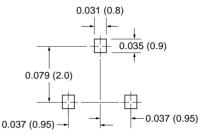


BC846 thru BC849

Vishay Semiconductors formerly General Semiconductor

Small Signal Transistors (NPN)



Mechanical Data

Case: SOT-23 Plastic Package Weight: approx. 0.008g

Packaging Codes/Options:

E8/10K per 13" reel (8mm tape), 30K/box E9/3K per 7" reel (8mm tape), 30K/box Mounting Pad Layout

Туре	Marking	Туре	Marking
BC846A	1A	BC848A	1J
В	1B	В	1K
BC847A	1E	C	1L
В	1F	BC849B	2B
С	1G	С	2C

Features

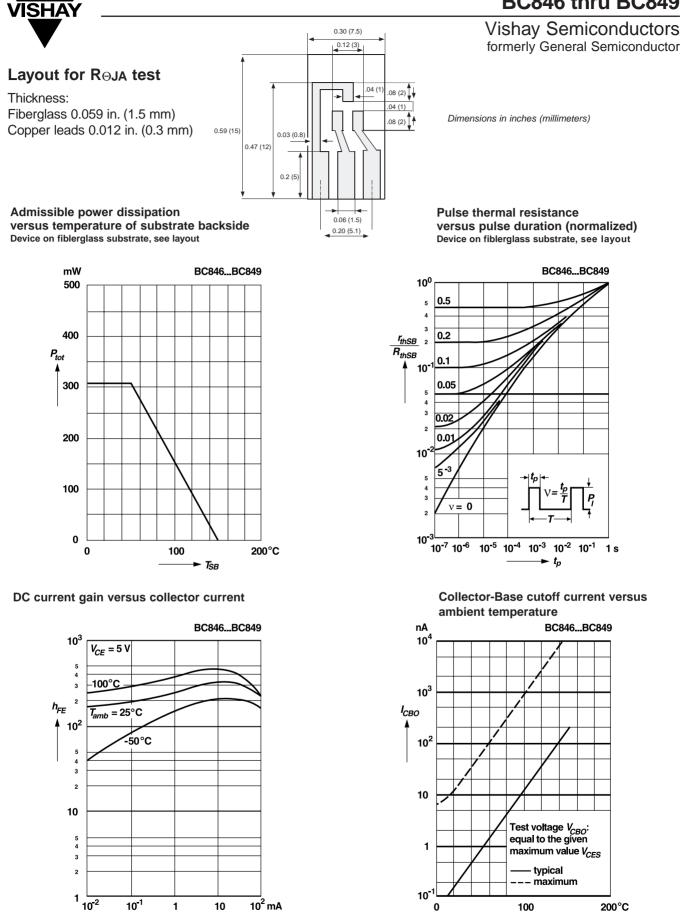
- NPN Silicon Epitaxial Planar Transistors for switching and AF amplifier applications.
- Especially suited for automatic insertion in thick and thin-film circuits.
- These transistors are subdivided into three groups (A, B, and C) according to their current gain. The type BC846 is available in groups A and B, however, the types BC847 and BC848 can be supplied in all three groups. The BC849 is a low noise type available in groups B and C. As complementary types, the PNP transistors BC856...BC859 are recommended.

Maximum Ratings and Thermal Characteristics (TA = 25°C unless otherwise noted)

Parameter		Symbol	Value	Unit
Collector-Base Voltage	BC846 BC847 BC848, BC849	Vсво	80 50 30	V
Collector-Emitter Voltage	BC846 BC847 BC848, BC849	VCES	80 50 30	V
Collector-Emitter Voltage	BC846 BC847 BC848, BC849	Vceo	65 45 30	V
Emitter-Base Voltage	BC846, BC847 BC848, BC849	Vebo	6 5	V
Collector Current		Ic	100	mA
Peak Collector Current		ICM	200	mA
Peak Base Current		Івм	200	mA
Peak Emitter Current		-Iem	200	mA
Power Dissipation at T _{SB} = 50°C		Ptot	310 ⁽¹⁾	mW
Thermal Resistance Junction to Ambiant Air		R _{θJA}	450 ⁽¹⁾	°C/W
Thermal Resistance Junction to Substrate Backside		Resb	320 ⁽¹⁾	°C/W
Junction Temperature		Tj	150	°C
Storage Temperature Range		Ts	-65 to +150	°C
Note: (1) Device on fiberglass substrate	see layout on third page		· · ·	

Note: (1) Device on fiberglass substrate, see layout on third page.

