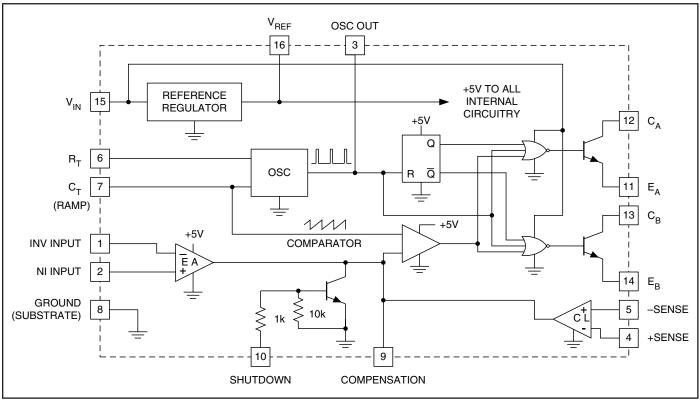
Advanced Regulating Pulse Width Modulators

FEATURES


- Complete PWM Power Control Circuitry
- Uncommitted Outputs for Single-ended or Push-pull Applications
- Low Standby Current...8mA Typical
- Interchangeable with SG1524, SG2524 and SG3524, Respectively

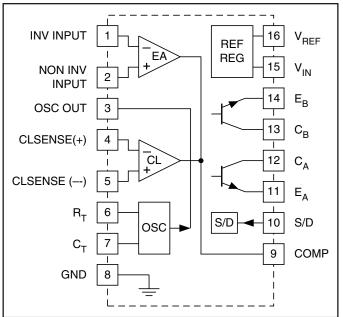
DESCRIPTION

The UC1524, UC2524 and UC3524 incorporate on a single monolithic chip all the functions required for the construction of regulating power supplies, inverters or switching regulators. They can also be used as the control element for high-power-output applications. The UC1524 family was designed for switching regulators of either polarity, transformer-coupled dc-to-dc converters, transformerless voltage doublers and polarity converter applications employing fixed-frequency, pulse-width modulation techniques. The dual alternating outputs allow either single-ended or push-pull applications. Each device includes an on-chip reference, error amplifier, programmable oscillator, pulse-steering flip-flop, two uncommitted output transistors, a high-gain comparator, and current-limiting and shut-down circuitry. The UC1524 is characterized for operation over the full military temperature range of -55°C to +125°C. The UC2524 and UC3524 are designed for operation from -25°C to +85°C and 0° to +70°C, respectively.

BLOCK DIAGRAM

SLUS180D - NOVEMBER 1999 - REVISED AUGUST 2002

UC1524 UC2524 UC3524


ABSOLUTE MAXIMUM RATINGS (Note 1)

- Note 1: Over operating free-air temperature range unless otherwise noted.
- Note 2: All voltage values are with respect to the ground terminal, pin 8.
- Note 3: The reference regulator may be bypassed for operation from a fixed 5V supply by connecting the V_{CC} and reference output pins both to the supply voltage. In this configuration the maximum supply voltage is 6V.
- Note 4: Consult packaging section of databook for thermal limitations and considerations of package.

RECOMMENDED OPERATING CONDITIONS

Supply Voltage, V _{CC}	8V to 40V
Reference Output Current	0 to 20mA
Current through C _T Terminal	0.03mA to -2mA
Timing Resistor, R _T	\ldots 1.8k Ω to 100k Ω
Timing Capacitor, C _T	0.001μF to 0.1μF
Operating Ambient Temperature Range	
UC1524	55°C to +125°C
UC2524	–25°C to +85°C
UC3524	$\dots 0^{\circ}C$ to +70°C

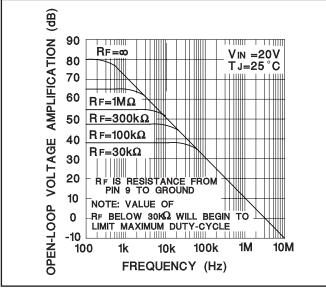
CONNECTION DIAGRAM

ELECTRICAL CHARACTERISTICS: Unless otherwise stated, these specifications apply for T _A = -55°C to +125°C
for the UC1524, -25° C to $+85^{\circ}$ C for the UC2524, and 0°C to $+70^{\circ}$ C for the UC3524, V _{IN} = 20V, and f = 20kHz,
$T_A = T_J.$

