|      |                                                                                  |      | ,                  |                             |
|------|----------------------------------------------------------------------------------|------|--------------------|-----------------------------|
| •    | Member of the Texas Instruments<br><i>Widebus</i> ™ Family                       | DGG  | , DGV, OR<br>(TOP) | DL PACKAGE<br>VIEW)         |
| ٠    | <i>EPIC</i> <sup>™</sup> (Enhanced-Performance Implanted CMOS) Submicron Process |      | DE [ 1<br>Y1 [ 2   | 56 CLK                      |
| •    | Checks Parity                                                                    |      | Y2 3               | 54 11A/YERREN               |
| •    | Able to Cascade With a Second                                                    |      |                    | 53 GND                      |
|      | SN74ALVCH16903                                                                   |      | Y1 5               | 52 11Y1                     |
| •    | ESD Protection Exceeds 2000 V Per                                                |      | Y2 6               | 51 🛛 11Y2                   |
|      | MIL-STD-883, Method 3015; Exceeds 200 V                                          | V    |                    | 50 🛛 V <sub>CC</sub>        |
|      | Using Machine Model (C = 200 pF, R = 0)                                          | 3`   | Y1 🛛 8             | 49 2A                       |
| •    | Latch-Up Performance Exceeds 250 mA Per                                          |      | Y2 🛛 9             | 48 🛛 3A                     |
|      | JESD 17                                                                          |      | Y1 10              | 47 <b>4</b> A               |
| •    | Bus Hold on Data Inputs Eliminates the                                           |      | ND [ 11            | 46 GND                      |
|      | Need for External Pullup/Pulldown                                                |      | Y2 12              | 45 12A                      |
|      | Resistors                                                                        | -    | Y1 13<br>Y2 14     | 44   12Y1<br>43   12Y2      |
| •    | Package Options Include Plastic 300-mil                                          |      | Y2 U 14<br>Y1 U 15 | 43 1 12 Y 2<br>42 5A        |
|      | Shrink Small-Outline (DL), Thin Shrink                                           | -    | Y2 16              | 42 0 5A<br>41 0 6A          |
|      | Small-Outline (DGG), and Thin Very                                               |      | Y1 17              | 40 7A                       |
|      | Small-Outline (DGV) Packages                                                     |      |                    | 39 GND                      |
|      | vintion                                                                          |      | Y2 🛛 19            | 38 APAR                     |
| aesc | ription                                                                          | 8'   | Y1 20              | 37 🛛 8A                     |
|      | This 12-bit universal bus driver is designed for                                 | 8`   | Y2 🛛 21            | 36 J YERR                   |
|      | 2.3-V to 3.6-V V <sub>CC</sub> operation.                                        | V    | CC 22              | 35 🛛 V <sub>CC</sub>        |
|      | The SN74ALVCH16903 has dual outputs and can                                      |      | Y1 23              | 34 <b>9</b> A               |
|      | operate as a buffer or an edge-triggered register.                               |      | Y2 24              | 33 MODE                     |
|      | In both modes, parity is checked on APAR, which                                  |      | ND 25              | 32 GND                      |
|      | arrives one cycle after the data to which it applies.                            |      | Y1 26              |                             |
|      | The YERR output, which is produced one cycle                                     |      | Y2 27<br>DE 28     | 30    PARI/O<br>29    CLKEN |
|      | after APAR, is open drain.                                                       | PARC | /⊏ Ц∠⁰             | 29 UCLKEN                   |

MODE selects one of the two data paths. When MODE is low, the device operates as an edge-triggered register. On the positive transition of the clock (CLK) input and when the clock-enable (CLKEN) input is low, data set up at the A inputs is stored in the internal registers. On the positive transition of CLK and when CLKEN is high, only data set up at the 9A–12A inputs is stored in their internal registers. When MODE is high, the device operates as a buffer and data at the A inputs passes directly to the outputs. 11A/YERREN serves a dual purpose; it acts as a normal data bit and also enables YERR data to be clocked into the YERR output register.

When used as a single device, parity output enable (PAROE) must be tied high; when parity input/output (PARI/O) is low, even parity is selected and when PARI/O is high, odd parity is selected. When used in pairs and PAROE is low, the parity sum is output on PARI/O for cascading to the second SN74ALVCH16903. When used in pairs and PAROE is high, PARI/O accepts a partial parity sum from the first SN74ALVCH16903.

