

EXQ50/SXQ50 Single

Application Note 120

1.	Introduction	2
2.	Models	
	Features	2
3.	General Description	
	Electrical Description	2
	Physical Construction	3
4.	Features and Functions	
	Wide Operating Temperature Range	3
	Over-Temperature Protection	3
	Output Voltage Adjustment	3
	Output Over-voltage Protection	3
	Brickwall Current Limit and Short-Circuit Protection	3 4
	Remote ON/OFF	4
_	Codeb.	
э.	Electrical Isolation	5
	Input Fusing	5
	Recommended PCB Layout	5
~	THE	
0.	Conducted Emissions	5
	Radiated Emissions	6
7.	Use in a Manufacturing Environment	
	EAQ30 Posistance to Soldering Heat	7
	SXQ50	· '
	PCB Layout	7
	Soldering Guidelines	7
	Coplanarity	7
	Pick and Place	7
	Vision Recognition Recommendations	8
	Inspection/Rework	8
	Water Washing	ð
	Storage	8
	Packaging	8
8	Applications	
0.	Optimum Thermal Performance	9
	Remote Sense Compensation	10
	Output Voltage Adjustment	10
	Parallel and Series Operation	11
	Output Capacitance	11
	Reflected Ripple Current and Output Ripple and Noise	
	Measurement	12
	Compatability with ADM1070 Hot Swap Controller	12

- High efficiency topology, typically 90% at 5V, 86.5% at 1.8V
- Industry standard quarter-brick footprint
- Surface mount and through-hole versions
- Wide ambient temperature range, -40°C to +90°C
- 90% to 110% output trim
- No minimum load
- Overvoltage protection
- Remote ON/OFF

Foreword

This application note covers the EXQ50 (Through Hole version) and SXQ50 (Surface Mount version). Note that EXQ50 reads as EXQ50 or SXQ50 throughout this document with the exception of Sections 7.1 and 7.2.

1. Introduction

This application note describes the features and functions of Artesyn Technologies' EXQ50 series of high power density, quarter-brick DC/DC converters. These open-frame, single-output modules which are available in through-hole and surface mount format are targeted specifically at the fixed and mobile telecommunications, industrial electronics and distributed power markets.

The EXQ50 series offers a wide input voltage range of 33-75VDC and can operate over an ambient temperature range of -40°C to +90°C. Ultra-high efficiency operation is achieved through the use of proprietary synchronous rectification and control techniques. The modules are fully protected against over-current, over-voltage and over-temperature conditions. Standard features include Remote ON/OFF and remote sense.

This product series was designed primarily for telecommunication applications and complies with ETS 300 386-1 immunity and emission standards for high priority of service class. In addition, the series complies with ETS 300 019-1-3/-2-3 environmental standards (all classes) including shock, vibration, humidity and thermal performance. EN60950 and UL/cUL60950 safety approvals have been obtained, and a high level of reliability has been designed into all models through extensive use of conservative de-rating criteria. Automated manufacturing methods, together with an extensive qualification program, ensure that all EXQ50 series converters are extremely reliable.

2. Models

The EXQ50 series comprises eight models, as listed in Table 1.

Model	Input Voltage	Output Voltage	Output Current	Mounting Option
SXQ50-48S1V8	33-75VDC	1.8V	20A	SMT
SXQ50-48S2V5	33-75VDC	2.5V	20A	SMT
SXQ50-48S3V3	33-75VDC	3.3V	15A	SMT
SXQ50-48S05	33-75VDC	5.0V	10A	SMT
EXQ50-48S1V8	33-75VDC	1.8V	20A	PTH
EXQ50-48S2V5	33-75VDC	2.5V	20A	PTH
EXQ50-48S3V3	33-75VDC	3.3V	15A	PTH
EXQ50-48S05	33-75VDC	5.0V	10A	PTH

Table 1 - EXQ50 Models

Features

- Industry standard quarter-brick pin-out and footprint: 58.42 x 37.84 x 10.16mm (2.30 x 1.46 x 0.4 inches)
- Surface mount and through-hole versions available
- Wide operating temperature range (-40°C to +90°C)
- ±10% output voltage adjustability
- No minimum load requirement
- Remote ON/OFF control (primary referenced)
- Remote sense compensation
- · Constant switching frequency
- Brickwall over-current protection
- Continuous short-circuit protection
- Non-latching output over-voltage protection (OVP)
- Over-temperature protection (OTP)
- Input under/over-voltage lockout protection (U/OVLO)

3. General Description

3.1 Electrical Description

A block diagram of the EXQ50 converter is shown in Figure 1. Extremely high efficiency power conversion is achieved through the use of synchronous rectification techniques.

