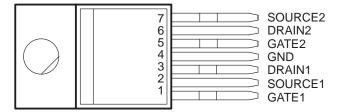
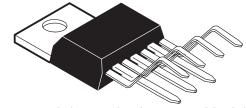

- Two 7.5-A Independent Output Channels, Continuous Current Per Channel
- Low r_{DS(on)} . . . 0.09 Ω Typical
- Output Voltage . . . 60 V
- Pulsed Current . . . 15 A Per Channel
- Avalanche Energy . . . 120 mJ


description


The TPIC5201 is a power monolithic DMOS array that consists of dual independent N-channel enhancement-mode DMOS transistors.

schematic

KV PACKAGE (TOP VIEW)

To ensure correct device operation, the source and the drain of the same transistor cannot simultaneously be taken below GND.

The tab is electrically connected to GND.

absolute maximum ratings over operating case temperature range (unless otherwise noted)

Drain-source voltage, V _{DS}
Source-GND voltage
Drain-GND voltage
Gate-source voltage, V _{GS} ±20 V
Continuous source-drain diode current
Pulsed drain current, each output, all outputs on, I _D (see Note 1)
Continuous drain current, each output, all outputs on
Single-pulse avalanche energy, E _{AS} (see Figure 4)
Continuous power dissipation at (or below) T _A = 25°C (see Note 2)
Continuous power dissipation at (or below) T _C = 75°C, all outputs on (see Note 2)
Operating virtual junction temperature range, T _J –40°C to 150°C
Operating case temperature range, T _C –40°C to 125°C
Storage temperature range, T _{stq} –40°C to 125°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds

NOTES: 1. Pulse duration = 10 ms, duty cycle = 6%

2. For operation above 25°C free-air temperature, derate linearly at the rate of 16 mW/°C. For operation above 75°C case temperature, and with all outputs conducting, derate linearly at the rate of 0.42 W/°C. To avoid exceeding the design maximum virtual junction temperature, these ratings should not be exceeded.

SLIS020 - SEPTEMBER 1992

electrical characteristics, $T_C = 25^{\circ}C$ (unless otherwise noted)

PARAMETER			TEST CONDITIONS				TYP	MAX	UNIT
V(BR)DS	Drain-source breakdown voltage	$I_D = 1 \mu A$,	$V_{GS} = 0$			60			V
VTGS	Gate-source threshold voltage	$I_D = 1 \text{ mA},$	V _{DS} = V _{GS}			1.2	1.75	2.4	V
V _{DS(on)}	Drain-source on-state voltage	I _D = 7.5 A,	V _{GS} = 15 V,	See Notes	3 and 4		0.68	0.94	V
\/===	Zero-gate-voltage drain current	\/ 40.\/	V== 0		T _C = 25°C		0.07	1	
VDSS	Zero-gate-voltage drain current	VDS = 46 V,	DS = 48 V, VDS = 0		T _C = 125°C		1.3	10	μΑ
IGSSF	Forward gate current, drain short circuited to source	V _{GS} = 20 V,	V _{DS} = 0				10	100	nA
I _{GSSR}	Reverse gate current, drain short circuited to source	$V_{GS} = -20 \text{ V},$	V _{DS} = 0				10	100	nA
r==0()	Static drain-source on-state	$V_{GS} = 15 \text{ V},$	I _D = 7.5 A,		T _C = 25°C		0.09	0.125	Ω
rDS(on)	resistance	See Notes 3 ar	nd 4 and Figur	es 5 and 6	T _C = 125°C		0.15	0.21	52
9fs	Forward transconductance	$V_{DS} = 15 V$,	I _D = 5 A,	See Notes	3 and 4	2.5	4.7		S
C _{iss}	Short-circuit input capacitance, common source						490		
C _{oss}	Short-circuit output capacitance, common source	V _{DS} = 25 V,	$V_{GS} = 0$,	f = 300 kHz			285		pF
C _{rss}	Short-circuit reverse transfer capacitance, common source						90		

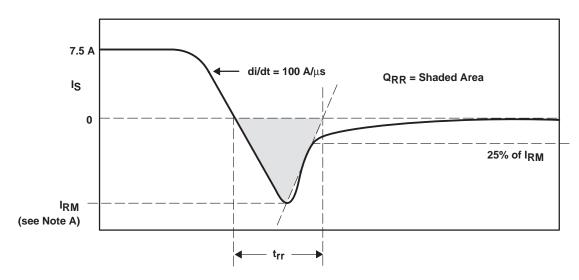
NOTES: 3. Technique should limit $T_J - T_C$ to 10°C maximum.

