrow (A) $-$ (eam)	_	-	-	_	_	*	*	*	*	-
SUBL	A, #imm32	5	4	0	long (A) \leftarrow (A) $-$ imm32	_	_	_	_	_	Î	Î	^	^	_

Note: For (a) to (d), refer to "Table 4 Number of Execution Cycles in Addressing Modes" and "Table 5 Correction Values for Number of Cycles for Calculating Actual Number of Cycles."

Table 10 Increment/Decrement (Byte, Word, Long) [12 Instructions]

М	nemonic	#	~	В	Operation	LH	АН	I	S	T	N	Z	٧	С	RMW
INC INC	ear eam	2 2 +	2 3+(a)	0 2×(b)	byte (ear) ← (ear) +1 byte (eam) ← (eam) +1	_	_	_	_	_	*	*	*	_	*
DEC DEC	ear eam	2 2 +	2 3 + (a)	0 2×(b)	byte (ear) \leftarrow (ear) -1 byte (eam) \leftarrow (eam) -1	_	-	-	-	-	*	*	*	_ _	*
INCW INCW	ear eam	2 2 +	2 3 + (a)	0 2×(c)	word (ear) \leftarrow (ear) +1 word (eam) \leftarrow (eam) +1	_		1 1			*	*	*	_	*
DECW	ear	2	2	0	word (ear) ← (ear) -1	_	-	_	-	-	*	*	*	_	*
DECW	eam	2 +	3 + (a)	2×(c)	word (eam) ← (eam) -1	_	-	_	-	-	*	*	*	_	*
INCL INCL	ear eam	2 2 +	4 5 + (a)	0 2×(d)	long (ear) ← (ear) +1 long (eam) ← (eam) +1	_	1 1	1 1	1 1	1 1	*	*	*		*
DECL DECL	ear eam	2 2 +	4 5 + (a)	0 2×(d)	long (ear) ← (ear) -1 long (eam) ← (eam) -1	_ _	1 1	I I	1 1	1 1	*	*	*	_ _	*

Note: For (a) to (d), refer to "Table 4 Number of Execution Cycles in Addressing Modes" and "Table 5 Correction Values for Number of Cycles for Calculating Actual Number of Cycles."

Table 11 Compare (Byte, Word, Long) [11 Instructions]

Mı	nemonic	#	~	В	Operation	LH	АН	-	Ø	T	Z	Z	٧	С	RMW
CMP	A	1	1	0	byte (AH) – (AL)	_	_	_	_	_	*	*	*	*	_
CMP	A, ear	2	2	0	byte (A) – (ear)	_	_	_	_	_	*	*	*	*	_
CMP	A, eam	2+	3 + (a)	(b)	byte (A) – (eam)	_	_	_	_	_	*	*	*	*	_
CMP	A, #imm8	2	2 ′	`O´	byte (A) – imm8	_	_	_	_	_	*	*	*	*	_
CMPW	Α	1	1	0	word (AH) – (AL)	_	_	-	-	_	*	*	*	*	_
CMPW	A, ear	2	2	0	word (A) – (ear)	_	_	_	_	_	*	*	*	*	_
CMPW	A, eam	2+	3 + (a)	(c)	word (A) – (eam)	_	_	_	_	_	*	*	*	*	_
CMPW	A, #imm16	3	2 1	O´	word (A) – imm16	_	_	_	_	_	*	*	*	*	_
CMPL	A, ear	2	6	0	word (A) - (ear)	_	_	-	-	_	*	*	*	*	_
CMPL	A, eam	2 +	7 + (a)	(d)	word (A) - (eam)	_	_	_	_	_	*	*	*	*	_
CMPL	A, #imm32	5	3	O´	word (A) – imm32	_	_	_	_	_	*	*	*	*	_

Note: For (a) to (d), refer to "Table 4 Number of Execution Cycles in Addressing Modes" and "Table 5 Correction Values for Number of Cycles for Calculating Actual Number of Cycles."

Table 12 Unsigned Multiply/Division (Word, Long) [11 Instructions]

Mne	emonic	#	~	В	Operation	LH	АН	I	S	Т	N	Z	٧	С	RMW
DIVU	A	1	*1	0	word (AH) /byte (AL) Quotient → byte (AL)	_	-	-	_	-	-	-	*	*	-
DIVU	A, ear	2	*2	0	Remainder → byte (AH) word (A)/byte (ear) Quotient → byte (A)	_	_	ı	_	ı	_	_	*	*	-
DIVU	A, eam	2+	*3	*6	Remainder → byte (ear) word (A)/byte (eam) Quotient → byte (A)	_	_	-	_	-	_	_	*	*	_
DIVUW	A, ear	2	*4	0	Remainder → byte (eam) long (A)/word (ear) Quotient → word (A)	_	_	-	_	-	_	_	*	*	-
DIVUW	A, eam	2+	*5	*7	Remainder → word (ear) long (A)/word (eam) Quotient → word (A) Remainder → word (eam)	_	_	-	_	-	_	_	*	*	-
MULU	Α	1	*8	0	byte (AH) byte (AL) → word (A)	_	_	_	_	_	_	_	_	_	_
MULU	A, ear	2	*9	0	byte (A) byte (ear) \rightarrow word (A)	-	_	-	_	_	_	_	_	_	_
MULU	A, eam	2+	*10	(b)	byte (A) byte (eam) \rightarrow word (A)	_	_	_	_	-	_	_	-	_	_
MULUW MULUW		1 2	*11 *12	0	word (AH) word (AL) \rightarrow long (A) word (A) word (ear) \rightarrow long (A)	_	_	_	_	_	_	_	_	_	_
MULUW		2+	*13	(c)	word (A) word (ear) \rightarrow long (A) word (A) word (earn) \rightarrow long (A)	_	_	_	_	_	_	_	_	_	_

Note: For (b) and (c), refer to "Table 5 Correction Values for Number of Cycles for Calculating Actual Number of Cycles."

- *1: Set to 3 when the division-by-0, 6 for an overflow, and 14 for normal operation.
- *2: Set to 3 when the division-by-0, 6 for an overflow, and 13 for normal operation.
- *3: Set to 5 + (a) when the division-by-0, 7 + (a) for an overflow, and 17 + (a) for normal operation.
- *4: Set to 3 when the division-by-0, 5 for an overflow, and 21 for normal operation.
- *5: Set to 4 + (a) when the division-by-0, 7 + (a) for an overflow, and 25 + (a) for normal operation.
- *6: When the division-by-0, (b) for an overflow, and $2 \times (b)$ for normal operation.
- *7: When the division-by-0, (c) for an overflow, and $2 \times$ (c) for normal operation.
- *8: Set to 3 when byte (AH) is zero, 7 when byte (AH) is not zero.
- *9: Set to 3 when byte (ear) is zero, 7 when byte (ear) is not zero.
- *10:Set to 4 + (a) when byte (eam) is zero, 8 + (a) when byte (eam) is not zero.
- *11:Set to 3 when word (AH) is zero, 11 when word (AH) is not zero.
- *12:Set to 4 when word (ear) is zero, 11 when word (ear) is not zero.
- *13:Set to 4 + (a) when word (eam) is zero, 12 + (a) when word (eam) is not zero.