The EXQ50 is implemented using a current-mode controlled interleaved flyback topology. Power is transferred magnetically across the isolation barrier, via isolating power transformers. In all models, the secondary-side rectification stage consists of synchronous rectifiers controlled by proprietary circuitry to optimize the timing for high efficiency power conversion. The regulated voltage on the output pins is governed by the voltage on the module's sense pins, V_{sense+} and V_{sense-} .

The output is adjustable over a range of 90% to 110% of the nominal output voltage, using the TRIM pin (referenced to V_{sense}).

The converter can be shut down via a Remote ON/OFF input that is referenced to the primary side. This input is compatible with popular logic devices; 'positive' logic and 'negative' logic models are available as standard. Positive logic implies that the converter is enabled if the Remote ON/OFF input is high (or floating), and disabled if it is low. Conversely, negative logic implies that the converter is enabled if the Remote ON/OFF input is low, and disabled if it is high (or floating).

The output is monitored for over-voltage conditions. The converter will clamp at the over-voltage set-point if an overvoltage condition is detected at the output. The converter is also protected against over-temperature conditions. If the converter is overloaded or the ambient temperature gets too high, the converter will shut down until the temperature falls below a minimum threshold. There is a thermal hysteresis of typically 3° C to 5° C, to protect the unit.

An internal filter smoothes the input current and reduces conducted and radiated EMI. Further improvement can be achieved through the use of an optional external input filter. See Section 6.1 for further details.

Figure 1 - Electrical Block Diagram

3.2 Physical Construction

The EXQ50 is constructed using a multi-layer FR4 PCB. SMT power components are placed on one side of the PCB, and all low-power control components are placed on the other side. Heat dissipation of the power components is optimized, ensuring that control components are not thermally stressed.

The converter is an open-frame product and has no case or case pin. The open-frame design has several advantages over encapsulated closed devices. Among these advantages are:

- Cost: no potting compound, case or associated process costs involved
- **Thermals:** the heat is removed from the heat generating components without heating more sensitive, less tolerant components such as opto-couplers
- Environmental: some encapsulants are not kind to the environment and create problems in incinerators. Furthermore, open-frame converters are more easily re-cycled
- Reliability: open-frame modules are more reliable for a number of reasons, including improved thermal performance and reduced TCE stresses

A separate paper discussing the benefits of open-frame DC/DC converters (Design Note 102) is available at www.artesyn.com

4. Features and Functions

4.1 Wide Operating Temperature Range

The EXQ50's ability to accommodate a wide range of ambient temperatures is the result of its extremely high power conversion efficiency and resultant low power dissipation, combined with the excellent thermal performance of the PCB substrate. The maximum output power that the module can deliver depends on a number of parameters, primarily:

- Input voltage range (application dependent)
- Output load current
- Air velocity (forced or natural convection)
- Mounting orientation of target application PCB, i.e. vertical/horizontal mount, or mechanically tied down (especially important in natural convection conditions)
- Target application PCB design, especially ground planes. These can be effective heatsinks for the converter

The EXQ50 can be operated from -40°C to a maximum ambient temperature of +90°C. A number of design graphs are included in Figures 15, 16, 17 and 18 to simplify the design task and allow the power system designer to determine the maximum output current at which the EXQ50 module may be operated for a given ambient temperature and airflow.

4.2 Over-Temperature Protection (OTP)

The EXQ50 is equipped with non-latching over-temperature protection. A temperature sensor monitors the temperature of the main substrate. If the temperature exceeds a threshold of 120°C (typical) the converter will shut down, disabling the output. When the substrate temperature has decreased by between 3°C and 5°C the converter will automatically restart.