source-drain diode characteristics, $T_C = 25^{\circ}C$

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
VSD	Forward on voltage	I _S = 7.5 A, V _{GS} = 0,		0.8	1.3	V
t _{rr}	Reverse-recovery time	$di/dt = 100 \text{ A/}\mu\text{s}, \text{V}_{DS} = 48 \text{ V},$		200		ns
Q _{RR}	Total source-drain diode charge	See Figure 1		1.5		μС

resistive-load switching characteristics, $T_C = 25^{\circ}C$

	PARAMETER	1	MIN	TYP	MAX	UNIT		
t _d (on)	Turn-on delay time					12		
t _r	Rise time	$V_{DD} = 25 \text{ V},$ $t_{dis} = 10 \text{ ns},$	$R_L = 6.7 \Omega$,	$t_{en} = 10 \text{ ns},$		43		ns
td(off)	Turn-off delay time		See Figure 2			100		115
tf	Fall time					5		
Qg	Total gate charge					13.6	18	
Qgs	Gate-source charge	V _{DD} = 48 V, See Figure 3	$I_D = 2.5 A,$	$V_{GS} = 15,$		8.3	11	nC
Q _{gd}	Gate-drain charge	guio o				5.3	7	
L _D	Internal drain inductance					7		nH
LS	Internal source inductance	·		·		7		ш


thermal resistance

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
$R_{\theta JA}$	Junction-to-ambient thermal resistance	All outputs with equal power			62.5	°C/W
$R_{\theta JC}$	Junction-to-case thermal resistance	All outputs with equal power			2.4	°C/W
	Junction-to-case thermal resistance	One output dissipating power			3.3	°C/W

^{4.} These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts.

PARAMETER MEASUREMENT INFORMATION

NOTE A: I_{RM} = maximum recovery current

Figure 1. Reverse-Recovery-Current Waveforms of Source-Drain Diode

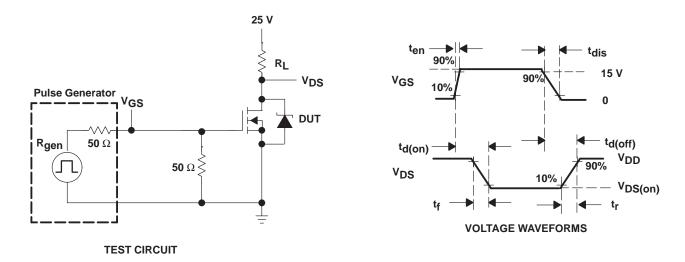


Figure 2. Resistive Switching

PARAMETER MEASUREMENT INFORMATION

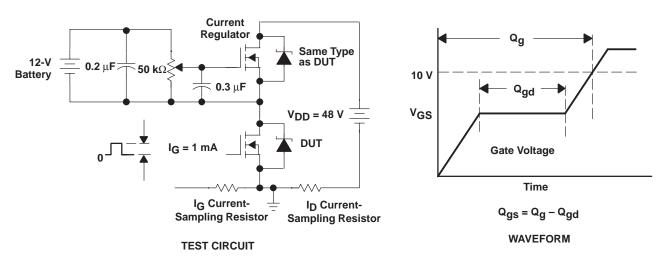
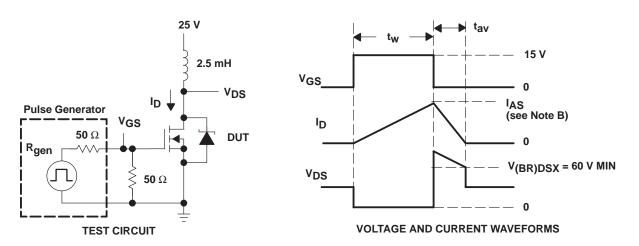



Figure 3. Gate Charge Test Circuit and Waveform

NOTES: A. The pulse generator has the following characteristics: $t_{\Gamma} \le 10$ ns, $t_{f} \le 10$ ns, $t_{O} = 50$ Ω .

B. Input pulse duration (t_W) is increased until peak current $I_{AS} = 7.5 \text{ A}$.

Energy test level is defined as
$$E_{AS} = \frac{I_{AS} \times V_{(BR)DSX} \times t_{av}}{2} = 120 \text{ mJ min.}$$

Figure 4. Single-Pulse Avalanche Energy Test Circuit and Waveforms

TYPICAL CHARACTERISTICS

STATIC DRAIN-SOURCE ON-STATE RESISTANCE

CASE TEMPERATURE 0.3 $I_D = 7.5 A$ 0.25 ^rDS(on) - Static Drain-Source V_{GS} = 5 V On-State Resistance – Ω 0.2 VGS = 10 V 0.15 0.1 V_{GS} = 15 V VGS = 20 V 0.05 0 - 50 - 25 25 50 75 100 125 T_C – Case Temperature – ${}^{\circ}C$

STATIC DRAIN-SOURCE ON-STATE RESISTANCE

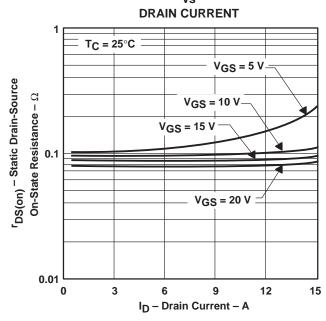
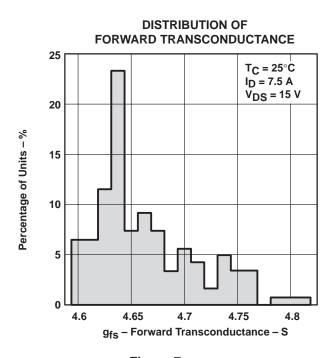