A buffered output-enable ( $\overline{OE}$ ) input can be used to place the 24 outputs and  $\overline{YERR}$  in either a normal logic state (high or low logic levels) or a high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and increased drive provide the capability to drive bus lines without need for interface or pullup components.



Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

EPIC and Widebus are trademarks of Texas Instruments Incorporated.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.



Copyright © 1998, Texas Instruments Incorporated

# description (continued)

OE does not affect the internal operation of the device. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

To ensure the high-impedance state during power up or power down,  $\overline{OE}$  should be tied to V<sub>CC</sub> through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.

The SN74ALVCH16903 is characterized for operation from 0°C to 70°C.

## **Function Tables**

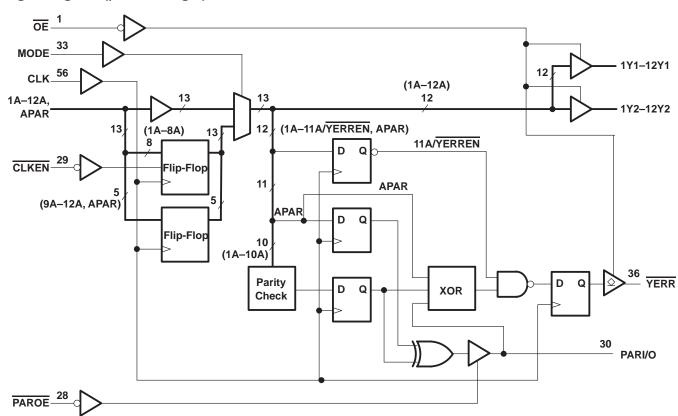
|    |      |        | FUI        | NCTION |                                     |                                      |  |  |
|----|------|--------|------------|--------|-------------------------------------|--------------------------------------|--|--|
|    |      | INPUTS |            |        | OUTPUTS                             |                                      |  |  |
| OE | MODE | CLKEN  | CLK        | Α      | 1Y <sub>n</sub> †–8Y <sub>n</sub> † | 9Yn <sup>†</sup> - 12Yn <sup>†</sup> |  |  |
| L  | L    | L      | Ŷ          | Н      | Н                                   | н                                    |  |  |
| L  | L    | L      | $\uparrow$ | L      | L                                   | L                                    |  |  |
| L  | L    | Н      | $\uparrow$ | Н      | Y <sub>0</sub>                      | н                                    |  |  |
| L  | L    | Н      | $\uparrow$ | L      | Y <sub>0</sub>                      | L                                    |  |  |
| L  | Н    | Х      | Х          | Н      | н                                   | н                                    |  |  |
| L  | Н    | Х      | Х          | L      | L                                   | L                                    |  |  |
| н  | Х    | Х      | Х          | Х      | Z                                   | Z                                    |  |  |

1n = 1, 2

#### PARITY FUNCTION

|    |                    | INP         | UTS    |                                    |      |                |
|----|--------------------|-------------|--------|------------------------------------|------|----------------|
| OE | PAROE <sup>‡</sup> | 11A/YERREN§ | PARI/O | $\Sigma$ OF INPUTS<br>1A – 10A = H | APAR | OUTPUT<br>YERR |
| L  | Н                  | L           | L      | 0, 2, 4, 6, 8, 10                  | L    | Н              |
| L  | Н                  | L           | L      | 1, 3, 5, 7, 9                      | L    | L              |
| L  | Н                  | L           | L      | 0, 2, 4, 6, 8, 10                  | Н    | L              |
| L  | Н                  | L           | L      | 1, 3, 5, 7, 9                      | Н    | Н              |
| L  | Н                  | L           | Н      | 0, 2, 4, 6, 8, 10                  | L    | L              |
| L  | Н                  | L           | Н      | 1, 3, 5, 7, 9                      | L    | н              |
| L  | Н                  | L           | Н      | 0, 2, 4, 6, 8, 10                  | Н    | н              |
| L  | Н                  | L           | Н      | 1, 3, 5, 7, 9                      | Н    | L              |
| Н  | Х                  | Х           | Х      | Х                                  | Х    | Н              |
| L  | Х                  | Н           | Х      | Х                                  | Х    | Н              |

<sup>‡</sup>When used as a single device, PAROE must be tied high.