Table 13 Signed multiplication/division (Word, Long) [11 Instructions]

Mn	emonic	#	~	В	Operation	LH	АН	I	S	Т	N	Ζ	٧	С	RMW
DIV	Α	2	*1	0	word (AH)/byte (AL)	Ζ	_	_	-	_	_	_	*	*	_
					Quotient \rightarrow byte (AL) Remainder \rightarrow byte (AH)										
DIV	A, ear	2	*2	0	word (A)/byte (ear)	Ζ	_	_	_	_	-	-	*	*	_
					Quotient \rightarrow byte (A) Remainder \rightarrow byte (ear)										
DIV	A, eam	2 +	*3	*6	word (A)/byte (eam)	Ζ	_	_	_	_	-	-	*	*	_
					Quotient \rightarrow byte (A) Remainder \rightarrow byte (eam)										
DIVW	A, ear	2	*4	0	long (A)/word (ear)	_	_	_	_	_	-	-	*	*	_
					Quotient \rightarrow word (A) Remainder \rightarrow word (ear)										
DIVW	A, eam	2 +	*5	*7	long (A)/word (eam)	_	_	_	_	_	-	_	*	*	_
					Quotient \rightarrow word (A) Remainder \rightarrow word (eam)										
MUL	Α	2	*8	0	byte (AH) \times byte (AL) \rightarrow word (A)	_	-	-	1	-	_	_	_	_	_
MUL	A, ear	2	*9	0	byte (A) \times byte (ear) \rightarrow word (A)	_	_	_	_	_	-	-	-	_	_
MUL	A, eam	2 +	*10	(b)	byte (A) \times byte (eam) \rightarrow word (A)	_	_	_	_	_	-	-	-	_	_
MULW	Α	2	*11	0	word (AH) \times word (AL) \rightarrow long (A)	_	_	_	_	_	-	_	-	_	_
MULW	A, ear	2	*12	0	word (A) \times word (ear) \rightarrow long (A)	_	_	_	_	_	-	_	-	_	_
MULW	A, eam	2 +	*13	(b)	word (A) \times word (eam) \rightarrow long (A)	_	_	_	_	_	_	_	_	_	_

For (b) and (c), refer to "Table 5 Correction Values for Number of Cycles for Calculating Actual Number of Cycles."

- *1: Set to 3 for divide-by-0, 8 or 18 for an overflow, and 18 for normal operation.
- *2: Set to 3 for divide-by-0, 10 or 21 for an overflow, and 22 for normal operation.
- *3: Set to 4 + (a) for divide-by-0, 11 + (a) or 22 + (a) for an overflow, and 23 + (a) for normal operation.
- *4: Positive divided: Set to 4 for divide-by-0, 10 or 29 for an overflow, and 30 for normal operation. Negative divided: Set to 4 for divide-by-0, 11 or 30 for an overflow, and 31 for normal operation.
- *5: Positive divided: Set to 4 + (a) for divide-by-0, 11 + (a) or 30 + (a) for an overflow, and 31 + (a) for normal operation. Negative divided: Set to 4 + (a) for divide-by-0, 12 + (a) or 31 + (a) for an overflow, and 32 + (a) for normal operation.
- *6: Set to (b) when the division-by-0 or an overflow, and $2 \times (b)$ for normal operation.
- *7: Set to (c) when the division-by-0 or an overflow, and $2 \times$ (c) for normal operation.
- *8: Set to 3 when byte (AH) is zero, 12 when the result is positive, and 13 when the result is negative.
- *9: Set to 3 when byte (ear) is zero, 12 when the result is positive, and 13 when the result is negative.
- *10:Set to 4 + (a) when byte (eam) is zero, 13 + (a) when the result is positive, and 14 + (a) when the result is negative.
- *11:Set to 3 when word (AH) is zero, 12 when the result is positive, and 13 when the result is negative.
- *12:Set to 3 when word (ear) is zero, 16 when the result is positive, and 19 when the result is negative.
- *13:Set to 4 + (a) when word (eam) is zero, 17 + (a) when the result is positive, and 20 + (a) when the result is negative.

Note: When overflow occurs during DIV or DIVW instruction execution, the number of execution cycles takes two values because of detection before and after an operation.

When overflow occurs during DIV or DIVW instruction execution, the contents of AL are destroyed.

Table 14 Logic 1 (Byte, Word) [39 Instructions]