Figure 5

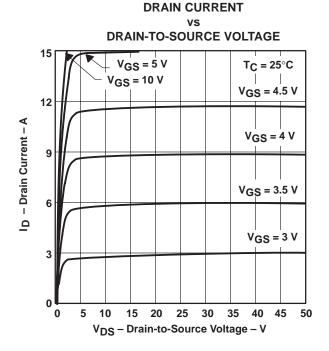


Figure 7

Figure 8

TYPICAL CHARACTERISTICS

GATE-SOURCE THRESHOLD VOLTAGE CASE TEMPERATURE V_{TGS} - Gate-Source Threshold Voltage - V $I_D = 1 \text{ mA}$ 1.8 1.6 1.4 1.2 1 8.0 0.6 0.4 0.2 - 50 - 25 25 50 75 100 125

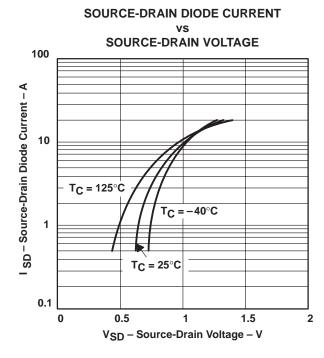
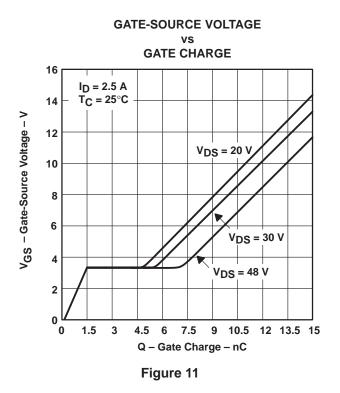



Figure 10

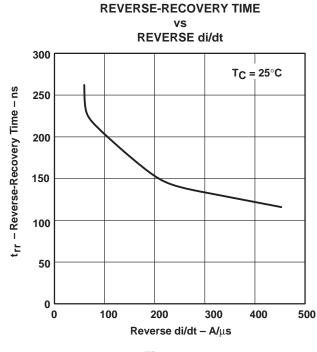


Figure 12

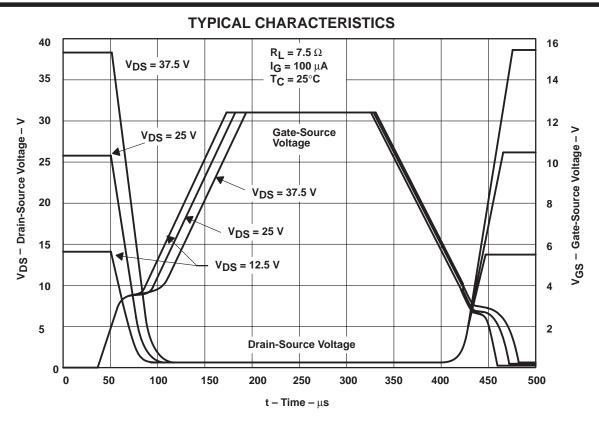
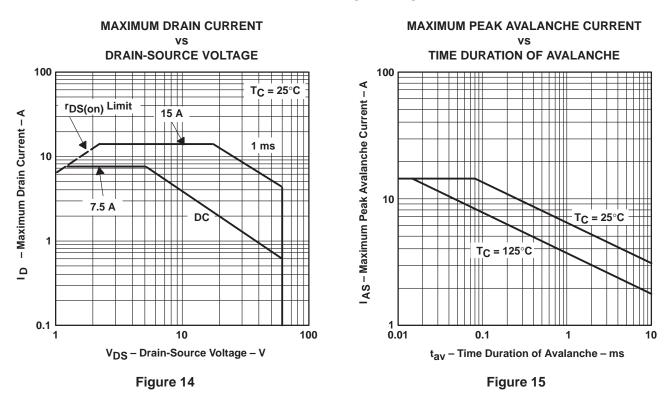



Figure 13. Resistive Switching Waveforms

THERMAL INFORMATION

NORMALIZED TRANSIENT THERMAL IMPEDANCE

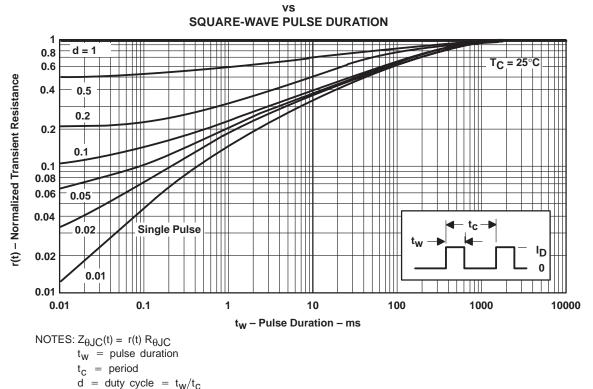


Figure 16

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated