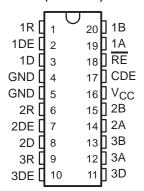
SLLS117B - APRIL 1991 - REVISED MAY 1995

- **Three Bidirectional Transceivers**
- Driver/Receiver Meets or Exceeds the Requirements of ANSI Standard RS-485 and ANSI Standard X3.131-1986 (SCSI)
- **High-Speed Advanced Low-Power Schottky** Circuitry
- **Designed for Multipoint Transmission on Long Bus Lines in Noisy Environments**
- Wide Positive and Negative Input/Output Bus Voltages Ranges . . . - 7 V to 12 V
- Driver Output Capacity . . . ±60 mA
- **Driver Positive and Negative Current** Limiting
- **Thermal Shutdown Protection**
- Receiver Input Sensitivity . . . ±200 mV Max
- Receiver Input Impedance . . . 12 k Ω Min
- Receiver Input Hysteresis . . . 50 mV Typ
- **Operates From a Single 5-V Supply**
- **Low Supply-Current Requirements** 72 mA Max
- Glitch-Free Power-up and Power-Down **Protection**

description

The SN75ALS1711 triple differential bus


transceiver is a monolithic integrated circuit designed for bidirectional data communication on multipoint bus transmission lines. It is designed for balanced

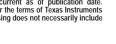
The SN75ALS1711 operates from a single 5-V power supply. The drivers and receivers have individual active-high and active-low enables, respectively, which can be externally connected together to function as a direction control. The driver differential output and the receiver differential input pairs are connected internally

to form differential input/output (I/O) bus ports that are designed to offer minimum loading to the bus when the driver is disabled or V_{CC} is at 0. These ports feature wide positive and negative common-mode voltage ranges

transmission lines and meets ANSI Standard RS-485 and ANSI Standard X3.131-1986 (SCSI).

making the device suitable for party-line applications. The SN75ALS1711 is characterized for operation from 0°C to 70°C. DW OR N PACKAGE (TOP VIEW)

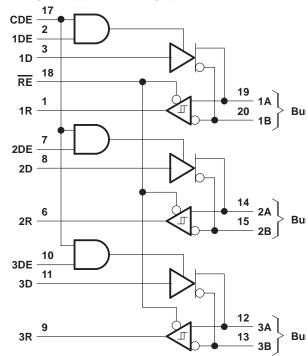
Function Tables

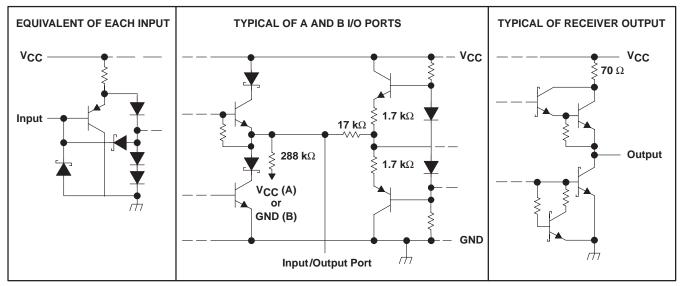

EACH DRIVER

INPUT	ENA	ABLES	OUT	PUTS
D	DE	CDE	Α	В
Н	Н	Н	Н	L
L	Н	Н	L	Н
X	L	X	Z	Z
X	Х	L	Z	Z

EACH RECEIVER

DIFFERENTIAL INPUTS A – B	ENABLE RE	OUTPUT R
V _{ID} ≥ 0.2 V	L	Н
$V_{ID} = -0.2 \text{ V to } 0.2 \text{ V}$	L	?
V _{ID} ≤ −0.2 V	L	L
X	Н	Z
Open	L	Н


H = high level, L = low-level, ? = indeterminate, X = irrelevant,Z = high impedance (off)


SLLS117B - APRIL 1991 - REVISED MAY 1995

logic symbol[†] 17 CDE -G5 1DE 5EN1 2DE 5EN2 10 5EN3 3DE 18 RE EN4 1 ▽ 1D -20 1 ▽ 1 **▽4** ┚ 2 ▽ 2 ▽ 1 2R П 3 ▽ \triangleright 3D 3 ▽ 1 **∀**4 П

logic diagram (positive logic)

schematics of inputs and outputs

All values are nominal.

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

SLLS117B - APRIL 1991 - REVISED MAY 1995

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC} (see Note 1)	$-0.5\ V$ to 7 V
Enable input voltage range, V _I	\dots -0.5 V to V _{CC} + 0.5 V
Input voltage range, V _I : Driver	\dots -0.5 V to V _{CC} + 0.5 V
Receiver	–9 V to 14 V
Output voltage range, VO: Driver	–9 V to 14 V
Receiver	-0.5 V to V_{CC} + 0.5 V
Continuous total power dissipation	See Dissipation Rating Table
Operating free-air temperature range, T _A	0°C to 70°C
Storage temperature range, T _{stq}	65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	260°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: All voltage values, except differential input/output bus voltage, are with respect to network ground terminal.