§ Valid after appropriate number of clock pulses have set internal register



# **Function Tables (Continued)**

|                     | PARI/O FUNC       | тіон† |        |  |  |
|---------------------|-------------------|-------|--------|--|--|
|                     | INPUTS            |       | OUTPUT |  |  |
| PAROE               | 1A – 10A = H      |       |        |  |  |
| L 0, 2, 4, 6, 8, 10 |                   | L     | L      |  |  |
| L                   | 1, 3, 5, 7, 9     | L     | Н      |  |  |
| L                   | 0, 2, 4, 6, 8, 10 | Н     | Н      |  |  |
| L                   | 1, 3, 5, 7, 9     | Н     | L      |  |  |
| н                   | Х                 | Х     | Z      |  |  |

<sup>†</sup> This table applies to the first device of a cascaded pair of ALVCH16903 devices.



logic diagram (positive logic)



SCES095C - MARCH 1997 - REVISED MAY 1998

## absolute maximum ratings over operating free-air temperature range (unless otherwise noted)<sup>†</sup>

| Supply voltage range, $V_{CC}$<br>Input voltage range, $V_I$ (see Note 1)<br>Output voltage range, $V_O$ (see Notes 1 and 2)<br>Input clamp current, $I_{IK}$ ( $V_I < 0$ )<br>Output clamp current, $I_{OK}$ ( $V_O < 0$ )<br>Continuous output current, $I_O$<br>Continuous current through each $V_{CC}$ or GND<br>Package thermal impedance, $\theta_{JA}$ (see Note 3): DGG package | $\begin{array}{c} -0.5 \text{ V to } 4.6 \text{ V} \\ -0.5 \text{ V to } \text{V}_{CC} + 0.5 \text{ V} \\ -50 \text{ mA} \\ -50 \text{ mA} \\ \pm50 \text{ mA} \\ \pm100 \text{ mA} \\ 81^{\circ}\text{C/W} \end{array}$ |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DGV package                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                          |
| Storage temperature range, T <sub>stg</sub>                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                          |

<sup>†</sup> Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

2. This value is limited to 4.6 V maximum.

3. The package thermal impedance is calculated in accordance with JESD 51.

### recommended operating conditions (see Note 4)

|                     |                                    |                         |                                    | MIN | MAX | UNIT |
|---------------------|------------------------------------|-------------------------|------------------------------------|-----|-----|------|
| Vcc                 | Supply voltage                     |                         |                                    | 2.3 | 3.6 | V    |
| VIH                 | High-level input voltage           | $V_{CC} = 2.3 V to$     | 2.7 V                              | 1.7 |     | V    |
| VIН                 | righ-level liput voltage           | $V_{CC} = 2.7 V tc$     | 3.6 V                              | 2   |     | v    |
| VIL                 | Low-level input voltage            | $V_{CC} = 2.3 V to$     | 2.7 V                              |     | 0.7 | V    |
| _ vi∟               |                                    | $V_{CC} = 2.7 V tc$     | $V_{CC} = 2.7 V \text{ to } 3.6 V$ |     |     | v    |
| VI                  | Input voltage                      |                         |                                    | 0   | VCC | V    |
| VO                  | Output voltage                     |                         |                                    | 0   | VCC | V    |
|                     | High-level output current          | $V_{CC} = 2.3 V$        | Y port                             |     | -12 | mA   |
| ЮН                  |                                    | $V_{CC} = 2.7 V$        | 1 poir                             |     | -12 |      |
| "OH                 |                                    | V <sub>CC</sub> = 3 V   | PARI/O                             |     | -12 |      |
|                     |                                    | *:::=:::                | Y port                             |     | -24 |      |
|                     |                                    | V <sub>CC</sub> = 2.3 V | Y port                             |     | 12  |      |
|                     |                                    | $V_{CC} = 2.7 V$        | 1 poir                             |     | 12  |      |
| IOL                 | Low-level output current           |                         | PARI/O                             |     | 12  | mA   |
|                     |                                    | $V_{CC} = 3 V$          | Y port                             |     | 24  |      |
|                     |                                    |                         | YERR output                        |     | 24  |      |
| $\Delta t/\Delta v$ | Input transition rise or fall rate |                         |                                    | 0   | 10  | ns/V |
| ТА                  | Operating free-air temperature     |                         |                                    | 0   | 70  | °C   |

NOTE 4: All unused control inputs of the device must be held at V<sub>CC</sub> or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.



### electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

| PA       | RAMETER        | TEST                                 | CONDITIONS                      | VCC            | MIN                 | TYP† | MAX  | UNIT           |  |
|----------|----------------|--------------------------------------|---------------------------------|----------------|---------------------|------|------|----------------|--|
|          |                | I <sub>OH</sub> = -100 μA            |                                 | 2.3 V to 3.6 V | V <sub>CC</sub> -0. | 2    |      |                |  |
|          |                | I <sub>OH</sub> = -6 mA,             | V <sub>IH</sub> = 1.7 V         | 2.3 V          | 2                   |      |      |                |  |
|          | Vnort          |                                      | V <sub>IH</sub> = 1.7 V         | 2.3 V          | 1.7                 |      |      |                |  |
| VOH      | Y port         | I <sub>OH</sub> = -12 mA             | V <sub>IH</sub> = 2 V           | 2.7 V          | 2.2                 |      |      | V              |  |
|          |                |                                      | VIH = 2 V                       | 3 V            | 2.4                 |      |      |                |  |
|          |                | I <sub>OH</sub> = -24 mA,            | V <sub>IH</sub> = 2 V           | 3 V            | 2                   |      |      |                |  |
|          | PARI/O         | I <sub>OH</sub> = -12 mA,            | V <sub>IH</sub> = 2 V           | 3 V            | 2                   |      |      |                |  |
|          |                | I <sub>OL</sub> = 100 μA             |                                 | 2.3 V to 3.6 V |                     |      | 0.2  |                |  |
|          |                | I <sub>OL</sub> = 6 mA,              | V <sub>IL</sub> = 0.7 V         | 2.3 V          |                     |      | 0.4  |                |  |
|          | Y port         | I <sub>OL</sub> = 12 mA              | V <sub>IL</sub> = 0.7 V         | 2.3 V          |                     |      | 0.7  |                |  |
| VOL      |                | IOT = 12 IUX                         | V <sub>IL</sub> = 0.8 V         | 2.7 V          |                     |      | 0.4  | V              |  |
|          |                | I <sub>OL</sub> = 24 mA,             | V <sub>IL</sub> = 0.8 V         | 3 V            |                     |      | 0.55 |                |  |
|          | PARI/O         | I <sub>OL</sub> = 12 mA,             | V <sub>IL</sub> = 0.8 V         | 3 V            |                     |      | 0.55 |                |  |
|          | YERR output    | I <sub>OL</sub> = 24 mA              |                                 | 3 V            |                     |      | 0.5  |                |  |
| Ц        |                | $V_I = V_{CC}$ or GND                |                                 | 3.6 V          |                     |      | ±5   | μA             |  |
|          |                | V <sub>I</sub> = 0.7 V               |                                 | 2.3 V          | 45                  |      |      |                |  |
|          |                | V <sub>I</sub> = 1.7 V               |                                 | 2.3 V          | -45                 |      |      |                |  |
| II(hold) | )              | V <sub>I</sub> = 0.8 V               |                                 | 3 V            | 75                  |      |      | μΑ             |  |
|          |                | V <sub>1</sub> = 2 V                 |                                 | 3 V            | -75                 |      |      |                |  |
|          |                | $V_{I} = 0$ to 3.6 V <sup>‡</sup>    |                                 | 3.6 V          |                     |      | ±500 |                |  |
| IOH      | YERR output    | AO = ACC                             |                                 | 0 to 3.6 V     |                     |      | ±10  | μA             |  |
| Ioz§     |                | $V_{O} = V_{CC}$ or GND              |                                 | 3.6 V          |                     |      | ±10  | μA             |  |
| ICC      |                | $V_{I} = V_{CC}$ or GND,             | I <sub>O</sub> = 0              | 3.6 V          |                     |      | 40   | μA             |  |
| ∆ICC     |                | One input at V <sub>CC</sub> –0.6 V, | Other inputs at $V_{CC}$ or GND | 3 V to 3.6 V   |                     |      | 750  | μA             |  |
| Ci       | Control inputs | $V_{I} = V_{CC}$ or GND              |                                 | 3.3 V          |                     | 5.5  |      | pF             |  |
| <u> </u> | Data inputs    |                                      |                                 | 3.3 V          |                     | 5.5  |      | - Pr           |  |
| 0        | YERR output    |                                      |                                 | 3.3 V          |                     | 5    |      | pF             |  |
| Co       | Data outputs   | $V_{O} = V_{CC} \text{ or } GND$     |                                 | 3.3 V          |                     | 6    |      | р <del>г</del> |  |
| Cio      | PARI/O         | $V_{O} = V_{CC}$ or GND              |                                 | 3.3 V          |                     | 7    |      | pF             |  |