The EXQ50 might experience over-temperature conditions during a persistent overload on the output. Overload conditions can be caused by external faults. OTP might also be entered due to a loss of control of the environmental conditions (e.g. an increase in the converter's ambient temperature due to a failing fan).

4.3 Output Voltage Adjustment

The output voltage on all models is trimmable from 90% to 110% of the nominal voltage setpoint. Details on how to trim all models are provided in Section 8.3.

4.4 Output Over-Voltage Protection

The clamped over-voltage protection (OVP) feature is used to protect the module and the user's circuitry in the event that a fault occurs in the main control loop. Faults of this type include optocoupler failure, an open-circuit sense resistor or error amplifier failure. The unit is also protected in the event of the output being trimmed above the recommended maximum specification.

The OVP circuit consists of an auxiliary control loop running in parallel to the main control loop. However, unlike the main loop, the OVP loop senses the voltage at the output power terminals of the module. The sensed voltage is compared to a separate OVP reference and a compensated error signal is generated such that the output voltage is regulated to the OVP clamp level. Note that an optocoupler is not required during operation of the OVP clamp circuit. OVP clamp levels are typically set at 120-125% of the nominal output voltage setpoint for all models.

4.5 Safe Operating Area

The Safe Operating Area (SOA) of the EXQ50 converter is shown in Figure 2. Assuming the converter is operated within its thermal limits it can deliver rated output current I_{rated} . Note, however, that when the unit is trimmed up, the output current may need to be derated so

that the output power does not exceed 50W. The module will still deliver ${\rm I}_{\rm rated}$ when trimmed down.

Figure 2 - Maximum Output Current Safe Operating Area

It should be noted that the SOA shown in Figure 2 is valid only if the converter is operated within its thermal specification. See Section 8.1 for more details.

4.6 Brickwall Current Limit and Short-Circuit Protection

All EXQ50 models have a built-in brickwall current limit function and full continuous short-circuit protection. Thus the V–I characteristic in current limit, as indicated by the dashed line in Figure 2, will be almost vertical at the current limit inception point, I_{limit}. This means that the output current should be almost constant irrespective of the output voltage during overload. The current limit inception point is influenced by the ambient temperature and line voltage, and also has a parametric spread. The inception point is typically 120% of rated full load for all models. The brickwall current limit scheme has many advantages, including increased capacitive load start-up capability (see Section 8.5).

Note that none of the module specifications is guaranteed when the unit is operated in an overcurrent condition. The unit will not be damaged in an overcurrent condition because it will be protected by the OTP function, but the converter's lifetime may be reduced.

4.7 Remote ON/OFF

The Remote ON/OFF input allows external circuitry to put the EXQ50 converter into a low dissipation sleep mode. Active-high and active-low Remote ON/OFF models are available as standard.

Active-high units of the EXQ50 series are turned on if the Remote ON/OFF pin is high (or floating). Pulling the pin low will turn off the unit. Active-low units of the EXQ50 series are turned on if the Remote ON/OFF pin is low. Pulling the pin high (or leaving it floating) will turn off the unit. The signal level of the Remote ON/OFF input is defined with respect to Vin–.

To simplify the design of the external control circuit, logic signal thresholds are specified over the full temperature range. The maximum Remote ON/OFF input open circuit voltage, as well as the acceptable leakage currents, are specified in the EXQ50 Long Form Datasheet. The Remote ON/OFF input can be driven in a variety of ways as shown in Figures 3, 4 and 5. If the Remote ON/OFF signal originates on the primary side, the Remote ON/OFF input can be driven through a discrete device (e.g. a bipolar signal transistor) or directly from a logic gate output. The output of the logic gate may be an open-collector (or open-drain) device. If the drive signal originates on the secondary side, the Remote ON/OFF input can be isolated

and driven through an optocoupler.

Figure 3 - Remote ON/OFF Input Drive Circuit for Non-Isolated Bipolar

Figure 4 - Remote ON/OFF Input Drive Circuit for Logic Driver

Application Note 120

5. Safety

5.1 Isolation

The EXQ50 series has been designed in accordance with EN60950, and UL60950 'Safety of Information Technology Equipment'.