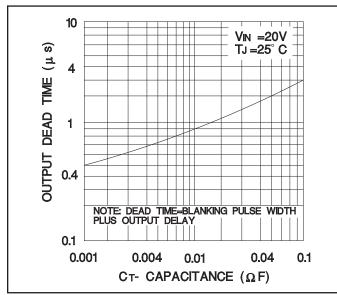
PARAMETER	TEST CONDITIONS	UC1524/UC2524			UC3524			UNITS
		MIN		MAX	MIN		MAX	
Reference Section								
Output Voltage		4.8	5.0	5.2	4.6	5.0	5.4	V
Line Regulation	VIN = 8 to 40V		10	20		10	30	mV
Load Regulation	IL = 0 to 20mA		20	50		20	50	mV
Ripple Rejection	f = 120Hz, TJ = 25°C		66			66		dB
Short Circuit Current Limit	$VREF = 0, TJ = 25^{\circ}C$		100			100		mA
Temperature Stability	Over Operating Temperature Range		0.3	1		0.3	1	%
Long Term Stability	TJ = 125°C, t = 1000 Hrs.		20			20		mV
Oscillator Section								
Maximum Frequency	$C_T = .001 \text{mfd}, R_T = 2 \text{k}\Omega$		300			300		kHz
Initial Accuracy	R _T and C _T Constant		5			5		%
Voltage Stability	$V_{IN} = 8$ to 40V, $T_J = 25^{\circ}C$			1			1	%
Temperature Stability	Over Operating Temperature Range			5			5	%
Output Amplitude	Pin 3, T _J = 25°C		3.5			3.5		V
Output Pulse Width	$C_{T} = .01 \text{mfd}, T_{J} = 25^{\circ}\text{C}$		0.5			0.5		μs
Error Amplifier Section								
Input Offset Voltage	$V_{CM} = 2.5V$		0.5	5		2	10	mV
Input Bias Current	$V_{CM} = 2.5V$		2	10		2	10	μA
Open Loop Voltage Gain		72	80		60	80		dB
Common Mode Voltage	T _J = 25°C	1.8		3.4	1.8		3.4	V

ELECTRICAL CHARACTERISTICS: Unless otherwise stated, these specifications apply for $T_A = -55^{\circ}C$ to $+125^{\circ}C$ for the UC1524, $-25^{\circ}C$ to $+85^{\circ}C$ for the UC2524, and $0^{\circ}C$ to $+70^{\circ}C$ for the UC3524, $V_{IN} = 20V$, and f = 20kHz, $T_A = T_J$.

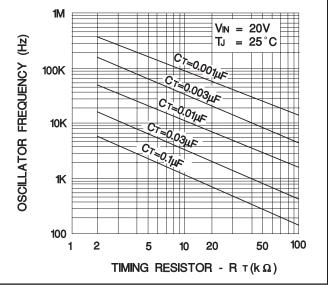
PARAMETER	TEST CONDITIONS	UC1524/UC2524			UC3524			UNITS
		MIN		MAX	MIN		MAX	
Error Amplifier Section (cont.)					_			
Common Mode Rejection Ratio	$T_J = 25^{\circ}C$		70			70		dB
Small Signal Bandwidth	$Av = 0dB, T_J = 25^{\circ}C$		3			3		MHz
Output Voltage	$T_J = 25^{\circ}C$	0.5		3.8	0.5		3.8	V
Comparator Section								
Duty-Cycle	% Each Output On	0		45	0		45	%
Input Threshold	Zero Duty-Cycle		1			1		V
	Maximum Duty-Cycle		3.5			3.5		V
Input Bias Current			1			1		μA
Current Limiting Section								
Sense Voltage	Pin 9 = 2V with Error Amplifier Set for Maximum Out, $T_J = 25^{\circ}C$	190	200	210	180	200	220	mV
Sense Voltage T.C.			0.2			0.2		mV/°C
Common Mode Voltage	$T_J = -55^{\circ}C$ to $85^{\circ}C$ for the $-1V$ to $1V$ Limit	-1		+1	-1		+1	V
	T _J = 125°C	-0.3		+1				V
Output Section (Each Output)								-
Collector-Emitter Voltage		40			40			V
Collector Leakage Current	$V_{CE} = 40V$		0.1	50		0.1	50	μA
Saturation Voltage	IC = 50 mA		1	2		1	2	V
Emitter Output Voltage	V _{IN} = 20V	17	18		17	18		V
Rise Time	$Rc = 2k\Omega$, $T_J = 25^{\circ}C$		0.2			0.2		μs
Fall Time	$Rc = 2k\Omega$, $T_J = 25^{\circ}C$		0.1			0.1		μs
Total Standby Current (Note)	$V_{IN} = 40V$		8	10		8	10	mA