<sup>†</sup> All typical values are at  $V_{CC}$  = 3.3 V,  $T_A$  = 25°C. <sup>‡</sup> This is the bus-hold maximum dynamic current required to switch the input from one state to another.

§ For I/O ports, the parameter IOZ includes the input leakage current.



SCES095C - MARCH 1997 - REVISED MAY 1998

# timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figures 1 and 4)

|                 |                     |                              |               | V <sub>CC</sub> =<br>± 0. |     | V <sub>CC</sub> = 2.7 V |     | V <sub>CC</sub> = 3.3 V<br>± 0.3 V |     | UNIT |
|-----------------|---------------------|------------------------------|---------------|---------------------------|-----|-------------------------|-----|------------------------------------|-----|------|
|                 |                     |                              |               | MIN                       | MAX | MIN                     | MAX | MIN                                | MAX |      |
| fclock          | Clock frequency     |                              |               |                           | 125 |                         | 125 |                                    | 125 | MHz  |
| tw              | Pulse duration, CLK | $\uparrow$                   |               | 3                         |     | 3                       |     | 3                                  |     | ns   |
|                 |                     | 1A–12A before CLK↑           | Register mode | 1.7                       |     | 1.9                     |     | 1.45                               |     |      |
|                 |                     | 1A–10A before CLK↑           | Buffer mode   | 5.9                       |     | 5.2                     |     | 4.4                                |     |      |
|                 |                     | APAR before CLK <sup>↑</sup> | Register mode | 1.2                       |     | 1.5                     |     | 1.3                                |     |      |
| t <sub>su</sub> | Setup time          |                              | Buffer mode   | 4.6                       |     | 3.6                     |     | 3.1                                |     | ns   |
|                 |                     | PARI/O before CLK↑           | Both modes    | 2.4                       |     | 2                       |     | 1.7                                |     |      |
|                 |                     | 11A/YERREN before CLK↑       | Buffer mode   | 2                         |     | 1.9                     |     | 1.6                                |     |      |
|                 |                     | CLKEN before CLK1            | Register mode | 2.5                       |     | 2.6                     |     | 2.2                                |     |      |
|                 |                     | 1A–12A after CLK↑            | Register mode | 0.4                       |     | 0.25                    |     | 0.55                               |     |      |
|                 |                     | 1A–10A after CLK↑            | Buffer mode   | 0.25                      |     | 0.25                    |     | 0.25                               |     |      |
|                 |                     |                              | Register mode | 0.7                       |     | 0.4                     |     | 0.7                                |     |      |
|                 | Hold time           | APAR after CLK↑              | Buffer mode   | 0.25                      |     | 0.25                    |     | 0.25                               |     |      |
| th              | Hold lime           |                              | Register mode | 0.25                      |     | 0.25                    |     | 0.4                                |     | ns   |
|                 |                     | PARI/O after CLK↑            | Buffer mode   | 0.25                      |     | 0.25                    |     | 0.5                                |     |      |
|                 |                     | 11A/YERREN after CLK↑        | Buffer mode   | 0.25                      |     | 0.25                    |     | 0.4                                |     | 1    |
|                 |                     | CLKEN after CLK↑             | Register mode | 0.25                      |     | 0.5                     |     | 0.4                                |     |      |

# switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figures 1 and 4)

| PA               | RAMETER        | FROM<br>(INPUT) | TO<br>(OUTPUT) |     | V <sub>CC</sub> = 2.5 V<br>± 0.2 V |     | 2.7 V | = ۷ <sub>CC</sub><br>± 0.3 |     | UNIT |  |
|------------------|----------------|-----------------|----------------|-----|------------------------------------|-----|-------|----------------------------|-----|------|--|
|                  |                | (INFOT)         | (001F01)       | MIN | MAX                                | MIN | MAX   | MIN                        | MAX |      |  |
| f <sub>max</sub> |                |                 |                | 125 |                                    | 125 |       | 125                        |     | MHz  |  |
|                  | Buffer mode    | А               | Y              | 1   | 4.4                                |     | 4.2   | 1.1                        | 3.8 |      |  |
| <sup>t</sup> pd  | Deth medee     | CLK             | YERR           | 1   | 5.7                                |     | 4.9   | 1.4                        | 4.4 | ns   |  |
|                  | Both modes     | CLK             | PARI/O         | 1.2 | 8.6                                |     | 7.9   | 1.7                        | 6.6 |      |  |
| tpd <sup>†</sup> | Both modes     | CLK             | PARI/O         | 1   | 6.8                                |     | 5.2   | 1.3                        | 4.5 | ns   |  |
| tpd              | Both modes     | MODE            | Y              | 1   | 5.9                                |     | 5.8   | 1.3                        | 4.9 | ns   |  |
| <sup>t</sup> PLH | Desister mode  | CLK             | Y              | 1   | 6.1                                |     | 5.5   | 1.2                        | 4.8 | 20   |  |
| <sup>t</sup> PHL | Register mode  | CLK             |                | 1   | 5.9                                |     | 4.9   | 1.2                        | 4.6 | ns   |  |
|                  | Both modes     | OE              | Y              | 1.1 | 6.5                                |     | 6.4   | 1.4                        | 5.4 | 20   |  |
| ten              | Both modes     | PAROE           | PARI/O         | 1   | 5.6                                |     | 6     | 1                          | 4.8 | ns   |  |
|                  | Dette see de s | OE              | Y              | 1   | 6.4                                |     | 5.2   | 1.7                        | 5   |      |  |
| <sup>t</sup> dis | Both modes     | PAROE           | PARI/O         | 1   | 3.2                                |     | 3.8   | 1.2                        | 3.8 | ns   |  |
| <sup>t</sup> PLH | Dath madas     |                 | VEDD           | 1   | 3.6                                |     | 4.2   | 1.9                        | 4   |      |  |
| <sup>t</sup> PHL | Both modes     | ŌĒ              | YERR           | 1.2 | 5.1                                |     | 4.9   | 1.5                        | 4.2 | ns   |  |

<sup>†</sup> See Figures 2 and 5 for the load specification.