The EXQ50 DC/DC converter is intended for inclusion in other equipment and the installer must ensure that it is in compliance with all the requirements of the end application.

For many applications, models with operational insulation will be sufficient, provided that one pole of the output is connected to protective earth. Units with operational isolation are less costly and will have 1-2% higher efficiency than the equivalent model with basic isolation.

The galvanic isolation is verified in an electric strength test during production; the test voltage between input and output is 1.5kVDC. Also, note that the flammability ratings of all materials meet UL94V-0.

5.2 Input Fusing

In order to comply with safety requirements, the user must provide a fuse in the unearthed input line if an earthed input is used. The reason for putting the fuse in the unearthed line is to avoid earth being disconnected in the event of a failure. If an earthed input is not being used, the fuse can be placed in either input line.

A 3.15 Amp slow-blow/anti-surge 200V HRC (High Rupture Capacity) fuse should be used for all models.

5.3 Recommended PCB Layout

The EXQ50 shares a common product outline with the industry standard quarter-brick converter. The footprint consists of the substrate outline at its maximum tolerance, plus a minimum keepout area of 1.0 mm on all sides to satisfy safety requirements as specified in UL60950, pollution degree 2 for basic isolation. This keepout area should be kept clear of all components and conductive traces with the exception of access to the I/O pins. This clearance figure is based on the worst case measured voltage on the product.

It is recommended that the customer does not place any active traces directly beneath the module. It is acceptable to place copper planes beneath the module for thermal purposes provided they meet the safety requirements to which the system is approved.

The PCB acts as a heat sink and draws heat from the unit via both conduction through the pins and direct radiation. It is recommended that both power and return planes be used. A threewire system including a chassis or system ground is also possible, and a ground plane is beneficial. These planes act as EMC shields. A recommended footprint for an end user's PCB that maintains the clearance requirements as specified in UL60950, pollution degree 2, basic isolation is presented in Figure 6. The end user must ensure that other components and metal in the vicinity of the EXQ50 meet the spacing requirements to which the system is approved. Low resistance and low inductance PCB layout traces should be used where possible, particularly when high currents are flowing (e.g. the output side).

Figure 6 - Recommended PCB Layout to Satisfy Safety Requirements

6. EMC

The EXQ50 has been designed to comply with the EMC requirements of ETSI 300 386-1. It meets the most stringent requirements of Table 5; 'public telecommunications equipment, locations other than telecommunication centres, high priority of service'.

6.1 Conducted Emissions

The applicable standard for conducted emissions is EN55022 (FCC Part 15). Conducted noise can appear as both differential mode and common mode noise currents. Differential mode noise is measured between the two input lines, with the major components occurring at the converter's fundamental switching frequency and its harmonics. Common mode noise, a contributor to both radiated emissions and input conducted emissions, is measured between the input lines and system ground and can be broadband in nature. The EXQ50 series of converters bypasses common mode noise internally by using two paralleled 1nF, 2kV capacitors between Vin- and Vo+. Common mode noise currents flowing in the application circuitry will therefore be greatly minimized. Furthermore, the EXQ50 has a substantial filter on-board to enable it to meet the EN55022 Class B standard using the external filter depicted in Figure 9. A similar filter can be derived for Class A compliance using the same component set.

Figure 7 - Typical Spectrum of the 3.3V Model Level B

6.2 Radiated Emissions

The applicable standard is EN55022 Class B (FCC Part 15). Testing DC/DC converters as a stand-alone component to the exact requirements of EN55022 is very difficult, because the standard calls for 1m leads to be attached to the input and output ports and aligned such as to maximise the disturbance. In such a set-up, it is possible to form a perfect dipole antenna that very few DC/DC converters could pass.

However, the standard also states that 'An attempt should be made to maximise the disturbance consistent with the typical application by varying the configuration of the test sample'. In addition, ETS 300 386-1 states that the testing should be carried out on the enclosure. For most applications, the signal input lines to the converter should be less than 3 meters long and this is sufficient to meet the requirements of the standard.