DISSIPATION RATING TABLE

PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING
DW	1125 mW	9.0 mW/°C	720 mW
N	1150 mW	9.2 mW/°C	736 mW

recommended operating conditions

		MIN	TYP	MAX	UNIT
Supply voltage, V _{CC}		4.75	5	5.25	V
Common-mode input voltage at an	y bus terminal, V _{IC} (see Note 2)	_7 [‡]		12	V
High-level input voltage, VIH	D, DE, RE, CDE	2			V
Low-level input voltage, V _{IL}	D, DE, RE, CDE			0.8	V
High lovel output ourrent leve	Driver			-60	mA
High-level output current, IOH	Receiver			-400	μΑ
Low-level output current, IOL	Driver			60	mA
	Receiver			8	ША
Operating free-air temperature, TA		0		70	°C

[‡] The algebraic convention, in which the less-positive (more-negative) limit is designated minimum, is used in this data sheet for common-mode input voltage and threshold voltage levels only.

NOTE 2: Differential-input/output bus voltage is measured at the noninverting terminal A with respect to the inverting terminal B.

DRIVER SECTION

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS		MIN	TYP [†]	MAX	UNIT
٧ıK	Input clamp voltage	I _I = –18 mA				-1.5	V
VO	Output voltage	IO = 0		0		6	V
V _{OD1}	Differential output voltage	I _O = 0		1.5		5	V
V _{OD2}	Differential output voltage	$R_L = 54 \Omega$,	See Figure 1	1.5		5	V
V _{OD3}	Differential output voltage	See Note 3 and F	igure 2	1.5		5	V
Δ V _{OD}	Change in magnitude of differential output voltage [‡]	$R_L = 54 \Omega$, See Figure 1				±0.2	V
Voc	Common-mode output voltage	R _L = 54 Ω,	See Figure 1			3 -1	V
Δ V _{OC}	Change in magnitude of common-mode output voltage‡	R _L = 54 Ω,	See Figure 1			±0.2	V
lo-	High-impedance state output current	Output disabled,	V _O = 12 V			1	mA
loz	nigh-impedance state output current	V _{CC} = 5.25 V	V _O = 7 V			-0.8	IIIA
lН	High-level input current, DE, EN, CDE	V _{IH} = 2.4 V				20	μΑ
I _{IL}	Low-level input current, DE, EN, CDE	V _{IL} = 0.4 V				-200	μΑ
laa	Short-circuit output current	V _O = 12 V				-250	mA
los		V _O = 7 V				250	IIIA
loo	Supply current	No load	Outputs enabled		48	72	mA
Icc	Supply current		Outputs disabled		30	48	IIIA

NOTE 3: This applies for both power on and off; refer to ANSI Standard RS-485 for exact conditions.

switching characteristics, $V_{\mbox{CC}}$ = 5 V \pm 5%, $T_{\mbox{A}}$ = 25°C

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT	
^t PLH	Differential propagation delay time, low- to high-level output	$R_L = 54 \Omega$,	C _L = 100 pF,	8	13	22	20	
^t PHL	Differential propagation delay time, high- to low-level output	See Figure 3	See Figure 3	8	15	22	ns	
^t PZH	Output enable time to high level	R _L = 110 Ω , See Figure 4	S1 open,	30	50	60		
^t PHZ	Output disable time from high level		$R_L = 110 \Omega$,	S2 closed	4	16	30	
tPZL	Output enable time to low level		S1 closed,	16	26	45	ns	
tPLZ	Output disable time from low level		S2 open	4	8	20		

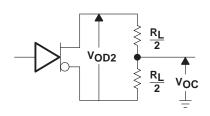
[†] All typical values are at $V_{CC} = 5$ V and $T_A = 25$ °C. ‡ $\Delta |V_{OD}|$ and $\Delta |V_{OC}|$ are the changes in magnitude of V_{OD} and V_{OC} , respectively, that occur when the input is changed from a high level to a low

RECEIVER SECTION

electrical characteristics over recommended ranges of common-mode input voltage, supply voltage, and operating free-air temperature (unless otherwise noted)

PARAMETER		TEST C	TEST CONDITIONS		TYP [†]	MAX	UNIT
V _{IT+}	Positive-going input threshold voltage	V _O = 2.7 V,	$I_{O} = -0.4 \text{ mA}$			0.2	V
VIT-	Negative-going input threshold voltage	$V_0 = 0.5 V$,	$I_O = 4 \text{ mA}$	-0.2‡			V
V _{hys}	Hysteresis voltage (V _{IT+} - V _{IT-})				50		mV
VIK	Input clamp voltage, RE	I _I = 18 mA				-1.5	V
Vон	High-level output voltage	$I_{OH} = -0.4 \text{ mA}$		2.4			V
VOL	Low-level output voltage	I _{OL} = 4 mA				0.5	V
loz	High-impedance-state output current	$V_{CC} = 5.25 \text{ V},$	V _O = 0.4 V to 2.4 V			±20	μΑ
	Line input current	Other input at 0,	V _I = 12 V			1	mA
'	Line input current	See Note 3	V _I = 7 V			-0.8	IIIA
lн	High-level input current, RE	V _{IH} = 2.4 V				20	μΑ
I _{IL}	Low-level input current, RE	V _{IL} = 0.4 V				-200	μΑ
rį	Input resistance			12			kΩ
los	Short-circuit output current§	VO = 0		-15		-130	mA
Lan	Supply current	No load	Outputs enabled		48	72	m /\
Icc			Outputs disabled		30	48	mA