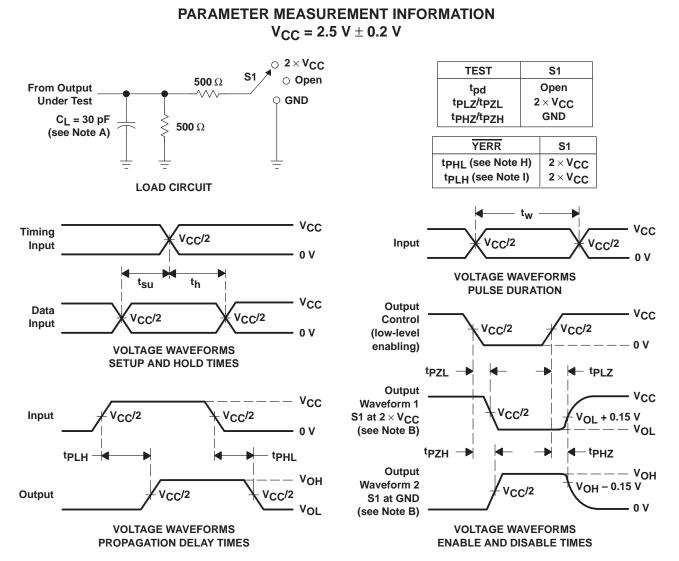


# simultaneous switching characteristics (see Figures 3 and 6)<sup>†</sup>

| PA               | PARAMETER (INPUT) (O |     | TO<br>(OUTPUT) | V <sub>CC</sub> = 2.5 V<br>± 0.2 V |     | V <sub>CC</sub> = 2.7 V |     | V <sub>CC</sub> = 3.3 V<br>± 0.3 V |     | UNIT |
|------------------|----------------------|-----|----------------|------------------------------------|-----|-------------------------|-----|------------------------------------|-----|------|
|                  |                      |     | (001F01)       | MIN                                | MAX | MIN                     | MAX | MIN                                | MAX |      |
| <sup>t</sup> PLH | Pogistor mode        | CLK | V              | 1.8                                | 6.5 |                         | 6.1 | 1.8                                | 5   | -    |
| <sup>t</sup> PHL | Register mode        | ULK | r i            | 1.4                                | 5.9 |                         | 5.1 | 1.7                                | 4.5 | ns   |

<sup>†</sup> All outputs switching

# operating characteristics for buffer mode, $T_A$ = 25°C

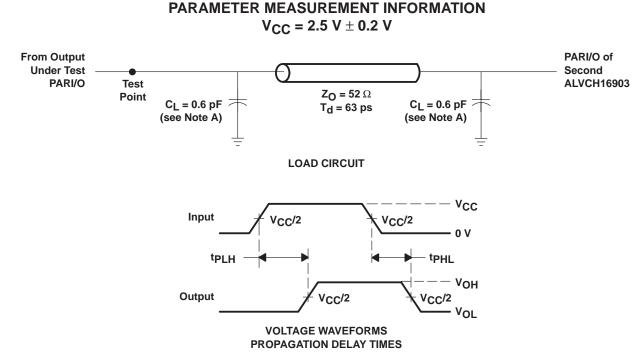

| PARAMETER       |                               |                  | TEST C       | ONDITIONS  | $\begin{array}{c} v_{CC} = 2.5 \ V \\ \pm \ 0.2 \ V \end{array} \begin{array}{c} v_{CC} = 3.3 \ V \\ \pm \ 0.3 \ V \end{array}$ |      | UNIT |  |
|-----------------|-------------------------------|------------------|--------------|------------|---------------------------------------------------------------------------------------------------------------------------------|------|------|--|
|                 |                               |                  |              |            | TYP                                                                                                                             | TYP  |      |  |
|                 | Power dissipation capacitance | Outputs enabled  | C: = 0       | f = 10 MHz | 57.5                                                                                                                            | 65   | рF   |  |
| C <sub>pd</sub> | Power dissipation capacitance | Outputs disabled | $C_{L} = 0,$ |            | 15                                                                                                                              | 17.5 | ΡF   |  |

# operating characteristics for register mode, $T_{A}$ = 25 $^{\circ}C$

|                 | PARAMETER                     |                  |                     | TEST CONDITIONS |      | V <sub>CC</sub> = 3.3 V<br>± 0.3 V | UNIT |
|-----------------|-------------------------------|------------------|---------------------|-----------------|------|------------------------------------|------|
|                 |                               |                  |                     |                 | TYP  | TYP                                |      |
|                 | Dower dissipation consoitance | Outputs enabled  | C 0                 | f _ 10 MHz      | 57   | 87.5                               | ъF   |
| C <sub>pd</sub> | Power dissipation capacitance | Outputs disabled | C <sub>L</sub> = 0, | f = 10 MHz      | 16.5 | 34                                 | pF   |

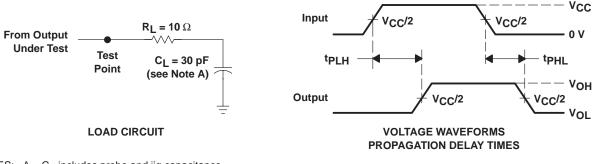


SCES095C - MARCH 1997 - REVISED MAY 1998




- NOTES: A. Cl includes probe and jig capacitance.
  - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control. C. All input pulses are supplied by generators having the following characteristics: PRR  $\leq$  10 MHz, Z<sub>O</sub> = 50  $\Omega$ , t<sub>f</sub>  $\leq$  2 ns, t<sub>f</sub>  $\leq$  2 ns.