Typical radiated emission results are shown in Figure 8.

Figure 8 - Typical Radiated Emission 5V model (Vin=48V, lo nom)

The components and manufacturers' part numbers used in the above filter to meet conducted level B are as follows:

C₁, C₂, C₄, C₅, 1.5µF, 100V Marcon, THCR50E2A155ZT C₃, ITW Paktron 4µF, 100V, SMT film capacitor, 405K100CS4 L₁, Pulse Eng PO351

Additional components required to meet Radiated B are as follows: C_8 , C_9 , AVX 5.6nF 1.5kV, 1812SC562KA1

R₄, R₅, 5.6R, 1206 resistors

C₁₀, Č₁₁, AVX 100nF, 100V 1812C104KAT2A

The recommended PCB layout of the specified filter is shown in Figure 10.

Figure 9 - Recommended Filter for Class B Compliance

Figure 10 - Recommended Layout for Class B Compliance

7. Use in a Manufacturing Environment

7.1 EXQ50

7.1.1 Resistance to Solder Heat

EXQ50 series converters are intended for PCB mounting. Artesyn Technologies has determined how well the product can resist the temperatures associated with soldering of PTH components without affecting its performance or reliability. The method used to verify this is MIL-STD-202 method 210D. Within this method two test conditions were specified, Soldering Iron condition A and Wave Solder Condition C.

For the soldering iron test, the UUT was placed on a PCB with the recommended PCB layout pattern shown in Section 8. A soldering iron set to $350^{\circ}C \pm 10^{\circ}C$ was applied to each terminal for 5 seconds. The UUT was then removed from the test PCB and examined under a microscope for any reflow of the pin solder or physical change to the terminations. None was found.

For the wave solder test, the UUT was again mounted on a test PCB. The unit was wave soldered using the conditions shown in Table 2. The UUT was inspected after soldering and no physical change was found on the pin terminations.

Temperature	Time	Temperature Ramp	
260°C±5°C	10sec±1	Preheat 4°C/sec to 160°C. 25mm/sec rate	

Table 2 - Wave Solder Test Conditions

7.2 SXQ50

7.2.1 PCB Layout

It is recommended that the customer use a surface mount layout that features PTHs in the conventional brick pin positions as per Figure 6. The layouts used at Artesyn have specified a minimum copper thickness in the PTH of 25μ m (0.001 inch). This dual layout approach has a number of benefits:

• Supports dual source strategy.

• Minimum layout change is required to migrate from PTH to SMT converters.

• PTHs distribute current to the internal power planes. Further improvements can be obtained by the addition of extra vias in the vicinity of the SMT pad on pins 4 and 8 to further facilitate current and thermal distribution. This will be dictated by the number of layers, position of power planes, thickness of copper in the PTHs, etc. Critical temperatures can be monitored using the indicated Thermal Reference Points.

7.2.2 Soldering Guidelines

The SXQ50 is an open-frame power module manufactured with conventional surface mount technology using 62/36/02 with no-clean flux.

The SMT interconnect leads are a brass material with a solderable coating to prevent corrosion and ensure good solderability and shelf life. The coating is tin-lead with a nominal alloy composition of 60/40. This near-eutectic solder layer melts close to 183°C. The lead temperatures must exceed this by approximately 30°C for a minimum of 30 seconds in order to ensure a reliable solder joint.

Due to the fact that components with high thermal capacity such as the SXQ50 will be slower to heat up than typical SMT parts, it may be necessary to customise the solder reflow profile. In doing this, customers need to be congnisant of the process limitations of other,

The temperature of each SMT interconnect lead vary during reflow due to differences in internal components, PCB lands and connecting paths. Lead 8 is a good choice for conservative temperature measurement, because it is connected to heavy copper paths. Figure 11 shows the recommended temperature of lead 8 during a typical reflow profile. The product is compatible with convection soldering using common solder alloys such as 63/37 and 62/36/02.