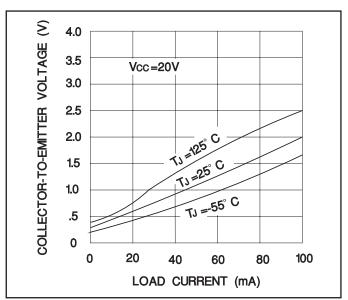

PRINCIPLES OF OPERATION

The UC1524 is a fixed-frequency pulse-width-modulation voltage regulator control circuit. The regulator operates at a frequency that is programmed by one timing resistor (R_T) , and one timing capacitor (C_T) , R_T establishes a constant charging current for C_T. This results in a linear voltage ramp at C_T, which is fed to the comparator providing linear control of the output pulse width by the error amplifier. The UC1524 contains an on-board 5V regulator that serves as a reference as well as powering the UC1524's internal control circuitry and is also useful in supplying external support functions. This reference voltage is lowered externally by a resistor divider to provide a reference within the common-mode range of the error amplifier or an external reference may be used. The power supply output is sensed by a second resistor divider network to generate a feedback signal to the error amplifier. The amplifier output voltage is then compared to the linear voltage ramp at CT. The resulting modulated pulse out of the high-gain comparator is then steered to


the appropriate output pass transistor (Q1 or Q2) by the pulse-steering flip-flop, which is synchronously toggled by the oscillator output. The oscillator output pulse also serves as a blanking pulse to assure both outputs are never on simultaneously during the transition times. The width of the blanking pulse is controlled by the valve of C_T. The outputs may be applied in a push-pull configuration in which their frequency is half that of the base oscillator, or paralleled for single-ended applications in which the frequency is equal to that of the oscillator. The output of the error amplifier shares a common input to the comparator with the current limiting and shutdown circuitry and can be overridden by signals from either of these inputs. This common point is also available externally and may be employed to control the gain of, or to compensate, the error amplifier or to provide additional control to the regulator.

UC1524 UC2524 UC3524


TYPICAL CHARACTERISTICS


Open-loop voltage amplification of error amplifier vs frequency.

Output dead time vs timing capacitance value.

Oscillator frequency vs timing components.

Output saturation voltage vs load current.

APPLICATION INFORMATION

Oscillator

The oscillator controls the frequency of the UC1524 and is programmed by R_T and C_T according to the approximate formula:

$$f'\frac{1.18}{R_{T}C_{T}}$$

 $\begin{array}{ll} \text{where} & R_T \text{ is in } k\Omega \\ & C_T \text{ is in } mF \\ & \text{f is in } kHz \end{array}$

Practical values of C_T fall between 0.001mF and 0.1mF. Practical values of R_T fall between 1.8k Ω and 100k Ω . This results in a frequency range typically from 120Hz to 500kHz.

Blanking

The output pulse of the oscillator is used as a blanking pulse at the output. This pulse width is controlled by the value of C_T . If small values of C_T are required for frequency control, the oscillator output pulse width may still be increased by applying a shunt capacitance of up to 100pF from pin 3 to ground. If still greater dead-time is required, it should be accomplished by limiting the maximum duty cycle by clamping the output of the error

amplifier. This can easily be done with the circuit in Figure 1:

Synchronous Operation

When an external clock is desired, a clock pulse of approximately 3V can be applied directly to the oscillator output terminal. The impedance to ground at this point is approximately $2k\Omega$. In this configuration $R_T C_T$ must be selected for a clock period slightly greater than that of the external clock.

