HIGH OUTPUT RS-485 TRANSCEIVERS

FEATURES

- Minimum Differential Output Voltage of 2.5 V Into a $54-\Omega$ Load
- Open-Circuit, Short-Circuit, and Idle-Bus Failsafe Receiver
- $1 / 8^{\text {th }}$ Unit-Load Option Available (Up to 256 Nodes on the Bus)
- Bus-Pin ESD Protection Exceeds 16 kV HBM
- Driver Output Slew Rate Control Options
- Electrically Compatible With ANSI TIA/EIA-485-A Standard
- Low-Current Standby Mode . . . $1 \mu \mathrm{~A}$ Typical
- Glitch-Free Power-Up and Power-Down Protection for Hot-Plugging Applications
- Pin Compatible With Industry Standard SN75176

APPLICATIONS

- Data Transmission Over Long or Lossy Lines or Electrically Noisy Environments
- Profibus Line Interface
- Industrial Process Control Networks
- Point-of-Sale (POS) Networks
- Electric Utility Metering
- Building Automation
- Digital Motor Control

DIFFERENTIAL OUTPUT VOLTAGE

DESCRIPTION

The SN65HVD05, SN75HVD05, SN65HVD06, SN75HVD06, SN65HVD07, and SN75HVD07 combine a 3 -state differential line driver and differential line receiver. They are designed for balanced data transmission and interoperate with ANSI TIA/EIA-485-A and ISO 8482E standard-compliant devices. The driver is designed to provide a differential output voltage greater than that required by these standards for increased noise margin. The drivers and receivers have active-high and active-low enables respectively, which can be externally connected together to function as direction control.

The driver differential outputs and receiver differential inputs connect internally to form a differential input/ output (I/O) bus port that is designed to offer minimum loading to the bus whenever the driver is disabled or not powered. These devices feature wide positive and negative common-mode voltage ranges, making them suitable for party-line applications.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Thesedevices havelimitedbuilt-inESD protection. Theleads shouldbeshortedtogether orthe device placedin conductive foamduring storage or handling to prevent electrostatic damage to the MOS gates.

ORDERING INFORMATION(1)

SIGNALING RATE	$\begin{aligned} & \text { UNIT } \\ & \text { LOAD } \end{aligned}$	DRIVER OUTPUT SLOPE CONTROL	$\mathrm{T}_{\mathbf{A}}$	PART NUMBER ${ }^{(2)}$		MARKED AS	
						PLASTIC DUAL-IN-LINE PACKAGE (PDIP)	SMALL OUTLINE IC (SOIC) PACKAGE
40 Mbps	1/2	No	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	SN65HVD05D	SN65HVD05P	65HVD05	VP05
10 Mbps	1/8	Yes		SN65HVD06D	SN65HVD06P	65HVD06	VP06
1 Mbps	1/8	Yes		SN65HVD07D	SN65HVD07P	65HVD07	VP07
40 Mbps	1/2	No	$-0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	SN75HVD05D	SN75HVD05P	75HVD05	VN05
10 Mbps	1/8	Yes		SN75HVD06D	SN75HVD06P	75HVD06	VN06
1 Mbps	1/8	Yes		SN75HVD07D	SN75HVD07P	75HVD07	VN07

(1) For the most current specification and package information, refer to our web site at www.ti.com.
(2) The D package is available taped and reeled. Add an R suffix to the device type (i.e., SN65HVD05DR).

PACKAGE DISSIPATION RATINGS (SEE FIGURE 12 AND FIGURE 13)

PACKAGE	$\mathbf{T}_{\mathbf{A}} \leq \mathbf{2 5}{ }^{\circ} \mathbf{C}$ POWER RATING	DERATING FACTOR(1) ABOVE TA		
$\mathrm{D}(2)$	710 mW	$5.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	$\mathbf{T}_{\mathbf{A}}=\mathbf{7 0}$ POWER RATING	$\mathbf{T}_{\mathbf{A}}=\mathbf{8} 5^{\circ} \mathbf{C}$ POWER RATING
$\mathrm{D}(3)$	1282 mW	$10.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	455 mW	369 mW
P	1000 mW	$8.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	821 mW	667 mW
1$)$	640 mW	520 mW		

(1) This is the inverse of the junction-to-ambient thermal resistance when board-mounted and with no air flow.
(2) Tested in accordance with the Low-K thermal metric definitions of EIA/JESD51-3
(3) Tested in accordance with the High-K thermal metric definitions of EIA/JESD51-7

ABSOLUTE MAXIMUM RATINGS

over operating free-air temperature range unless otherwise noted(1) (2)

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) All voltage values, except differential I/O bus voltages, are with respect to network ground terminal.
(3) Tested in accordance with JEDEC Standard 22, Test Method A114-A.
(4) Tested in accordance with JEDEC Standard 22, Test Method C101.

RECOMMENDED OPERATING CONDITIONS

		MIN	NOM MAX	UNIT
Supply voltage, $\mathrm{V}_{\text {CC }}$		4.5	5.5	V
Voltage at any bus terminal (separately or common mode) $\mathrm{V}_{\text {I }}$ or $\mathrm{V}_{\text {IC }}$		$-7(1)$	12	V
High-level input voltage, $\mathrm{V}_{\text {IH }}$	D, DE, $\overline{\mathrm{RE}}$	2		V
Low-level input voltage, $\mathrm{V}_{\text {IL }}$	D, DE, $\overline{R E}$		0.8	V
Differential input voltage, $\mathrm{V}_{\text {ID }}$ (see Figure 7)		-12	12	V
High-level output current, I_{OH}	Driver	-100		mA
	Receiver	-8		
Low-level output current, loL	Driver		100	mA
	Receiver		8	
Operating free-air temperature, T_{A}	SN65HVD05	-40	85	${ }^{\circ} \mathrm{C}$
	SN65HVD06			
	SN65HVD07			
	SN75HVD05	0	70	${ }^{\circ} \mathrm{C}$
	SN75HVD06			
	SN75HVD07			

(1) The algebraic convention, in which the least positive (most negative) limit is designated as minimum is used in this data sheet.