Figure 11 - Solder Reflow Profile per CECC 00802

Good quality solder joints have been demonstrated using a volume of 1.04 mm³ (63,000 cubic mils) of solder paste containing 90% metal. This can be achieved by printing a solder paste using a 200 μ m (0.008") stencil on pads measuring 3.0 x 1.7 mm (0.118 x 0.067 inch). Other combinations of pad sizes and solder stencil thickness have been used successfully. Contact Artesyn for further details.

7.2.3 Coplanarity

The SXQ50 has a maximum co-planarity better than 150µm (approximately 0.006 inch). Innovative design, patent pending interconnect technology and specialised manufacturing processes ensure consistent product integrity.

7.2.4 Pick and Place

The SXQ50 is designed with certain features to ensure it is pick and place compatible

• SMT-compatible packaging such as vacuum-formed tray and tape and reel.

- The low mass of 25 grams (0.88 oz) is within the capability of standard pick and place equipment.
- The two transformers form a flat area of approximately 430 mm² (0.67 in²) that can be used as a pick-up area. Suitable vacuum pick-up nozzles can be obtained through equipment suppliers. Artesyn recommends that interested parties should contact their equipment manufacturer for further details. Assembly qualification trials at Artesyn were conducted with a standard rubber-tip nozzle, combined with an off-centre pick. A default placement force of 150 grams (5.3 ounces) was used.

Figure 12 - Top View of SXQ50 Showing Recommended Pick-up Area and Orientation Index

7.2.5 Vision/Recognition Recommendations

The SXQ50 substrate features bottom-side fiducials and a corner chamfer compatible with many types of machine vision systems. The corner chamfer identifies pin 8. For the placement trials, two bottom side fiducials at opposite extremities of the converter were used. Two images of the component were needed due to the distance between them but this may not be necessary with cameras of different magnification.

7.2.6 Inspection/Rework

Inspection and rework of the SXQ50 is facilitated by the following:

• The pins of the SXQ50 are positioned close to the edge of the unit to facilitate ease of visual inspection and touch-up.

- The unit is assembled with conventional solder and plating finish
- In the unlikely event of a unit needing to be removed, this can easily be achieved by heating and removing one pin at a time. Surface mount units which have been removed are not suitable for re-use and should be replaced with a suitable new part. Normal warranty criteria will apply to the removed units.

A number of conventional techniques may be employed when replacing a unit in the application. A suitable volume of solder paste (as recommended above) is applied to the cleaned pads using either a precision dispenser or a suitable mini-stencil. Reflow is achieved using standard SMT rework techniques such as IR or techniques developed for BGA components.

7.3 Water Washing

Where possible, a no-clean solder paste system should be used for solder attaching the EXQ50 product onto application boards. The EXQ50 is suitable for water washing applications, because it does not have entrapment areas where water and residues may become trapped long-term. However, the user must ensure that the drying process is sufficient to remove all water from the converter after washing - never power the converter unless it is fully dried. The user's process must clean the soldered assembly in accordance with ANSI/J-STD-001.

7.4 ESD Control

EXQ50 units are manufactured in an ESD controlled environment and supplied in conductive packaging to prevent ESD damage occurring before or during shipping. It is essential that they are unpacked and handled using approved ESD control procedures. Failure to do so may affect the lifetime of the converter.

7.5 Storage

All plastic encapsulated semiconductor components are qualified to IPC/JEDEC J-STD-020A level 1 and are classed as not moisture sensitive. No special storage conditions are required.

7.6 Packaging

The EXQ50 series of modules are available in 12 unit plastic vacuum formed trays which are stackable and feature a removable lid. These trays allow automated placement of the SXQ50 using surfacemount pick and place machines.

The SXQ50 is also available in tape and reel format. Contact Artesyn for details.