Vishay Semiconductors formerly General Semiconductor



Electrical Characteristics (TJ = 25°C unless otherwise noted)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Small Signal Current Gain Current Gain Group A B C	hfe	$V_{CE} = 5V, I_C = 2mA$ f = 1kHz		220 330 600		
Input Impedance Current Gain Group A B C	h _{ie}	$V_{CE} = 5V, I_C = 2mA$ f = 1kHz	1.6 3.2 6.0	2.7 4.5 8.7	4.5 8.5 15.0	kΩ
Output Admittance Current Gain Group A B C	h _{oe}	Vce = 5V, Ic = 2mA f = 1kHz		18 30 60	30 60 110	μS
Reverse Voltage Transfer Ratio Current Gain Group A B C	hre	Vce = 5 V, Ic = 2mA f = 1kHz		1.5 · 10 ⁻⁴ 2 · 10 ⁻⁴ 3 · 10 ⁻⁴		
DC Current Gain Current Gain Group A B C	hFE	V _{CE} = 5V, I _C = 10µA		90 150 270		
Current Gain Group A B C	hFE	$V_{CE} = 5V$, $I_C = 2mA$	110 200 420	180 290 520	220 450 800	
Collector Saturation Voltage	VCEsat	$\label{eq:IC} \begin{array}{l} IC = 10 \text{mA}, \ IB = 0.5 \text{mA} \\ IC = 100 \text{mA}, \ IB = 5 \text{mA} \end{array}$	_	90 200	250 600	mV
Base Saturation Voltage	VBEsat	$\label{eq:IC} \begin{array}{l} IC = 10 \text{mA}, \ IB = 0.5 \text{mA} \\ IC = 100 \text{mA}, \ IB = 5 \text{mA} \end{array}$		700 900		mV
Base-Emitter VoltageVBEon VCE	= 5V, IC =	2mA 580 V _{CE} = 5V, I _C = 10mA	660 —	700	77 8	
Collector-Base Cutoff Current	Ісво	V _{CB} = 30V V _{CB} = 30V, T _J = 150°C	_	_	15 5	nA μA
Gain-Bandwidth Product	fτ	Vce = 5V, Ic = 10mA f = 100MHz	_	300	_	MHz
Collector-Base Capacitance	Ссво	Vсв = 10V, f = 1МНz	_	3.5	6	pF
Emitter-Base Capacitance	Сево	VEB = 0.5V, f = 1MHz		9	_	pF
BC846, BC847, BC848 BC849 Noise Figure	F	$V_{CE} = 5V, I_C = 200\mu A$ RG=2k\Omega, f=1kHz, Δf = 200 Hz	_	2 1.2	10 4	dB dB
BC849		$V_{CE} = 5V, I_{C} = 200 \mu A \\ R_{G} = 2k\Omega, f = 3015000 Hz$	_	1.4	4	dB

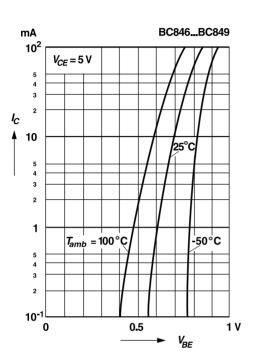
Note: (1) Device on fiberglass substrate, see layout on next page

BC846 thru BC849

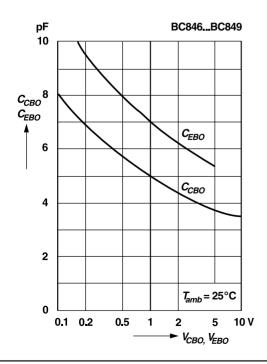
Document Number 88164 09-May-02

I_c

► T_{amb}

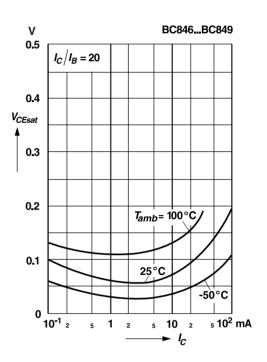

BC846 thru BC849

Vishay Semiconductors formerly General Semiconductor

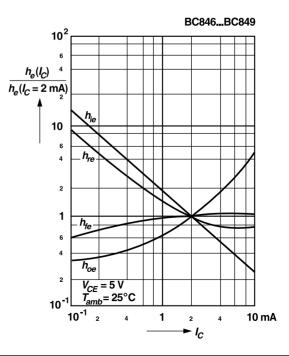

Ratings and

Characteristic Curves (TA = 25°C unless otherwise noted)

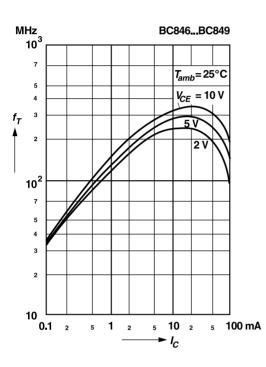
Collector current versus base-emitter voltage

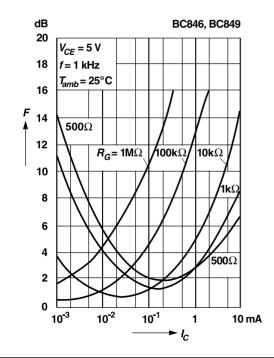


Collector base capacitance, Emitter base capacitance versus reverse bias voltage

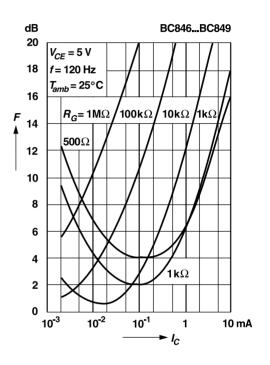


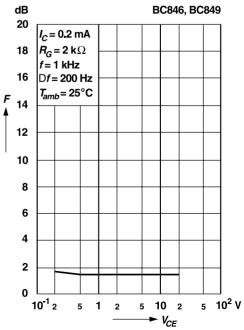
Collector saturation voltage versus collector current


Relative h-parameters versus collector current



Ratings and Characteristic Curves (TA = 25°C unless otherwise noted)


Gain-bandwidth product versus collector current


Noise figure versus collector current

Noise figure versus collector current

Noise figure versus collector emitter voltage

Document Number 88164 09-May-02

BC846 thru BC849

Vishay Semiconductors formerly General Semiconductor