М	nemonic	#	~	В	Operation	LH	АН	ı	S	Т	N	Z	٧	С	RMW
AND AND AND AND AND	A, #imm8 A, ear A, eam ear, A eam, A	2 2 2+ 2 2+	2 2 3+(a) 3 3+(a)	0 (b) 0 2×(b)	byte (A) \leftarrow (A) and imm8 byte (A) \leftarrow (A) and (ear) byte (A) \leftarrow (A) and (eam) byte (ear) \leftarrow (ear) and (A) byte (eam) \leftarrow (eam) and (A)	_ _ _ _		_ _ _ _	_ _ _ _	_ _ _ _	* * * *	* * * * *	R R R R	_ _ _ _	- - * *
OR OR OR OR OR	A, #imm8 A, ear A, eam ear, A eam, A	2 2 2+ 2 2+	2 2 3+(a) 3 3+(a)	0 (b) 0 2×(b)	byte (A) \leftarrow (A) or imm8 byte (A) \leftarrow (A) or (ear) byte (A) \leftarrow (A) or (eam) byte (ear) \leftarrow (ear) or (A) byte (eam) \leftarrow (eam) or (A)	_ _ _ _		- - - -	_ _ _ _	_ _ _ _	* * * * *	* * * *	R R R R R	_ _ _ _	- - * *
XOR XOR XOR XOR XOR NOT NOT	A, #imm8 A, ear A, eam ear, A eam, A A ear eam	2 2+ 2 2+ 1 2+ 2+	2	0	byte (A) \leftarrow (A) xor imm8 byte (A) \leftarrow (A) xor (ear) byte (A) \leftarrow (A) xor (eam) byte (ear) \leftarrow (ear) xor (A) byte (eam) \leftarrow (eam) xor (A) byte (A) \leftarrow not (A) byte (ear) \leftarrow not (ear) byte (eam) \leftarrow not (eam)	- - - - - -		- - - - - - -			* * * * * * * *	* * * * * * * *	RRRRRRR		- - * * *
ANDW ANDW ANDW	A, #imm16 A, ear A, eam	1 3 2 2+ 2 2+	2 2 2 3+(a) 3 3+(a)	0 0 (c) 0 2×(c)	word (A) \leftarrow (AH) and (A) word (A) \leftarrow (A) and imm16 word (A) \leftarrow (A) and (ear) word (A) \leftarrow (A) and (eam) word (ear) \leftarrow (ear) and (A) word (eam) \leftarrow (eam) and (A)	_ _ _ _		- - - -	- - - -	- - - -	* * * * * *	* * * * * *	R R R R R R		
ORW ORW ORW ORW ORW	A A, #imm16 A, ear A, eam ear, A eam, A	1 3 2 2+ 2 2+	2 2 3+(a) 3 3+(a)	0 0 (c) 0 2×(c)	word (A) \leftarrow (AH) or (A) word (A) \leftarrow (A) or imm16 word (A) \leftarrow (A) or (ear) word (A) \leftarrow (A) or (eam) word (ear) \leftarrow (ear) or (A) word (eam) \leftarrow (eam) or (A)	- - - -		_ _ _ _ _	_ _ _ _	_ _ _ _	* * * * *	* * * * * *	R R R R R	_ _ _ _	- - - * *
XORW XORW XORW	A, #imm16 A, ear A, eam ear, A eam, A A	1 3 2 2+ 2 2+ 1 2 2+	2 2 2 3+(a) 3 3+(a) 2 3 3+(a)	0 0	word (A) \leftarrow (AH) xor (A) word (A) \leftarrow (A) xor imm16 word (A) \leftarrow (A) xor (ear) word (A) \leftarrow (A) xor (eam) word (ear) \leftarrow (ear) xor (A) word (eam) \leftarrow (eam) xor (A) word (A) \leftarrow not (A) word (ear) \leftarrow not (ear) word (eam) \leftarrow not (eam)	- - - - - -		- - - - - - -	- - - - - -		* * * * * * * *	* * * * * * * *	RRRRRRRR	- - - - - -	- - - * * *

Note: For (a) to (c), refer to "Table 4 Number of Execution Cycles in Addressing Modes" and "Table 5 Correction Values for Number of Cycles for Calculating Actual Number of Cycles."

Table 15 Logic 2 (Long) [6 Instructions]

M	Inemonic	#	~	В	Operation	LH	АН	I	S	Т	N	Z	٧	С	RMW
ANDL ANDL	A, ear A, eam	2 2 +	5 6 + (a)	0 (d)	long (A) \leftarrow (A) and (ear) long (A) \leftarrow (A) and (eam)	_ _	1 1	-	-	_	*	*	R R	-	_
ORL ORL	A, ear A, eam	2 2 +	5 6 + (a)	0 (d)	long (A) \leftarrow (A) or (ear) long (A) \leftarrow (A) or (eam)	_	_		1 1	_ _	*	*	R R	1 1	_
XORL XORL	A, ear A, eam	2 2 +	5 6 + (a)	0 (d)	long (A) \leftarrow (A) xor (ear) long (A) \leftarrow (A) xor (eam)	_ _	_	_ _		_ _	*	*	R R		

Note: For (a) and (d), refer to "Table 4 Number of Execution Cycles in Addressing Modes" and "Table 5 Correction Values for Number of Cycles for Calculating Actual Number of Cycles."

Table 16 Sign Reverse (Byte, Word) [6 Instructions]

Mn	emonic	#	~	RG	В	Operation	LH	АН	I	S	Т	N	Z	٧	С	RMW
NEG	Α	1	2	0	0	byte (A) \leftarrow 0 – (A)	X	-	-	-	-	*	*	*	*	_
NEG NEG	ear eam	2 2+	3 5 + (a)	2	0 2×(b)	byte (ear) \leftarrow 0 – (ear) byte (eam) \leftarrow 0 – (eam)	_ _	_	_	_ _	_ _	*	*	*	*	*
NEGW	Α	1	2	0	0	word (A) \leftarrow 0 – (A)	_	-	-	_	_	*	*	*	*	_
NEGW NEGW	ear eam	2 2+	3 5 + (a)	2	0 2×(c)	word (ear) \leftarrow 0 - (ear) word (eam) \leftarrow 0 - (eam)	_ _		_ _	_ _	_ _	*	*	*	*	*

Note: For (a) and (d), refer to "Table 4 Number of Execution Cycles in Addressing Modes" and "Table 5 Correction Values for Number of Cycles for Calculating Actual Number of Cycles."

Table 17 Absolute Values (Byte, Word, Long) [3 Instructions]

Mner	monic	#	~	В	Operation	LH	АН	I	S	Т	N	Z	٧	С	RMW
ABS	Α	2	2	0	byte (A) ← Absolute value (A)	Ζ	1	_	-	_	*	*	*	-	_
ABSW	Α	2	2	0	word $(A) \leftarrow Absolute value (A)$	_	_	_	_	_	*	*	*	_	_
ABSL	Α	2	4	0	long (A) ← Absolute value (A)	_	_	_	_	_	*	*	*	_	_

Table 18 Normalize Instruction (Long) [1 Instruction]

Mnemonic	#	~	RG	В	Operation	LH	АН	I	S	T	N	Z	٧	C	RMW
NRML A, R0	2	*1	1	0	$\begin{array}{l} \text{long (A)} \leftarrow \text{Shift to where "1"} \\ \text{is originally located} \\ \text{byte (R0)} \leftarrow \text{Number of shifts} \\ \text{in the operation} \end{array}$	_	ı	_	1	1	_	*	1	1	-

^{* :} Set to 5 when the accumulator is all "0", otherwise set to 5 + (R0).

