N-канальный МОП ПТ КП767A.

Краткий информационный лист

Область применения полевых транзисторов определяется их основными характеристиками:

- о Высокие динамические характеристики
- о Рабочая температура кристалла 150С
- о Низкое сопротивление во включенном состоянии
- о Низкая мощность управления
- о Высокое коммутируемое напряжение

Типовые применения следующие: высокочастотные импульсные источники питания, системы преобразователей и инверторов для управления скоростью электродвигателей постоянного и переменного тока, высокочастотные генераторы для индукционного нагрева, ультразвуковые генераторы, звуковые усилители, периферийные устройства для компьютеров, оборудование для телекоммуникаций.

Максимально допустимые значения

Условные обозначения	Параметр	Максимум	Ед.изм.
I _D @T _C =25C	Постоянный ток стока	5.2	A
I _D @T _C =70C	Постоянный ток стока	3.3	A
I_{DM}	Импульсный ток стока ⁽¹⁾	18	A
P _D @T _C =25C	Рассеиваемая мощность	50	Вт
	Линейное снижение мощности рассеивания от температуры	0.40	Вт/С
V_{GS}	Напряжение затвор-исток	¦20	В
E _{AS}	Энергия пробоя одиночным импульсом (2)	110	мДж
I _{AR}	Ток лавинного пробоя (1)	5.2	A
E _{AR}	Энергия пробоя повторяющимися импульсами (1)	5.0	мДж
dv/dt	Скорость нарастания напряжения на закрытом диоде ⁽³⁾	5.0	В/нс
T_{J} T_{STG}	Диапазон температур функционирования перехода и хранения прибора	от -55 до +150	С
	Температура пайки при времени менее 10 сек.	300	С

Электрические характеристики @T₁ = 25C (если не указано другое)

Усл. обозначение	Параметр	Мин.	Тип.	Макс.	Ед. изм	Режим измерения
V _{(BR)DSS}	Максимальное напряжение сток- исток	200	-	-	В	$V_{GS} = 0B,$ $I_{D} = 250 \text{MKA}$
$V_{(BR)DSS}/\Delta T_{J}$	Температурный коэффициент максимального напряжения	-	0.29	-	B/C	T = 25C, $I_D = 1 \text{ MA}$

R _{DS(on)}	Сопротивление сток-исток	-	-	0.80	Ом	$V_{GS} = 10B,$ $I_D = 3.1A^{(4)}$
V _{GS(th)}	Пороговое напряжение на затворе	2.0	-	4.0	В	$V_{DS} = V_{GS},$ $I_D = 250 \text{MKA}$
g_{fs}	Крутизна характеристики	1.5	-	-	A/B	$V_{DS} = 50B,$ $I_{D} = 3.1A^{(4)}$
		-	-	25		$V_{DS} = 200B,$ $V_{GS} = 0B$
I_{DSS}	Остаточный ток стока	-	-	250		$V_{DS} = 160B,$ $V_{GS} = 0B,$ $T_{J} = 150C$
$I_{ m GSS}$	Ток утечки затвора (прямой)	-	-	100	A	$V_{GS} = 20B$
	Ток утечки затвора (обратный)	-	-	-100	нА	$V_{GS} = -20B$

Характеристики исток-стока

Усл.обозн.	Параметр	Мин.	Тип.	Макс.	Ед.изм.	Режим изм.		
I_{S}	Постоянный ток истока (через встроенный диод)	ı	-	5.2				Условное обозначение
I_{SM}	Импульсный ток истока (через встроенный диод) (1)	1	-	18	A	полевого транзистора со встроенным диодом		
V_{SD}	Прямое напряжение на диоде	-	-	1.8	В	$T_J = 25C,$ $I_S = 5.2A$ $V_{GS} = 0B^{(4)}$		
t _{rr}	Время восстановления	-	150	300	нс	$T_{J} = 25C,$ $I_{F} = 4.8A$		
Q _{rr}	Заряд рассасывания	-	0.91	1.8	мкКл	$di / dt = 100A / \text{ MKC}^{(4)}$		

Примечания:

- $^{(1)}$ частота следования; длительн. импульса ограничена максимальной температурой кристалла $^{(2)}$ $V_{\rm DD}$ = 25B, начало $T_{\rm J}$ = 25C, L = 6.1мГн, $R_{\rm G}$ = 25 Oм, $I_{\rm AS}$ = 5.2A
- $^{(3)}$ $\rm I_{SD}$ ÷ 5.2A, di /dt ÷ 95A/мкс, $\rm V_{DD}$ ÷ $\rm V_{(BR)DSS}, \rm T_{J}$ ÷ 150C
- $^{(4)}$ длительн. импульса ÷ 300мкс, коэффициент заполнения ÷ 2%.