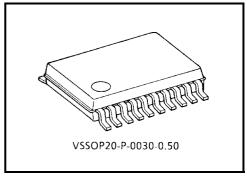
TOSHIBA CMOS Digital Integrated Circuit Silicon Monolithic

TC7MZ273FK

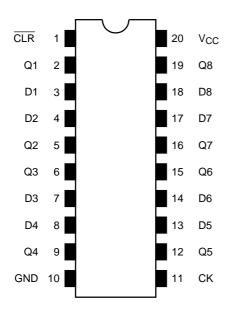

Low-Voltage Octal D-Type Flip-Flop with Clear with 5-V Tolerant Inputs and Outputs

The TC7MZ273FK is a high-performance CMOS octal D-type flip-flop. Designed for use in 3.3-V systems, it achieves high-speed operation while maintaining CMOS low power dissipation.

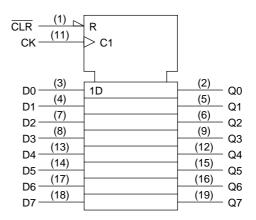
The device is designed for low-voltage (3.3-V) applications, but can also be used to interface both inputs and outputs with a 5-V supply environment.

D-input signal is sent to Q-output when clock rises. Clear input is Low-active and all flip-flop outputs are reset Low.

All inputs are equipped with protection circuits to guard against static discharge.



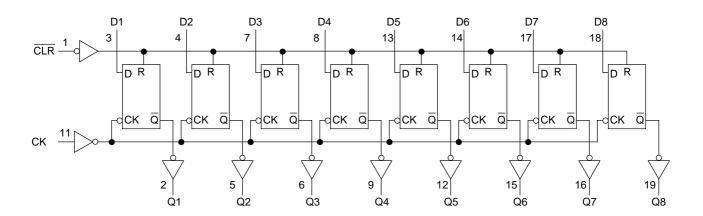
Weight: 0.03 g (typ.)


Features

- Low voltage operation: VCC = 2.0 V~3.6 V
- High-speed operation: $t_{pd} = 8.5 \text{ ns (max) (VCC} = 3.0 \text{ V} \sim 3.6 \text{ V)}$
- Output current: $|I_{OH}|/I_{OL} = 24 \text{ mA (min) (V}_{CC} = 3.0 \text{ V)}$
- Latch-up performance: ±500 mA
- Package: VSSOP (US20)
- Power-down protection is provided for all inputs and outputs.
- Pin and function compatible with the 74 Series (74AC/VHC/HC/F/ALS/LS etc.) 273 type.

Pin Assignment (top view)

IEC Logic Symbol



Truth Table

	Inputs		Outputs	Function
CLR	D	CK	Q	Tunction
L	Х	Х	L	Clear
Н	L		L	_
Н	Н		Н	_
Н	Х	\neg	Qn	No change

X: Don't care

System Diagram

2

Maximum Ratings

Characteristics	Symbol	Rating	Unit	
Supply voltage range	V _{CC}	-0.5~7.0	V	
DC input voltage	V _{IN}	-0.5~7.0	٧	
DC output voltage	V	-0.5~7.0 (Note1)	V	
DC output voltage	V _{OUT}	-0.5~V _{CC} + 0.5 (Note2)	V	
Input diode current	I _{IK}	-50	mA	
Output diode current	lok	±50 (Note3)	mA	
DC output current	lout	±50	mA	
Power dissipation	PD	180	mW	
DC V _{CC} /ground current	I _{CC} /I _{GND}	±100	mA	
Storage temperature	rage temperature T _{stg} -65~150		°C	

Note1: Output in off-state

Note2: High or low state. $I_{\mbox{\scriptsize OUT}}$ absolute maximum rating must be observed.