Table 19 Shift Type Instruction (Byte, Word, Long) [27 Instructions]

Mne	monic	#	~	В	Operation	LH	АН	I	S	T	N	Z	٧	С	RMW
RORC ROLC		2 2	2 2	0	byte (A) \leftarrow With right-rotate carry byte (A) \leftarrow With left-rotate carry	_		_	_ _	_	*	*	_	*	-
RORC RORC ROLC ROLC	eam ear	2 2+ 2 2+	2	0	byte (ear) ← With right-rotate carry byte (eam) ← With right-rotate carry byte (ear) ← With left-rotate carry byte (eam) ← With left-rotate carry	_ _ _ _			_ _ _ _	_ _ _	* * *	* * *		* * *	* * *
ASR LSR LSL	A, R0 A, R0 A, R0	2 2 2	*1 *1 *1	0 0 0	byte (A) \leftarrow Arithmetic right barrel shift (A, R0) byte (A) \leftarrow Logical right barrel shift (A, R0) byte (A) \leftarrow Logical left barrel shift (A, R0)	_ _ _		1 1 1	_ _ _	* *	* *	* *	I I	* *	- - -
ASR LSR LSL	A, #imm8 A, #imm8 A, #imm8	3 3 3	*3 *3 *3	0 0 0	byte (A) \leftarrow Arithmetic right barrel shift (A, imm8) byte (A) \leftarrow Logical right barrel shift (A, imm8) byte (A) \leftarrow Logical left barrel shift (A, imm8)	- - -	1 1 1	1 1 1	_ _ _	* *	* *	* *		* *	- - -
	A A/SHRW A A/SHLW A	1 1 1	2 2 2	0 0 0	word (A) \leftarrow Arithmetic right shift (A, 1 bit) word (A) \leftarrow Logical right shift (A, 1 bit) word (A) \leftarrow Logical left shift (A, 1 bit)	_ _ _			_ _ _	* -	* R *	* *	<u> </u>	* *	- - -
ASRW LSRW LSLW	A, R0	2 2 2	*1 *1 *1	0 0 0	word (A) \leftarrow Arithmetic right barrel shift (A, R0) word (A) \leftarrow Logical right barrel shift (A, R0) word (A) \leftarrow Logical left barrel shift (A, R0)	_ _ _	1 1 1	1 1 1	_ _ _	* *	* *	* *	_ 	* *	- - -
LSRW	A, #imm8 A, #imm8 A, #imm8	3 3 3	*3 *3 *3	0 0 0	word (A) \leftarrow Arithmetic right barrel shift (A, imm8) word (A) \leftarrow Logical right barrel shift (A, imm8) word (A) \leftarrow Logical left barrel shift (A, imm8)	_ _ _	1 1 1	1 1 1	_ _ _	*	* *	* *		* *	- - -
ASRL LSRL LSLL	A, R0 A, R0 A, R0	2 2 2	*2 *2 *2	0 0 0	$\begin{aligned} & \text{long (A)} \leftarrow \text{Arithmetic right barrel shift (A, R0)} \\ & \text{long (A)} \leftarrow \text{Logical right barrel shift (A, R0)} \\ & \text{long (A)} \leftarrow \text{Logical left barrel shift (A, R0)} \end{aligned}$	_ _ _			_ _ _	* -	* *	* *	- - -	* *	- - -
ASRL LSRL LSLL	A, #imm8 A, #imm8 A, #imm8	3 3 3	*4 *4 *4	0 0 0	$\begin{aligned} & \text{long (A)} \leftarrow \text{Arithmetic right barrel shift (A, imm8)} \\ & \text{long (A)} \leftarrow \text{Logical right barrel shift (A, imm8)} \\ & \text{long (A)} \leftarrow \text{Logical left barrel shift (A, imm8)} \end{aligned}$	_ _ _	1 1 1	- -	- - -	* * -	* *	* *	_ _ _	* *	- - -

Note: For (a) and (b), refer to "Table 4 Number of Execution Cycles in Addressing Modes" and "Table 5 Correction Values for Number of Cycles for Calculating Actual Number of Cycles."

^{*1:} Set to 3 when R0 is 0, otherwise 3 + (R0).

^{*2:} Set to 3 when R0 is 0, otherwise 4 + (R0).

^{*3:} Set to 3 when imm8 is 0, otherwise 3 + imm8.

^{*4:} Set to 3 when imm8 is 0, otherwise 4 + imm8.

Table 20 Branch 1 [31 Instructions]

Mn	emonic	#	~	В	Operation	LH	АН	I	S	T	N	Z	٧	С	RMW
BZ/BEQ	rel	2	*1	0	Branch if (Z) = 1	_	_	-	١	_	_	_	_	_	_
BNZ/BNE	rel	2	*1	0	Branch if $(Z) = 0$	_	_	_	_	_	_	_	_	_	-
BC/BLO	rel	2	*1	0	Branch if $(C) = 1$	_	_	_	_	_	_	_	_	_	_
BNC/BHS	rel	2	*1	0	Branch if $(C) = 0$	_	_	_	_	_	_	_	_	_	_
BN	rel	2	*1	0	Branch if $(N) = 1$	_	_	_	_	_	_	_	_	_	-
BP	rel	2	*1	0	Branch if $(N) = 0$	_	_	_	_	_	_	_	_	_	_
BV	rel	2	*1	0	Branch if $(V) = 1$	_	_	_	_	_	_	_	_	_	-
BNV	rel	2	*1	0	Branch if $(V) = 0$	_	_	_	_	_	_	_	_	_	-
BT	rel	2	*1	0	Branch if $(T) = 1$	_	_	_	_	_	_	_	_	_	_
BNT	rel	2	*1	0	Branch if $(T) = 0$	_	_	_	_	_	_	_	_	_	_
BLT	rel	2	*1	0	Branch if (V) xor $(N) = 1$	_	_	_	_	_	_	_	_	_	_
BGE	rel	2	*1	0	Branch if (V) xor $(N) = 0$	_	_	_	_	_	_	_	_	_	_
BLE	rel	2	*1	0	Branch if $((V) \text{ xor } (N)) \text{ or } (Z) = 1$	_	_	_	_	_	_	_	_	_	_
BGT	rel	2	*1	0	Branch if $((V) xor (N)) or (Z) = 0$	_	_	_	_	_	_	_	_	_	_
BLS	rel	2	*1	0	Branch if (C) or $(Z) = 1$	_	_	_	_	_	_	_	_	_	_
BHI	rel	2	*1	0	Branch if (C) or $(Z) = 0$	_	_	_	_	_	_	_	_	_	_
BRA	rel	2	*1	0	Branch unconditionally	-	_	-	-	-	_	_	-	_	-
JMP	@A	1	2	0	word (PC) \leftarrow (A)	_	_	_	_	_	_	_	_	_	_
JMP	addr16	3	2	0	word (PC) ← addr16	_	_	_	_	_	_	_	_	_	_
JMP	@ear	2	3	0	word (PC) ← (ear)	_	_	_	_	_	_	_	_	_	_
JMP	@eam	2+	4 + (a)	(c)	word (PC) ← (eam)	_	_	_	_	_	_	_	_	_	_
JMPP	@ear *3	2	3 ′)O	word (PC) \leftarrow (ear), (PCB) \leftarrow (ear + 2)	_	_	_	_	_	_	_	_	_	_
JMPP	@eam *3	2+	4 + (a)	(d)	word (PC) \leftarrow (eam), (PCB) \leftarrow (eam + 2)	_	_	_	_	_	_	_	_	_	_
JMPP	addr24	4	3 ′	`o´	word (PC) \leftarrow ad24 0 – 15,	_	_	_	_	_	_	_	_	_	_
					(PCB) ← ad24 16 – 23										
CALL	@ear *4	2	4	(c)	word (PC) ← (ear)	_	_	_	_	_	_	_	_	_	_
CALL	@eam *4	2+	5 + (a)	$2\times(c)$	word (PC) ← (eam)	_	_	_	_	_	_	_	_	_	_
CALL	addr16 *5	3	5 ′	(c)	word (PC) ← addr16	_	_	_	_	_	_	_	_	_	_
CALLV	#vct4 *5	1	5	$2\times(c)$	Vector call instruction	_	_	_	_	_	_	_	_	_	_
CALLP	@ear *6	2	7	$2 \times (c)$	word (PC) ← (ear) 0 - 15	_	_	_	_	_	_	_	_	_	_
				(-)	(PCB) ← (ear) 16 – 23										
CALLP	@eam *6	2+	8 + (a)	*2	word (PC) ← (eam) 0 – 15	_	_	_	_	_	_	_	_	_	_
			()		(PCB) ← (eam) 16 – 23										
CALLP	addr24 *7	4	7	2×(c)	word (PC) ← addr0 – 15,	_	_	_	-	_	_	_	-	_	-
					(PCB) ← addr16 – 23										