  - D. The outputs are measured one at a time with one transition per measurement.
  - E. tpLz and tpHz are the same as tdis.
  - F.  $t_{PZL}$  and  $t_{PZH}$  are the same as  $t_{en}$ .
  - G. tPLH and tPHL are the same as tpd.
  - H.  $t_{PHL}$  is measured at V<sub>CC</sub>/2.
  - I. tpLH is measured at VOL + 0.15 V.


Figure 1. Load Circuit and Voltage Waveforms





- NOTES: A. CL includes probe and jig capacitance.
  - B. All input pulses are supplied by generators having the following characteristics: PRR  $\leq$  10 MHz, Z<sub>O</sub> = 50  $\Omega$ , t<sub>f</sub>  $\leq$  2 ns, t<sub>f</sub>  $\leq$  2 ns.
  - C.  $t_{PLH}$  and  $t_{PHL}$  are the same as  $t_{pd}$ .

#### Figure 2. Load Circuit and Voltage Waveforms

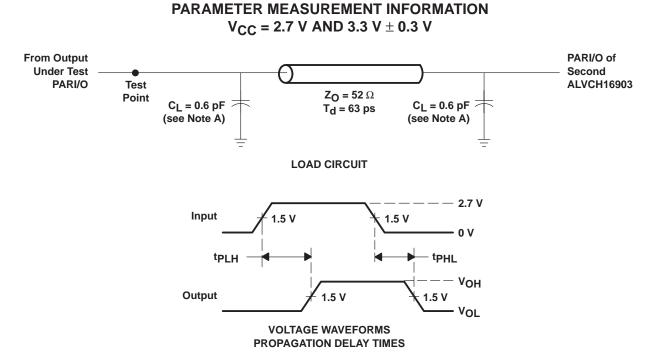


- NOTES: A.  $C_L$  includes probe and jig capacitance.
  - B. All input pulses are supplied by generators having the following characteristics: PRR  $\leq$  10 MHz, Z<sub>0</sub> = 50  $\Omega$ , t<sub>f</sub>  $\leq$  2 ns, t<sub>f</sub>  $\leq$  2 ns.

#### Figure 3. Load Circuit and Voltage Waveforms

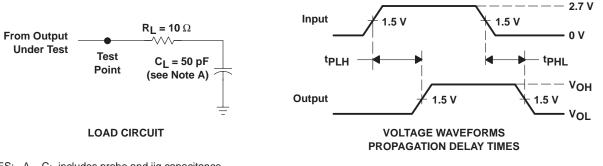



SCES095C - MARCH 1997 - REVISED MAY 1998




NOTES: A. C<sub>I</sub> includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control. C. All input pulses are supplied by generators having the following characteristics: PRR  $\leq$  10 MHz, Z<sub>Q</sub> = 50  $\Omega$ , t<sub>f</sub>  $\leq$  2.5 ns. t<sub>f</sub>  $\leq$  2.5 ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. tpl  $_7$  and tpH $_7$  are the same as t<sub>dis</sub>.
- F. tpzL and tpzH are the same as ten.
- G. tPLH and tPHL are the same as tpd.
- H. tPHL is measured at 1.5 V.
- I. tpl H is measured at VOI + 0.3 V.








- NOTES: A. CL includes probe and jig capacitance.
  - B. All input pulses are supplied by generators having the following characteristics: PRR  $\leq$  10 MHz, Z<sub>O</sub> = 50 Ω, t<sub>f</sub>  $\leq$  2.5 ns, t<sub>f</sub>  $\leq$  2.5 ns.
  - C. tpLH and tpHL are the same as tpd.

#### Figure 5. Load Circuit and Voltage Waveforms



NOTES: A.  $\ensuremath{\mathsf{C}}_L$  includes probe and jig capacitance.

B. All input pulses are supplied by generators having the following characteristics: PRR  $\leq$  10 MHz, Z<sub>O</sub> = 50  $\Omega$ , t<sub>f</sub>  $\leq$  2.5 ns, t<sub>f</sub>  $\leq$  2.5 ns.

#### Figure 6. Load Circuit and Voltage Waveforms



#### **IMPORTANT NOTICE**

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated