

BC856 thru BC859

Vishay Semiconductors formerly General Semiconductor

Small Signal Transistors (PNP)

Mechanical Data

Case: SOT-23 Plastic Package Weight: approx. 0.008g

Packaging Codes/Options:

E8/10K per 13" reel (8mm tape), 30K/box E9/3K per 7" reel (8mm tape), 30K/box Mounting Pad Layout 0.031 (0.8) 0.035 (0.9) 0.079 (2.0) 0.037 (0.95)

Туре	Marking	Туре	Marking
BC856A	ЗA	BC858A	3J
В	3B	В	3K
		C	3L
BC857A	3E	BC859A	4A
В	3F	В	4B
С	3G	С	4C

Features

- PNP Silicon Epitaxial Planar Transistors for switching and AF amplifier applications.
- Especially suited for automatic insertion in thick and thin-film circuits.
- These transistors are subdivided into three groups (A, B, and C) according to their current gain. The type BC856 is available in groups A and B, however, the types BC857, BC558 and BC859 can be supplied in all three groups. The BC849 is a low noise type.
- As complementary types, the NPN transistors BC846...BC849 are recomended.

Maximum Ratings and Thermal Characteristics (TA = 25°C unless otherwise noted)

Parameter		Symbol	Value	Unit	
Collector-Base Voltage	BC856 BC857 BC858, BC859	-Усво	80 50 30	V	
Collector-Emitter Voltage (Base shorted)	BC856 BC857 BC858, BC859	-Vces	80 50 30	V	
Collector-Emitter Voltage (Base open)	BC856 BC857 BC858, BC859	-Vceo	65 45 30	V	
Emitter-Base Voltage		-V _{EBO}	5	V	
Collector Current		-lc	100	mA	
Peak Collector Current		-Ісм	200	mA	
Peak Base Current		-I _{BM}	200	mA	
Peak Emitter Current		IEM	200	mA	
Power Dissipation at TsB = 50°C		Ptot	310 ⁽¹⁾	mW	
Thermal Resistance Junction to Ambient Air		R _{θJA}	450 ⁽¹⁾	°C/W	
Thermal Resistance Junction to Substrate Backside		Resb	320 ⁽¹⁾	°C/W	
Junction Temperature		Tj	150	°C	
Storage Temperature Range		Ts	-65 to +150	°C	
Note: (1) Device on fiberalass substrate see la	yout on third nade	•	•		

Note: (1) Device on fiberglass substrate, see layout on third page.

BC856 thru BC859

Vishay Semiconductors formerly General Semiconductor

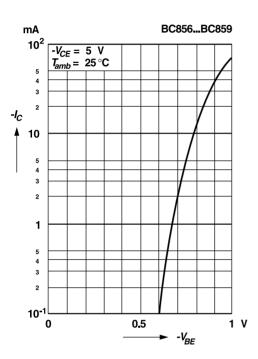
Electrical Characteristics (TJ = 25°C unless otherwise noted)

Parameter		Symbol	Test Condition	Min	Тур	Max	Unit
Current Gain	Current Gain Group A B C	h _{fe}	$-V_{CE} = 5V, -I_C = 2mA$ f = 1kHz		220 330 600		
Input Impedance	Current Gain Group A B C	hie	$-V_{CE} = 5V, -I_C = 2mA$ f = 1kHz	1.6 3.2 6.0	2.7 4.5 8.7	4.5 8.5 15.0	kΩ
Output Admittance	Current Gain Group A B C	h _{oe}	$-V_{CE} = 5V, -I_C = 2mA$ f = 1kHz		18 30 60	30 60 110	μS
Reverse Voltage Transfer Ratio	Current Gain Group A B C	hre	$-V_{CE} = 5V, -I_C = 2mA$ f = 1kHz		$\begin{array}{c} 1.5 \cdot 10^{-4} \\ 2 \cdot 10^{-4} \\ 3 \cdot 10^{-4} \end{array}$		
DC Current Gain	Current Gain Group A B C	hFE	–Vcε = 5V, –Ic = 10μA		90 150 270		
	Current Gain Group A B C	hFE	$-V_{CE} = 5 V, -I_{C} = 2mA$	110 200 420	180 290 520	220 450 800	
Collector Saturation Voltage		-VCEsat	$-I_{C} = 10 \text{ mA}, -I_{B} = 0.5 \text{mA}$ $-I_{C} = 100 \text{ mA}, -I_{B} = 5 \text{mA}$		90 250	300 650	mV
Base Saturation Voltage		-V _{BEsat}	$-I_{C} = 10 \text{ mA}, -I_{B} = 0.5 \text{mA}$ $-I_{C} = 100 \text{ mA}, -I_{B} = 5 \text{mA}$		700 900		mV
Base-Emitter Voltage–V _{BEon} –V _{CE}		= 5 V, –Ic :	= 2mA 600 -Vce = 5 V, -Ic = 10mA	660 —	750 —	826	
Collector-Base Cutoff Current		–Ісво	−V _{CB} = 30V −V _{CB} = 30V, TJ = 150°C		-	15 5	nA μA
Gain-Bandwidth Product		f⊤	$-V_{CE} = 5V, -I_{C} = 10mA$ f = 100MHz		150	_	MHz
Collector-Base Capacitance		Ссво	–V _{CB} = 10V, f = 1MHz	_	—	6	pF
Noise Figure BC	856, BC857, BC858 BC859	F	$\label{eq:constraint} \begin{array}{l} -V_{CE}=5V, \ -I_{C}=200\mu A\\ R_{G}=2k\Omega, f=1kHz, \ \Delta f=200Hz \end{array}$	_	2 1	10 4	dB
	BC859	F	$-V_{CE} = 5V, -I_{C} = 200\mu A$ R _G =2k Ω , f=3015000Hz	—	1.2	4	UD

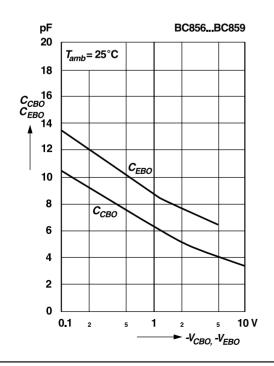
Note: (1) Device on fiberglass substrate, see layout on next page

Document Number 88169 09-May-02

BC856 thru BC859


Vishay Semiconductors formerly General Semiconductor

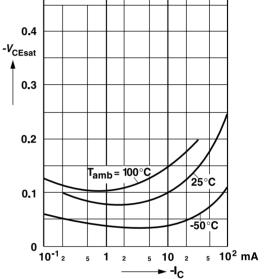
Ratings and


Characteristic Curves (TA = 25°C unless otherwise noted)

Collector current

versus base-emitter voltage

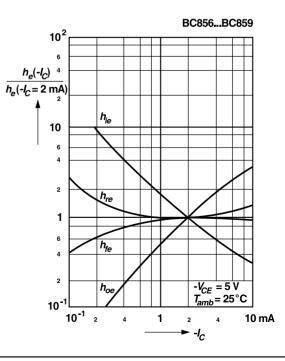
Collector-base capacitance, Emitter-base capacitance versus reverse bias voltage



0.4

v

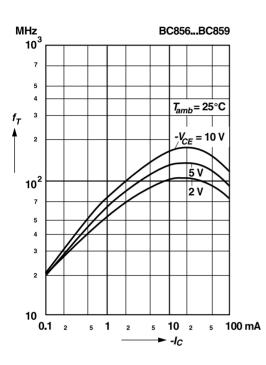
-I_C/-I_B = 20


0.5

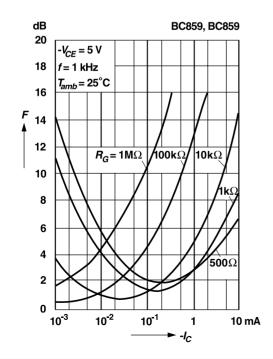
Collector saturation voltage

versus collector current

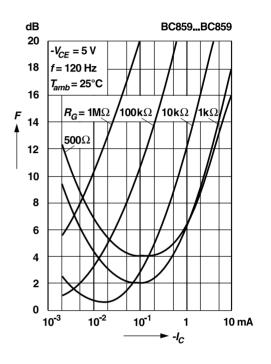
Relative h-parameters versus collector current

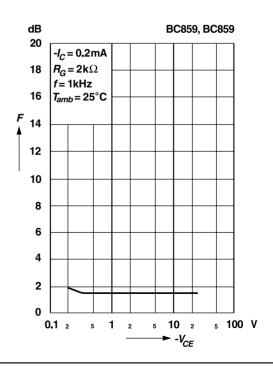


BC856...BC859



Ratings and Characteristic Curves (TA = 25°C unless otherwise noted)


Gain-bandwidth product versus collector current


Noise figure versus collector current

Noise figure versus collector current

Noise figure versus collector-emitter voltage

BC856 thru BC859

Vishay Semiconductors formerly General Semiconductor