Note3: $V_{OUT} < GND, V_{OUT} > V_{CC}$

Recommended Operating Conditions

Characteristics	Symbol	Rating	Unit	
Supply voltage	V	2.0~3.6	٧	
Supply voltage	V _{CC}	-1.5~3.6 (Note4)	V	
Input voltage	V _{IN}	0~5.5	V	
Output voltage	V _{OUT}	0~5.5 (Note5)	V	
Output voltage		0~V _{CC} (Note6)	V	
Output current	la/la.	±24 (Note7)	mA	
Output current	I _{OH} /I _{OL}	±12 (Note8)	ША	
Operating temperature	T _{opr}	-40~85	°C	
Input rise and fall time	dt/dv	0~10 (Note9)	ns/V	

Note4: Data retention only

Note5: Output in off state

Note6: High or low state

Note7: $V_{CC} = 3.0 \sim 3.6 \text{ V}$

Note8: $V_{CC} = 2.7 \sim 3.0 \text{ V}$

Note9: $V_{IN} = 0.8 \sim 2.0 \text{ V}, V_{CC} = 3.0 \text{ V}$

Electrical Characteristics

DC Characteristics ($Ta = -40 \sim 85$ °C)

Characteristics		Symbol	Test Condition V _{CC} (V)		Min	Max	Unit	
		Symbol			V _{CC} (V)	IVIIII	IVIAX	Offic
Input voltage	High level	V _{IH}		_	2.7~3.6	2.0	_	V
input voltage	Low level	V _{IL}		_	2.7~3.6		0.8	v
				I _{OH} = -100 μA	2.7~3.6	V _{CC} - 0.2	_	V
	High level	V _{OH}	$V_{IN} = V_{IH}$ or V_{IL}	$I_{OH} = -12 \text{ mA}$	2.7	2.2	_	
				$I_{OH} = -18 \text{ mA}$	3.0	2.4	_	
Output voltage Lo				$I_{OH} = -24 \text{ mA}$	3.0	2.2	_	
	Low level V _{OL}		I _{OL} = 100 μA	2.7~3.6		0.2		
		Vo	$V_{IN} = V_{IH}$ or V_{IL}	I _{OL} = 12 mA	2.7		0.4	
	Low level	row level AOF		I _{OL} = 16 mA	3.0		0.4	
		I _{OL} = 24 mA	I _{OL} = 24 mA	3.0	_	0.55		
Input leakage current		I _{IN}	V _{IN} = 0~5.5 V		2.7~3.6	_	±5.0	μА
Power off leakage current		I _{OFF}	V _{IN} /V _{OUT} = 5.5 V		0	_	10.0	μА
Quiescent supply current	Icc	V _{IN} = V _{CC} or GND		2.7~3.6		10.0		
		V _{IN} = 3.6~5.5 V		2.7~3.6		±10.0	μΑ	
Increase in I _{CC} per input		Δl _{CC}	$V_{IN} = V_{CC} - 0.6 V$		2.7~3.6		500	

AC Characteristics ($Ta = -40 \sim 85$ °C)

Characteristics	Symbol	Symbol Test Condition		Min	Max	Unit
Gridiacieristics	Symbol	rest condition	V _{CC} (V)	IVIIII	IVIAX	Oill
Maximum clock frequency	f _{MAX}	Figure 1, Figure 2	2.7	_	_	MHz
Maximum clock frequency		rigule 1, rigule 2	3.3 ± 0.3	150	_	
Propagation delay time (CK-Q)	t _{PLH}	Figure 1, Figure 2	2.7	_	9.5	ns
Propagation delay time (CR-Q)	t _{PHL}	rigure 1, rigure 2	3.3 ± 0.3	1.5	8.5	
Propagation delay time (CLR -Q)	t	Figure 1, Figure 3	2.7	_	9.5	- ns
Propagation delay time (CLR -Q)	t _{PHL}	rigule 1, rigule 3	3.3 ± 0.3	1.5	8.5	
Minimum pulse width (CK)	t _{w (H)}	Figure 1, Figure 2	2.7	3.3	_	- ns
Williman paise wath (CK)	t _{w (L)}		3.3 ± 0.3	3.3	_	
Minimum bus width (CLR)	t _{w (L)}	Figure 3	2.7	3.3	_	ns
Willimidit bus width (CER)			3.3 ± 0.3	3.3	_	
Minimum set-up time	+	Figure 1, Figure 2	2.7	2.5	_	ns
willimum set-up time	t _S	rigule 1, rigule 2	3.3 ± 0.3	2.5	_	
Minimum hold time	t _h	Figure 1, Figure 2	2.7	1.5	_	ns
Minimum noid time			3.3 ± 0.3	1.5	_	
Minimum removal time	t _{rem}	Figure 4	2.7	2.5	_	- ns
		Figure 4	3.3 ± 0.3	2.0	_	
Output to output akow	t _{osLH}	(Note10)	2.7	_	_	no
Output to output skew	t _{osHL}		3.3 ± 0.3	_	1.0	ns

4

Note10: This parameter is guaranteed by design.

 $(t_{OSLH} = |t_{pLHm} - t_{pLHn}|, \, t_{OSHL} = |t_{pHLm} - t_{pHLn}|)$

Dynamic Switching Characteristics

(Ta = 25°C, Input: $t_r = t_f = 2.5 \text{ ns}$, $C_L = 50 \text{ pF}$, $R_L = 500 \Omega$)

Characteristics	Symbol	Test Condition	V _{CC} (V)	Тур.	Unit
Quiet output maximum dynamic V _{OL}	V_{OLP}	$V_{IH} = 3.3 \text{ V}, V_{IL} = 0 \text{ V}$	3.3	8.0	V
Quiet output minimum dynamic V _{OL}	V _{OLV}	$V_{IH} = 3.3 \text{ V}, V_{IL} = 0 \text{ V}$	3.3	8.0	٧

Capacitive Characteristics (Ta = 25°C)

Characteristics	Symbol	Test Condition	V _{CC} (V)	Тур.	Unit
Input capacitance	C _{IN}	_	3.3	7	pF
Output capacitance	C _{OUT}	_	0	8	pF
Power dissipation capacitance	C _{PD}	$f_{IN} = 10 \text{ MHz}$ (Note11	3.3	25	pF

Note11: C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption.

5

Average operating current can be obtained by the equation:

 $I_{CC (opr)} = C_{PD} \cdot V_{CC} \cdot f_{IN} + I_{CC}/8 \text{ (per bit)}$

AC Test Circuit

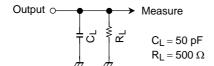


Figure 1

AC Waveform

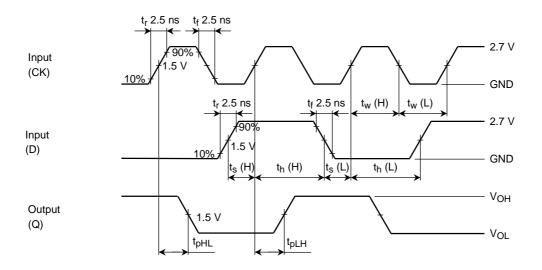
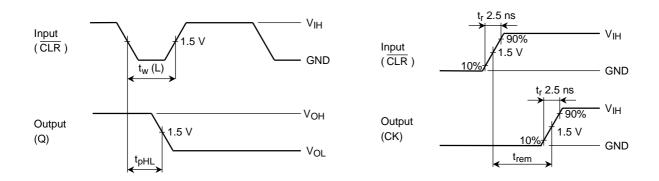
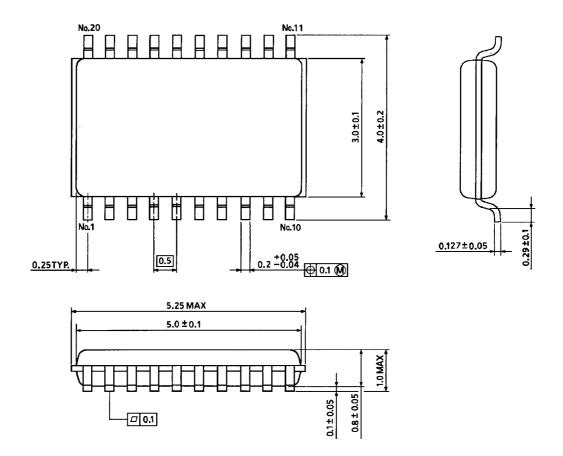



Figure 2 t_{pLH} , t_{pHL} , t_w , t_s , t_h



6

Figure 3 tpLH, tpHL

Figure 4 trem

Package Dimensions

Weight: 0.03 g (typ.)

RESTRICTIONS ON PRODUCT USE

000707EBA

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- The information contained herein is presented only as a guide for the applications of our products. No
 responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other
 rights of the third parties which may result from its use. No license is granted by implication or otherwise under
 any intellectual property or other rights of TOSHIBA CORPORATION or others.

8

The information contained herein is subject to change without notice.