NOTE 3: This applies for both power on and off; refer to ANSI Standard RS-485 for exact conditions.

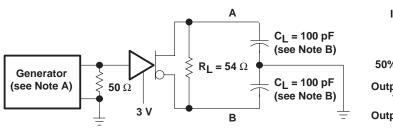

switching characteristics, V_{CC} = 5 V \pm 5%, T_A = 25°C

	PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	UNIT
^t PLH	Propagation delay time, low- to high-level output	See Figures 5 and 6		13	20	37	
^t PHL	Propagation delay time, high- to low-level output	See Figures 5 and 6	13	20	37	ns	
^t PZH	Output enable time to high level	See Figures 5 and 7	S1 to 1.5 V, S2 open, S3 closed	3	9	20	
tPHZ	Output disable time from high level			8	15	22	no
tPZL	Output enable time to low level		S1 to -1.5 V, S2 closed,	5	10	20	ns
^t PZL	Output enable time to low level		S3 open	5	9	16	

[†] All typical values are at V_{CC} = 5 V and T_A = 25°C. ‡ The algebraic convention, in which the less-positive (more-negative) limit is designated minimum, is used in this data sheet for common-mode input voltage and threshold voltage levels only.

[§] Not more than one output should be shorted at one time.

PARAMETER MEASUREMENT INFORMATION



375 Ω V_{OD3} § 60 Ω V_{test}

375 Ω

Figure 1. Driver $V_{\mbox{\scriptsize OD}}$ and $V_{\mbox{\scriptsize OC}}$

Figure 2. Driver V_{OD3}

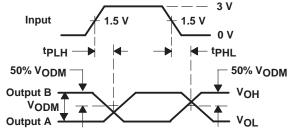
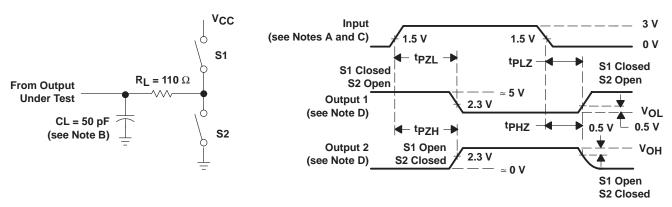



Figure 3. Driver Propagation Delay Times

NOTES: A. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, $Z_{O} = 50 \Omega$, $t_{r} \leq$ 10 ns, $t_{f} \leq$ 10 ns.

- B. C_I includes probe and jig capacitance.
- C. Each enable is tested separately.
- D. Output 1 and output 2 are outputs with internal conditions such that the output is low or high except when disabled by the output control.

Figure 4. Driver Enable/Disable Times

PARAMETER MEASUREMENT INFORMATION

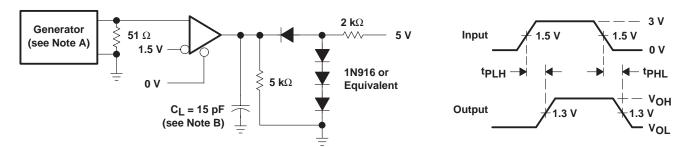
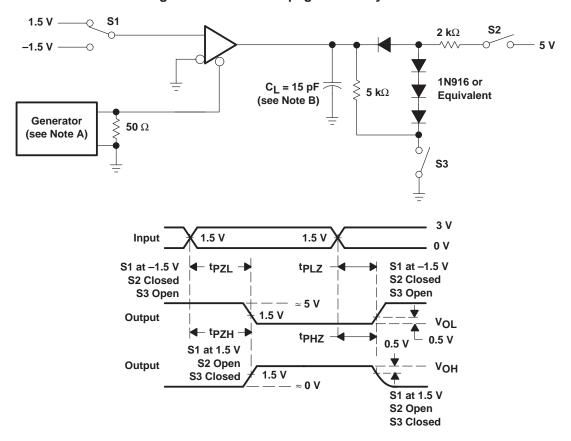



Figure 5. Receiver Propagation Delay Times

NOTES: A. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, Z_O = 50 Ω , $t_f \leq$ 10 ns, $t_f \leq$ 10 ns. B. C_L includes probe and jig capacitance.

Figure 6. Receiver Enable/Disable Times

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current and complete.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1998, Texas Instruments Incorporated