If two or more UC1524 regulators are to operated synchronously, all oscillator output terminals should be tied together, all C_T terminals connected to single timing capacitor, and the timing resistor connected to a single R_T , terminal.

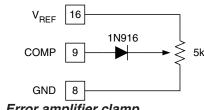


Figure 1. Error amplifier clamp.

The other $R_{\rm T}$ terminals can be left open or shorted to $V_{\rm REF}.$ Minimum lead lengths should be used between the $C_{\rm T}$ terminals.

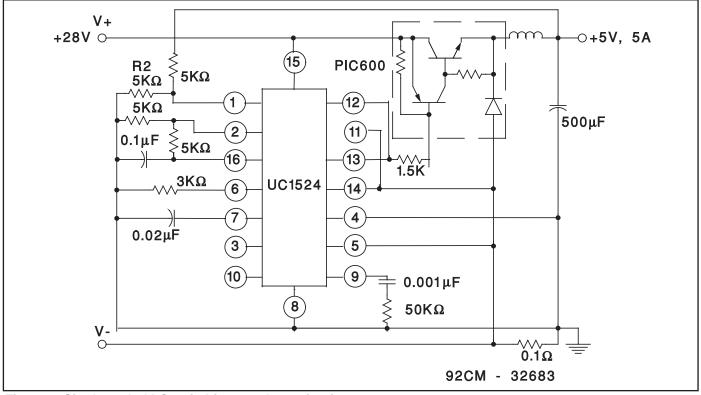


Figure 2. Single-ended LC switching regulator circuit.

UC1524 UC2524 UC3524

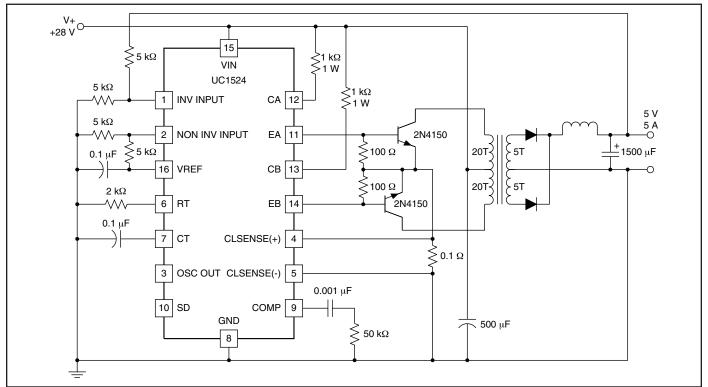


Figure 3. Push-pull transformer coupled circuit.

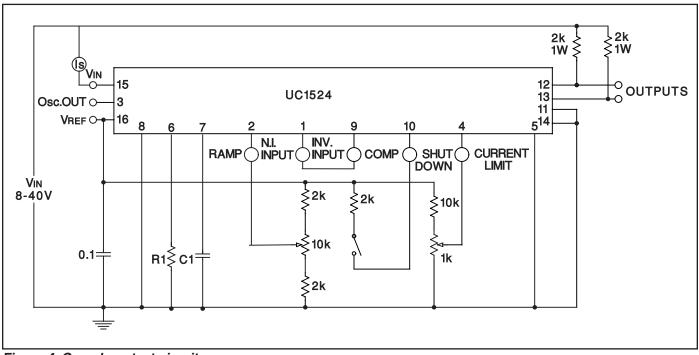


Figure 4. Open loop test circuit.

UNITRODE CORPORATION 7 CONTINENTAL BLVD. • MERRIMACK, NH 03054 TEL. (603) 424-2410 FAX (603) 424-3460

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third–party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Mailing Address:

Texas Instruments Post Office Box 655303 Dallas, Texas 75265

Copyright © 2002, Texas Instruments Incorporated