Figure 13 - Drawing of Vacuum Formed EXQ50 Packaging

Tray	Details
Size	322.07 (12.680) X 137.16 (5.40)
Weight	97g
Capacity	12
Material	Antistatic Vinyl

Application Note 120

8. Applications

8.1 Optimum Thermal Performance

The electrical operating conditions of the EXQ50, namely:

- Input voltage, V_{in}
- Output voltage, V_o
- Output current, I_o

determine how much power is dissipated within the converter. The following parameters further influence the thermal stresses experienced by the converter:

- Ambient temperature
- Air velocity
- Thermal efficiency of the end system application
- Parts mounted on system PCB that may block airflow
- Real airflow characteristics at the converter location

The maximum acceptable temperature measured at the thermal reference points is 115°C. These thermal reference points are shown in Figure 14. In airflow, the maximum temperature of the SOIC8 thermal reference is reduced to 105° C

Figure 14 - Thermal Reference Point Locations

Thermal Reference Number	Device/Location
1	Top Side Fiducial
2	SOIC8 Case
3	Transformer Core
4	SOIC8 Case

In order to simplify the thermal design, a number of graphs are given in the data sheet and are repeated in Figures 15, 16, 17 and 18. These derating graphs show the load current of the EXQ50 versus the ambient air temperature and forced air velocity. However, since the thermal performance is heavily dependent upon the final system application, the user needs to ensure the thermal reference point temperatures are kept within the recommended temperature rating. It is recommended that the thermal reference point temperatures are measured using a thermocouple or an IR camera. In order to comply with stringent Artesyn derating criteria the ambient temperature should never exceed 90°C. Please contact Artesyn Technologies for further support.

Figure 15 - Maximum Output Current vs. Ambient Temperature and Airflow for 5V Model

Figure 16 - Maximum Output Current vs. Ambient Temperature and Airflow for 3.3V Model

Figure 17 - Maximum Output Current vs. Ambient Temperature and Airflow for 2.5V Model

Figure 18 - Maximum Output Current vs. Ambient Temperature and Airflow for 1.8V Model

8.2 Remote Sense Compensation

The remote sense compensation feature minimizes the effect of resistance in the distribution system and facilitates accurate voltage regulation at the load terminals or another selected point. The remote sense lines will carry very little current and hence do not require a large cross-sectional area. However, if the sense lines are routed on a PCB, they should be located close to a ground plane in order to minimize any noise coupled onto the lines that might impair control loop stability. A small 100nF ceramic capacitor can be connected at the point of load to decouple any noise on the sense wires. The module will compensate for a maximum drop of 10% of the nominal output voltage. However, if the unit if already trimmed up, the available remote sense compensation range will be correspondingly reduced. Remember that when using remote sense compensation all the resistance, parasitic inductance and capacitance of the distribution system are incorporated into the feedback loop of the power module. This can have an effect on the module's compensation capabilities, affecting its stability and dynamic response.

8.3 Output Voltage Adjustment

The output can be externally trimmed by ±10% by connecting an external resistor between the TRIM pin and either the V_{sense+} or V_{sense+} pin. With an external resistor between TRIM and V_{sense+}, R_{TRIM_UP}, the output voltage setpoint increases. Conversely, connecting an external resistor between TRIM and V_{sense+}, R_{TRIM_DOWN}, the output voltage set point decreases. This is shown in Figures 21 and 22.

Figure 19- Trimming Output Voltage - Trim up

Figure 20 - Trimming Output Voltage - Trim Down

Application Note 120

$$Radj_down = \left[\frac{(V_{trim_down} - L)G}{(V_{out, nom} - V_{trim_down})} - H\right] k\Omega$$
$$Radj_up = \left(\left[\frac{GL}{(V_{trim_up} - L) - K}\right] - H\right) k\Omega$$

The relevant trim equations to derive the appropriate trim resistance are as follows:

Where,	
Vout, nom	is the nominal output voltage of the module
Vtrim-down	is the desired output voltage
(or Vtrim-up)	
R _{ADJ_DOWN}	is the resistor required to achieve the desired
	(trimmed down) output voltage
R _{ADJ_UP}	is the resistor required to achieve the desired
	(trimmed up) output voltage
G,H	are 5110 and 2050 respectively

and the following parameters are defined:

Model	К	L
5V Version	2.5	2.5
3.3V Version	2.06	1.24
2.5V Version	1.29	1.235
1.8V Version	0.585	1.232

Figure 21 - Typical Trim-Up Curve (resistor from TRIM to V_{sense} .)