Note: For (a), (c) and (d), refer to "Table 4 Number of Execution Cycles in Addressing Modes" and "Table 5 Correction Values for Number of Cycles for Calculating Actual Number of Cycles."

^{*1:} Set to 3 when branch is executed, and 2 when branch is not executed.

^{*2:} $3 \times (c) + (b)$

^{*3:} Reads (word) of the branch destination address.

^{*4:} W pushes to stack (word), and R reads (word) of the branch destination address.

^{*5:} Pushes to stack (word).

^{*6:} W pushes to stack (long), and R reads (long) of the branch destination address.

^{*7:} Pushes to stack (long).

Table 21 Branch 2 [20 Instructions]

Mnemonic	#	~	В	Operation	LH	АН	I	S	Т	N	Z	٧	С	RMW
CBNE A, #imm8, rel CWBNE A, #imm16, rel	3 4	*1 *1	0	Branch if byte (A) ≠ imm8 Branch if word (A) ≠ imm16	_	_	_	_	_	*	*	*	*	_
CBNE ear, #imm8, rel CBNE eam, #imm8, rel CWBNE ear, #imm16, rel CWBNE eam, #imm16, rel	4 4+ 5 5+	*1 *3 *1 *3	(c) (b) 0	Branch if byte (ear) ≠ imm8 Branch if byte (eam) ≠ imm8 Branch if word (ear) ≠ imm16 Branch if word (eam) ≠ imm16	- - -	_ _ _ _	_ _ _ _	_ _ _ _	_ _ _ _	* * *	* * *	* * *	* * *	- - -
DBNZ ear, rel DBNZ eam, rel	3 3+	*2 *4	0 2×(b)	byte (ear) = (ear) - 1, Branch if (ear) \neq 0 byte (eam) = (eam) - 1, Branch if (eam) \neq 0	_	_	_	_	_	*	*	*	_	*
DWBNZ ear, rel	3 3+	*2 *4	0 2×(c)	word (ear) = (ear) - 1, Branch if (ear) \neq 0 word (eam) = (eam) - 1, Branch if (eam) \neq 0	_	_	_	_	_	*	*	*	_	*
INT #vct8 INT addr16 INTP addr24 INT9 RETI RETIQ *6	2 3 4 1 1 2	14 12 13 14 9 11	$6 \times (c)$ $6 \times (c)$ $8 \times (c)$	Software interrupt Software interrupt Software interrupt Software interrupt Return from interrupt Return from interrupt	_ _ _ _ _	- - - -	R R R R *	S S S S * *	_ _ _ * *	_ _ _ * *	_ _ _ * *	_ _ _ * *	_ _ _ * *	- - - -
LINK #imm8 UNLINK	1	5	(c)	Stores old frame pointer in the beginning of the function, set new frame pointer, and reserves local pointer area Restore old frame pointer from stack in the end of the function	_	_	_	_	_	_	_	-	_	_
RET *7 RETP *8	1	4 5	(c) (d)	Return from subroutine Return from subroutine	_	_ _	_ _	_ _	_ _	_ _	_ _	_ _	_ _	_ _

Note: For (a) to (d), refer to "Table 4 Number of Execution Cycles in Addressing Modes" and "Table 5 Correction Values for Number of Cycles for Calculating Actual Number of Cycles."

- *1: Set to 4 when branch is executed, and 3 when branch is not executed.
- *2: Set to 5 when branch is executed, and 4 when branch is not executed.
- *3: Set to 5 + (a) when branch is executed, and 4 + (a) when branch is not executed.
- *4: Set to 6 + (a) when branch is executed, and 5 + (a) when branch is not executed.
- *5: Set to $3 \times (b) + 2 \times (c)$ when an interrupt request is issued, and $6 \times (c)$ for return.
- *6: This is a high-speed interrupt return instruction. In the instruction, an interrupt request is detected. When an interrupt occurs, stack operation is not performed, with this instruction branching to the interrupt vector.
- *7: Return from stack (word).
- *8: Return from stack (long).

Table 22 Miscellaneous Control Types (Byte, Word, Long) [36 Instructions]

Mn	emonic	#	~	В	Operation	LH	ΑН	I	S	Т	N	Z	٧	С	RMW
PUSHW PUSHW PUSHW PUSHW	AH PS	1 1 1 2	3 3 *3	(c) (c) (c) *4	$\begin{array}{l} \text{word (SP)} \leftarrow (\text{SP}) - 2, ((\text{SP})) \leftarrow (\text{A}) \\ \text{word (SP)} \leftarrow (\text{SP}) - 2, ((\text{SP})) \leftarrow (\text{AH}) \\ \text{word (SP)} \leftarrow (\text{SP}) - 2, ((\text{SP})) \leftarrow (\text{PS}) \\ (\text{PS}) \leftarrow (\text{PS}) - 2n, ((\text{SP})) \leftarrow (\text{rlst}) \end{array}$	_ _ _				- - -	- - -	_ _ _ _	_ _ _ _		- - - -
POPW POPW POPW	A AH PS rlst	1 1 1 2	3 3 *2	(c) (c) (c) *4	$\begin{aligned} & \text{word (A)} \leftarrow ((\text{SP})), (\text{SP}) \leftarrow (\text{SP}) + 2 \\ & \text{word (AH)} \leftarrow ((\text{SP})), (\text{SP}) \leftarrow (\text{SP}) + 2 \\ & \text{word (PS)} \leftarrow ((\text{SP})), (\text{SP}) \leftarrow (\text{SP}) + 2 \\ & \text{(rlst)} \leftarrow ((\text{SP})), (\text{SP}) \leftarrow (\text{SP}) + 2 n \end{aligned}$	_ _ _ _	* - -	- * -	- * -	- * -	- * -	- * -	- * -	- * -	- - -
JCTX	@A	1	9	6×(c)	Context switch instruction	_	_	*	*	*	*	*	*	*	_
AND OR	CCR, #imm8 CCR, #imm8	2	3	0	byte (CCR) ← (CCR) and imm8 byte (CCR) ← (CCR) or imm8	_	_	*	*	*	*	*	*	*	_
MOV MOV	RP, #imm8 ILM, #imm8	2 2	2 2	0	byte (RP) \leftarrow imm8 byte (ILM) \leftarrow imm8	_	_ _	_		_ _	_ _	_	_		_
		2 2+ 2 2+	2`´	0 0 0	word (RWi) ← ear word (RWi) ← eam word(A) ← ear word (A) ← eam	_ _ _ _	- * *			- - -	- - -	_ _ _ _	_ _ _		- - -
ADDSP ADDSP	#imm8 #imm16	2	3 3	0	word (SP) \leftarrow (SP) + ext (imm8) word (SP) \leftarrow (SP) + imm16	_	_	_		_ _	_ _	_	_		_
MOV MOV MOV	A, brgl brg2, A brg2, #imm8	2 2 3	*1 1 2	0 0 0	byte (A) ← (brgl) byte (brg2) ← (A) byte (brg2) ← imm8	Z - -	* - -			_ _ _	* *	* *	- - -		_ _ _
NOP ADB DTB PCB SPB NCC CMR		1 1 1 1 1 1	1 1 1 1 1 1	0 0 0 0 0	No operation Prefix code for accessing AD space Prefix code for accessing DT space Prefix code for accessing PC space Prefix code for accessing SP space Prefix code for no change in flag Prefix for common register bank				111111	_ _ _ _ _	- - - - -		- - - - -	1 1 1 1 1 1	- - - - -
		4 4 2 2	2 2 2 2	0 0 0 0	word (SPCU) ← (imm16) word (SPCL) ← (imm16) Enables stack check operation. Disables stack check operation.	_ _ _ _				_ _ _ _	_ _ _ _	_ _ _ _	_ _ _ _		- - -
BTSCN BTSCNS BTSCND		2 2 2	*5 *6 *7	0 0 0	Bit position of 1 in byte (A) from word (A) Bit position (× 2) of 1 in byte (A) from word (A) Bit position (× 4) of 1 in byte (A) from word (A)	Z Z Z	- -	_ 		- - -	_ _ _	* *	_ _ _	1 1 1	_ _ _

Note: For (a) and (c), refer to "Table 4 Number of Execution Cycles in Addressing Modes" and "Table 5 Correction Values for Number of Cycles for Calculating Actual Number of Cycles."

^{*1:} PCB, ADB, SSB, USB, and SPB : 1 state DTB : 2 states DPR : 3 states

^{*2:} $3 + 4 \times (number of POPs)$

^{*3:} $3 + 4 \times (number of PUSHes)$

^{*4: (}Number of POPs) \times (c), or (number of PUSHes) \times (c)

^{*5:} Set to 3 when AL is 0, 5 when AL is not 0.

^{*6:} Set to 4 when AL is 0, 6 when AL is not 0.

^{*7:} Set to 5 when AL is 0, 7 when AL is not 0.

Table 23 Bit Manipulation Instruction [21 Instructions]

Mn	nemonic	#	~	В	Operation	LH	ΑН	I	S	T	N	Z	٧	С	RMW
MOVB A MOVB A	A, addr16:bp	3 4 3	3 3 3	(b) (b)	byte (A) \leftarrow (dir:bp) b byte (A) \leftarrow (addr16:bp) b byte (A) \leftarrow (io:bp) b	Z Z Z	* *	_ _ _	1 1 1		* *	* *	_ _ _	_ _ _	_ _ _
MOVB of MOVB is	addr16:bp, A	3 4 3	4 4 4	$2 \times (b)$	bit (dir:bp) b \leftarrow (A) bit (addr16:bp) b \leftarrow (A) bit (io:bp) b \leftarrow (A)	- - -	1 1 1	- - -			* *	* *	_ _ _	- - -	* * *
SETB a	dir:bp addr16:bp o:bp	3 4 3	4 4 4	$2 \times (b)$	bit (dir:bp) b \leftarrow 1 bit (addr16:bp) b \leftarrow 1 bit (io:bp) b \leftarrow 1	_ _ _	1 1 1	- - -				1 1 1	_ _ _	- - -	* * *
CLRB a	dir:bp addr16:bp o:bp	3 4 3	4 4 4	$2 \times (b)$	bit (dir:bp) b \leftarrow 0 bit (addr16:bp) b \leftarrow 0 bit (io:bp) b \leftarrow 0	_ _ _	1 1 1	- - -				1 1 1	_ _ _	- - -	* * *
BBC a	dir:bp, rel addr16:bp, rel o:bp, rel	4 5 4	*1 *1 *1	(b) (b)	Branch if (dir:bp) b = 0 Branch if (addr16:bp) b = 0 Branch if (io:bp) b = 0	_ _ _	1 1 1	_ _ _				* *	_ _ _	_ _ _	- - -
BBS a	dir:bp, rel addr16:bp, rel o:bp, rel	4 5 4	*1 *1 *1	(b) (b)	Branch if (dir:bp) b = 1 Branch if (addr16:bp) b = 1 Branch if (io:bp) b = 1	_ _ _	1 1 1	- - -				* *	_ _ _	- - -	- - -
SBBS a	addr16:bp, rel	5	*2	2 × (b)	Branch if (addr16:bp) b = 1, bit = 1	_	-	_	_	_	_	*	_	_	*
WBTS i	o:bp	3	*3	*4	Wait until (io:bp) b = 1	_	_	-	_	_	_	_	-	-	_
WBTC id	o:bp	3	*3	*4	Wait until (io:bp) b = 0	_	_	_	_	_	_	_	_	_	_

Note: For (b), refer to "Table 5 Correction Values for Number of Cycles for Calculating Actual Number of Cycles."

^{*1:} Set to 5 when branch is executed, and 4 when branch is not executed.

^{*2: 7} if conditions are met, 6 when conditions are not met.

^{*3:} Indeterminate times

^{*4:} Until conditions are met

Table 24 Accumulator Manipulation Instruction (Byte, Word) [6 Instructions]

Mnemonic	#	~	В	Operation	LH	АН	I	S	T	N	Z	٧	С	RMW
SWAP	1	3	0	byte (A) $0-7 \leftrightarrow$ (A) $8-15$	_	_	_	_	_	_	_	_	_	_
SWAPW/XCHW AL, AH	1	2	0	word $(AH) \leftrightarrow (AL)$	_	*	_	_	_	_	_	_	_	_
EXT	1	1	0	byte sign-extension	Х	_	_	_	_	*	*	_	_	_
EXTW	1	2	0	word sign-extension	_	Χ	_	_	_	*	*	_	_	_
ZEXT	1	1	0	byte zero-extension	Ζ	_	_	_	_	R	*	_	_	_
ZEXTW	1	1	0	word zero-extension	_	Z	_	-	_	R	*	_	_	_

Table 25 String Instruction [10 Instructions]

Mnemonic	#	~	В	Operation	LH	АН	I	S	Т	N	Z	٧	С	RMW
MOVS/MOVSI	2	*2	*3	byte transfer @AH + ← @AL +, Counter = RW0	-	_	-	-	_	-	_	-	-	_
MOVSD	2	*2	*3	byte transfer $@AH - \leftarrow @AL -$, Counter = RW0	_	-	-	_	_	_	_	_	_	_
SCEQ/SCEQI	2	*1	*4	byte search (@AH +) – AL, Counter = RW0	_	-	-	_	_	*	*	*	*	_
SCEQD	2	*1	*4		_	-	-	_	_	*	*	*	*	_
FISL/FILSI	2	5m + 6	*5	byte fill @AH + ← AL, Counter = RW0	_	-	-	_	_	*	*	_	_	_
MOVSW/MOVSWI	2	*2	*6	word transfer @AH + ← @AL +, Counter = RW0	_	_	-	_	_	_	_	_	_	_
MOVSWD	2	*2	*6	word transfer $@AH - \leftarrow @AL -$, Counter = RW0	_	-	-	_	_	_	_	-	_	_
SCWEQ/SCWEQI	2	*1	*7	word search (@AH +) – AL, Counter = RW0	_	_	-	_	_	*	*	*	*	_
SCWEQD	2	*1	*7	word search (@AH -) - AL, Counter = RW0	_	_	-	_	_	*	*	*	*	_
FILSW/FILSWI	2	5m + 6	*8	word fill $@AH + \leftarrow AL$, Counter = RW0	_	-	-	_	_	*	*	_	_	_

m: RW0 value (counter value)

^{*1: 3} when RW0 is 0, 2 + $6 \times$ (RW0) when count out, and 6n + 4 when matched

^{*2: 4} when RW0 is 0, otherwise $2 + 6 \times (RW0)$

^{*3: (}b) \times (RW0)

^{*4: (}b) \times n

^{*5: (}b) \times (RW0)

^{*6: (}c) × (RW0)

^{*7: (}c) × n

^{*8: (}c) × (RW0)

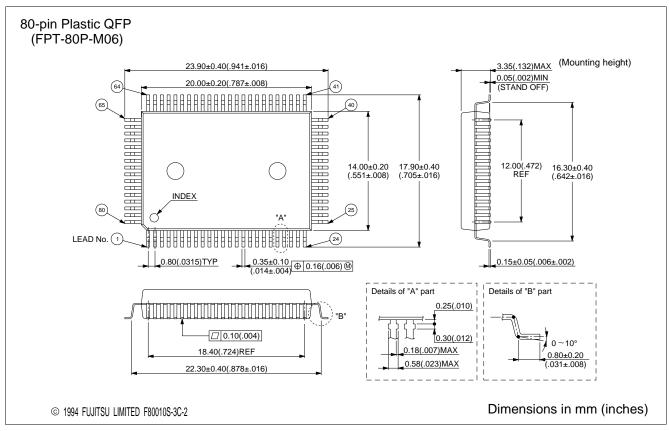
Table 26 Multiple Data Transfer Instructions [18 Instruction]

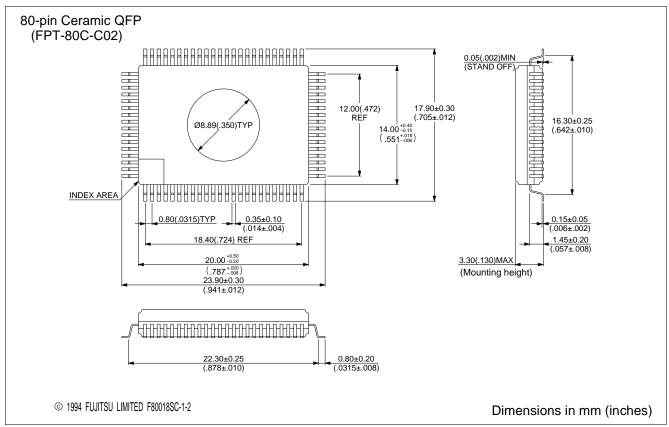
Mnemonic	#	~	В	Operation	LH	АН	ı	S	Т	N	Ζ	٧	С	RMW
MOVM @A, @RLi, #imm8	3	*1	*3	Multiple data transfer	-	_	-	_	-	_	-	_	_	_
MOV/MA @ A	0	*0	*0	byte $((A)) \leftarrow ((RLi))$										
MOVM @A, eam, #imm8	3 +	*2	*3	Multiple data transfer byte ((A)) ← (eam)	_	_	-	_	_	_	_	_	_	_
MOVM addr16, @RLi, #imm8	5	*1	*3	Multiple data transfer byte (addr16) ← ((RLi))	_	_	_	_	_	-	_	-	_	_
MOVM addr16, @eam, #imm8	5 +	*2	*3	Multiple data transfer byte (addr16) ← (eam)	_	_	-	_	_	-	_	-	_	_
MOVMW@A, @RLi, #imm8	3	*1	*4	Multiple data transfer word ((A)) ← ((RLi))	_	_	_	_	_	-	_	-	_	_
MOVMW@A, eam, #imm8	3 +	*2	*4	Multiple data transfer word ((A)) ← (eam)	_	_	_	_	_	_	_	_	_	-
MOVMWaddr16, @RLi, #imm8	5	*1	*4	Multiple data transfer word (addr16) ← ((RLi))	_	_	-	_	_	-	_	-	_	_
MOVMWaddr16, @eam, #imm8	5 +	*2	*4	Multiple data transfer word (addr16) ← (eam)	_	_	-	_	_	-	_	-	_	_
MOVM @RLi, @A, #imm8	3	*1	*3	Multiple data transfer byte $((RLi)) \leftarrow ((A))$	_	_	_	_	_	-	_	-	_	_
MOVM @eam, A, #imm8	3+	*2	*3	Multiple data transfer byte (eam) ← ((A))	_	_	_	_	_	-	_	-	_	_
MOVM @RLi, addr16, #imm8	5	*1	*3	Multiple data transfer byte ((RLi)) ← (addr16)	_	_	ı	_	_	_	_	_	_	_
MOVM @eam, addr16, #imm8	5+	*2	*3	Multiple data transfer byte (eam) ← (addr16)	_	_	ı	_	_	_	_	_	_	-
MOVMW@RLi, @A, #imm8	3	*1	*4	Multiple data transfer word ((RLi)) ← ((A))	_	_	-	_	_	-	_	-	_	_
MOVMW@eam, A, #imm8	3 +	*2	*4	Multiple data transfer word (eam) ← ((A))	_	_	-	_	_	-	_	-	_	_
MOVMW@RLi, addr16, #imm8	5	*1	*4	Multiple data transfer word ((RLi)) ← (addr16)	_	_	-	_	_	-	_	-	_	_
MOVMW@eam, addr16, #imm8	5 +	*2	*4	Multiple data transfer word (eam) ← (addr16)	_	_	-	_	_	-	_	-	_	_
MOVM bnk: addr16, bnk: addr16, #imm8*5	7	*1	*3	Multiple data transfer byte (bnk: addr16) ← (bnk: addr16)	_	_	_	_	_	_	_	_	_	-
MOVMWbnk: addr16, bnk: addr16, #imm8*5	7	*1	*4	Multiple data transfer word (bnk: addr16) ← (bnk: addr16)	_	_	_	_	_	_	_	_	_	_

