

R195A 10 Gb/s Surface-Mount APD-TIA Receiver

Features

- High data-rate capability, up to 10.7 Gb/s
- -26 dBm typical sensitivity
- –2 dBm overload typical
- 2000 Ω typical differential gain
- Flat group delay
- Excellent linearity
- -5.2 volt single power supply
- Very small, surface-mount form factor

Applications

- WDM
- SONET transponders
- Very dense line cards

Description

The R195A receiver integrates a 10 Gb/s APD and TIA into a true surface-mount package. It is part of the industry's first multisource agreement (MSA) to standardize surface-mount 10 Gb/s receivers. These compact receivers can be mounted directly to a printedcircuit board, thus avoiding the space, routing, and EMI problems of a mechanical cut-out.

The R195A provides features optimized for WDM applications, most notably, linearity and flat group delay.

Absolute Maximum Ratings

Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. These are absolute stress ratings only. Functional operation of the device is not implied at these or any other conditions in excess of those given in the operational sections of the data sheet. Exposure to absolute maximum ratings for extended periods can adversely affect device reliability.

Parameter	Symbol	Min	Мах	Unit
Storage Case Temperature Range	Tstg	-40	85	°C
TIA Supply Voltage	VEE	-5.75	0.5	V
Photodiode Bias Voltage	Vpd	GND	Vbr	V
Optical Input Power, with VPD = VBR ¹ ,	Pin	—	0	dBm
with External Current Limiting Circuit		—	6	dBm
ESD-susceptibility, All Pins ²	_	—	500	V

1. VBR = breakdown voltage, defined at IDARK = 10 μ A.

2. Based on human-body model of R = 1500 Ω and C = 100 pF. In general, ESD precautions should be taken to avoid damage to the device.

Recommended Operating Conditions

Table 1. Recommended Operating Conditions

Parameter	Symbol	Min	Тур	Мах	Unit
Optical Wavelength	λ	1280	—	1610	nm
Operating Case Temperature Range	Тор	0	25	70	°C
TIA Supply Voltage	VEE	-5.5	-5.2	-4.95	V

Electrostatic Discharge

CAUTION: This device is susceptible to damage as a result of electrostatic discharge. Take proper precautions during both handling and testing. Follow guidelines such as JEDEC Publication No. 108-A (Dec. 1988).

TriQuint employs a human-body model (HBM) for ESD-susceptibility testing and protection-design evaluation. ESD voltage thresholds are dependent on the critical parameters used to define the model. A standard HBM (resistance = $1.5 \text{ k}\Omega$, capacitance = 100 pF) is widely used and can be used for comparison purposes.

Electrical/Optical Characteristics

Specified characteristics apply for the recommended operating conditions at beginning of life, unless noted otherwise. Temperatures are case temperature.

Table 2. Electrical/Optical Characteristics

Parameter	Symbol	Condition	Min	Тур	Мах	Unit
Sensitivity ¹	_	OC-192, PRBS 2 ³¹ – 1 NRZ, BER = 10 ⁻¹² , 25 °C	_	-26.0	-25.0	dBm
Overload ¹	_	OC-192, PRBS 2 ³¹ – 1 NRZ, BER = 10 ⁻¹² , 25 °C	-4	-2	_	dBm
Responsivity, $\lambda = 1550 \text{ nm}$	R1550	M = 1 25 °C 0 °C to 70 °C	0.75 0.7	0.8 0.75	_	A/W
Dark Current ²	ID	25 °C		—	250	nA
APD Voltage ³	Vop	25 °C	25	30	37	V
Breakdown Voltage	VBR	ID = 10 μA 25 °C	26	33	38	V
Temperature Coefficient of VBR	—			0.2	—	%/°C
Thermistor Resistance ⁴	Rтн	25 °C	9.5	10.0	10.5	kΩ
Thermistor Temperature Coefficient	_	_	_	-4.3	_	%/°C
Transimpedance ⁵	Ζτ	Small Signal, Differential	1.6	2.0	2.4	kΩ
Small Signal Bandwidth ⁵	S21	M = 9	7.5	8.5		GHz
Low-frequency cutoff	_	$P_{IN} = -20 \text{ dBm}$ -3 dB relative to 1 MHz	_	25	40	KHz
Output Return Loss ⁵	S22	50 Ω on each output 0.2 GHz—8 GHz	_	_	-8	dB
Group Delay⁵	GD	M = 9 0.5 GHz—5 GHz 5 GHz—8 GHz	_		±25 ±40	ps,p-p ps,p-p
TIA Supply Current	IEE	0 °C—70 °C	_	130	155	mA
Output Voltage	Vout	Single-ended, 50 Ω load	—	700	1000	mVp-p
Optical Return Loss	RL	1300 nm—1610 nm; without connector	27	—	—	dB

1. PRBS $2^{31} - 1$, 10^{-12} BER, external modulator Tx, BW > 10 GHz, λ = 1550 nm ± 10 nm, extinction ratio > 12 dB, NRZ (e.g., *Agilent* [®] Model 83433).

2. Dark current is measured at VOP = 0.9 VBR.

3. Optimum APD bias voltage (VoP) varies from device to device. The optimum value of VoP will be provided with each device.

4. The resistance of the thermistor is inversely proportional to the temperature. The temperature, in degree-Kelvin (Tκ), can be calculated from the resistance value using the Steinhart-Hart equation: 1/Tκ = A + B ln(RTH) + C [ln(RTH)]³, where RTH is the resistance and A, B, and C are constants: A = 1.0267 x 10⁻³; B = 2.565 x 10⁻⁴; C = -4.5421 x 10⁻⁸. The temperature in degree-Celsius is Tc = Tκ – 273.15.
5. For 25 °C, nominal bias voltage and optical input = -20 dBm ± 0.2 dB.

Note: Accuracy of optical powers in test condition column is \pm 0.2 dB.

Pin Information

Table 3. Pin Information

Pin	Symbol	Function
1	GND	Case Ground
2	Vpd	Photodiode Bias
3	NC	No Connection
4	VEE	TIA Bias (–5.2V)
5	NC	No Connection
6	GND	Case Ground
7	GND	Case Ground
8	Out_N	Data Output
9	GND	Case Ground
10	Out_P	Data Output
11	GND	Case Ground
12	GND	Case Ground
13	NC	No Connection
14	NC	No Connection
15	NC	No Connection
16	Rth	Thermistor
17	GND	Case Ground

Block Diagram

Outline Diagram

Dimensions are in inches and (millimeters).

Ordering Information

Table 4. R195A-Type Receiver Ordering Information

Product Code	Detector Type	Connector type	Fiber type
R195ACA	APD	SC/PC	SMF
R195ACF	APD	FC/PC	SMF
R195ACS	APD	LC	SMF
R195ACJ	APD	MU	SMF
R195ACJJ	APD	MU-J	SMF

Agilent is a registered trademark of Agilent Technologies, Inc.

Additional Information

For the latest specifications, additional product information, worldwide sales and distribution locations, and information about TriQuint:

Web: www.triquint.com

E-mail: info_opto@tqs.com

Tel: (484) 397-3800 Fax: (484) 397-3592

For technical questions and additional information on specific applications:

E-mail: info_opto@tqs.com

The information provided herein is believed to be reliable; TriQuint assumes no liability for inaccuracies or omissions. TriQuint assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. TriQuint does not authorize or warranty any TriQuint product for use in life-support devices and/or systems.

Copyright © 2003 TriQuint Semiconductor Inc. All rights reserved.