Figure 22 - Typical Trim Down Curve (resistor from TRIM to $$V_{\mbox{sense +}}$)$

Note that when the output voltage is trimmed up by a certain percentage, the output current may have to be derated so that the maximum output power rating is not exceeded.

8.4 Parallel and Series Operation

Parallel operation of multiple EXQ50 converters is not recommended. If unavoidable, ORing diodes must be used to decouple the outputs. Droop resistors will support some passive current sharing. It should be noted that both measures will adversely affect power conversion efficiency.

Multiple EXQ50 converters can be connected in series but this may result in an increased level of common mode EMI. Contact your local Artesyn Technologies representative for further information.

8.5 Output Capacitance

The EXQ50 series has been designed for stable operation without the need for external capacitance at the output terminals. However, when powering loads with large dynamic current requirements, improved voltage regulation can be obtained by inserting capacitors as close as possible to the load. The most effective technique is to locate low ESR ceramic capacitors as close to the load as possible, using several capacitors to lower the overall ESR. These ceramic capacitors will handle the short duration high frequency components of the dynamic current requirement. In addition, higher values of electrolytic capacitors should be used to handle the mid-frequency components.

It is equally important to use good design practices when configuring the DC distribution system. Low resistance and low inductance PCB layout traces should be utilized, particularly in the high current output section. Remember that the capacitance of the distribution system and the associated ESR are within the feedback loop of the power module. This can have an effect on the module's compensation capabilities and its resultant stability and dynamic response performance. With large values of capacitance, the stability criteria depend on the magnitude of the ESR with respect to the capacitance. As much of the capacitance as possible should be outside the remote sensing loop and close to the load.

Note that the maximum rated value of output capacitance for all models is 5,000µF. Contact your local Artesyn Technologies representative for further information if larger output capacitance values are required in the application.

8.6 Reflected Ripple Current and Output Ripple & Noise Measurement

The measurement set-up outlined in Figure 23 has been used for both input reflected/terminal ripple current and output voltage ripple and noise measurements on EXQ50 series converters. When measuring output ripple and noise, a 50 Ω coaxial cable with a 50 Ω termination should be used to prevent impedance mismatch reflections disturbing the noise readings at higher frequencies. The input ripple current measurement setup is compatible with ETS 300 386-1.

Figure 23 - Input Reflected Ripple/Capacitor Ripple Current and Output Voltage Ripple and Noise Measurement Set-Up

8.7 Compatability with ADM1070 Hot Swap Controller

Inserting circuit boards into a live -48V backplane can cause large input transient currents when large capacitances are charged. These transient currents can cause glitches on the system power supply and permanently damage components on the board. To ensure that the input voltage is stable and within tolerance before being applied to the DC-DC converter, Artesyn Technologies recommends the use of a hot-swap controller, such as the ADM1070 from Analog Devices. This device controls harmful transient currents and ensures safe insertion or removal of the application board from a live backplane.

Figure 24 - Inrush Current Control using ADM1070

The ADM1070 is a 6-pin SOT-23, negative voltage hot-swap controller that allows a board to be safely inserted and removed from a live backplane. This product is compatible with the EXQ50/SXQ50 family.

The ADM1070 provides the following features:

- Inrush current is limited to a programmable value by controlling the gate voltage of an external N-channel pass transistor
- The pass transistor is turned off if the input voltage is less than the programmable under-voltage threshold or greater than the over-voltage threshold. A programmable electronic circuit breaker protects the system against shorts.

The UV/OV pin can be used to detect under-voltage and over-voltage conditions at the power supply input. The EXQ50/SXQ50 already has in-built under-voltage protection to ensure that the unit does not draw power from the source for voltages less than approximately 30V. Users should refer to the data sheet of the ADM1070 for details on setting the required UVLO and OVLO trip levels.

The ADM1070 features a current limiting function that protects against short circuits or excessive supply currents. The flow of current through the load is monitored by measuring the voltage across the sense resistor, R_{sense}. The action taken by the controller in the event of an input over-current condition will depend upon the severity of that condition. Please refer to the ADM1070 product datasheet on <u>www.analog.com</u> for details.