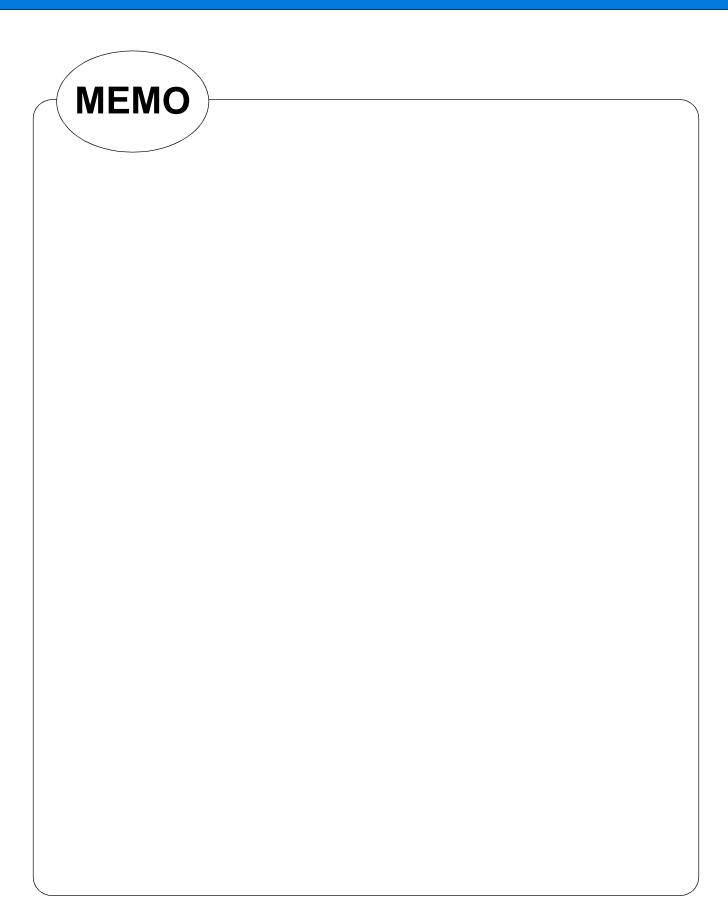
^{*1: 256} when 5 + imm8 \times 5, imm8 is 0.

^{*2: 256} when 5 + imm8 \times 5 + (a), imm8 is 0.

^{*3: (}Number of transfer cycles) \times (b) \times 2


^{*4: (}Number of transfer cycles) \times (c) \times 2


^{*5:} The bank register specified by bnk is the same as that for the MOVS instruction.


■ ORDERING INFORMATION

Part number	Туре	Package	Remarks				
MB90214 MB90P214A MB90P214B	MB90214PF MB90P214PF MB90P214BPF	80-pin Plastic QFP (FPT-80P-M06)					
MB90W214A MB90W214B	MB90W214ZF MB90W214BZF	80-pin Ceramic QFP (FPT-80C-C02)	Only ES level				
MB90V210	MB90V210CR	256-pin Ceramic PGA (PGA-256C-A02)	For evaluation				

■ PACKAGE DIMENSIONS

FUJITSU LIMITED

For further information please contact:

Japan

FUJITSU LIMITED

Corporate Global Business Support Division

Electronic Devices

KAWASAKI PLANT, 4-1-1, Kamikodanaka

Nakahara-ku, Kawasaki-shi Kanagawa 211-88, Japan

Tel: (044) 754-3763 Fax: (044) 754-3329

http://www.fujitsu.co.jp/

North and South America

FUJITSU MICROELECTRONICS, INC.

Semiconductor Division 3545 North First Street San Jose, CA 95134-1804, U.S.A.

Tel: (408) 922-9000 Fax: (408) 922-9179

Customer Response Center Mon. - Fri.: 7 am - 5 pm (PST)

Tel: (800) 866-8608 Fax: (408) 922-9179

http://www.fujitsumicro.com/

Europe

FUJITSU MIKROELEKTRONIK GmbH Am Siebenstein 6-10 D-63303 Dreieich-Buchschlag Germany

Tel: (06103) 690-0 Fax: (06103) 690-122

http://www.fujitsu-ede.com/

Asia Pacific

FUJITSU MICROELECTRONICS ASIA PTE LTD #05-08, 151 Lorong Chuan

New Tech Park Singapore 556741 Tel: (65) 281-0770

Fax: (65) 281-0220

http://www.fmap.com.sg/

F9710

© FUJITSU LIMITED Printed in Japan

All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.).
CAUTION:

Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Control Law of Japan, the prior authorization by Japanese government should be required for export of those products from Japan.