DRIVER ELECTRICAL CHARACTERISTICS
over operating free-air temperature range unless otherwise noted (1)

PARAMETER			TEST CONDITIONS		MIN	TYP(1)	MAX	UNIT
$\mathrm{V}_{\text {IK }}$	Input clamp voltage		$\mathrm{I}=-18 \mathrm{~mA}$		-1.5			V
\|VODI	Differential output voltage		No Load				$\mathrm{V}_{\text {CC }}$	V
			$\mathrm{R}_{\mathrm{L}}=54 \Omega$, See Figure 1		2.5			
			$\mathrm{V}_{\text {test }}=-7 \mathrm{~V}$ to 12 V , See Figure 2		2.2			
$\Delta\left\|\mathrm{V}_{\text {OD }}\right\|$	Change in magnitude of differential outputvoltage		See Figure 1 and Figure 2		-0.2		0.2	V
$\mathrm{VOC}(\mathrm{SS})$	Steady-state common-modeoutput voltage		See Figure 3		2.2		3.3	V
$\Delta \mathrm{V}$ OC(SS)	Change in steady-state common-mode outputvoltage				-0.1		0.1	V
VOC(PP)	Peak-to-peakcommonmode output voltage	HVD05	See Figure 3		600			mV
		HVD06			500			
		HVD07						
IOZ	High-impedance output current		See receiver input currents					
		D			-100		0	μ
1	Inputcurrent	DE			0		100	
IOS	Short-circuit output curre		$-7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 12 \mathrm{~V}$		-250		250	mA
$\mathrm{C}_{\text {(diff) }}$	Differential output capac		$\mathrm{V}_{\text {ID }}=0.4 \sin (4 \mathrm{E} 6 \pi \mathrm{t})+0.5$	V, DE at 0 V		16		pF
			$\overline{R E}$ at $V_{C C}$, D \& DE at V_{CC}, No load	Receiver disabled and driver enabled		9	15	mA
ICC	Supply current		$\overline{R E}$ at $V_{C C}, D$ at $V_{C C}$ DE at 0 V , No load	Receiver disabled and driver disabled (standby)		1	5	$\mu \mathrm{A}$
			$\overline{\mathrm{RE}}$ at 0 V , $D \& D E$ at $V_{C C}$, No load	Receiver enabled and driver enabled		9	15	mA

[^0]SLLS533B - MAY 2002 - REVISED MAY 2003

DRIVER SWITCHING CHARACTERISTICS NIL

over operating free-air temperature range unless otherwise noted

PARAMETER			TEST CONDITIONS	MIN	TYP(1)	MAX	UNIT	
tPLH	Propagation delay time, low-to-high-level output	HVD05	$\begin{aligned} & R_{\mathrm{L}}=54 \Omega, \\ & C_{\mathrm{L}}=50 \mathrm{pF}, \\ & \text { See Figure } 4 \end{aligned}$		6.5	11	ns	
		HVD06			27	40		
		HVD07			250	400		
tPHL	Propagation delay time, high-to-low-level output	HVD05			6.5	11	ns	
		HVD06			27	40		
		HVD07			250	400		
tr_{r}	Differential output signal rise time	HVD05		2.7	3.6	6	ns	
		HVD06		18	28	55		
		HVD07		150	300	450		
$\mathrm{tf}^{\text {f }}$	Differential output signal fall time	HVD05		2.7	3.6	6	ns	
		HVD06		18	28	55		
		HVD07		150	300	450		
${ }_{\text {tsk }}$ (p)	Pulse skew (\|tPHL - tPLH)	HVD05				2	ns
		HVD06				2.5		
		HVD07				10		
${ }^{\text {tsk }}$ (pp) ${ }^{(2)}$	Part-to-part skew	HVD05				3.5	ns	
		HVD06				14		
		HVD07				100		
tPZH1	Propagationdelay time, high-impedance-to-high-leveloutput	HVD05	$\overline{R E}$ at 0 V , $R_{L}=110 \Omega$, See Figure 5			25	ns	
		HVD06				45		
		HVD07				250		
tPHZ	Propagationdelay time, high-level-to-high-impedanceoutput	HVD05				25	ns	
		HVD06				60		
		HVD07				250		
tPZL1	Propagation delay time, high-impedance-to-low-leveloutput	HVD05	$\overline{\mathrm{RE}}$ at 0 V , $R_{L}=110 \Omega$, See Figure 6			15	ns	
		HVD06				45		
		HVD07				200		
tplZ	Propagationdelay time, low-level-to-high-impedance output	HVD05				14	ns	
		HVD06				90		
		HVD07				550		
tPZH2	Propagation delay time, standby-to-high-level output		$\mathrm{R}_{\mathrm{L}}=110 \Omega,$ $\overrightarrow{R E}$ at 3 V , See Figure 5			6	$\mu \mathrm{s}$	
tPZL2	Propagation delay time, standby-to-low-level output		$\mathrm{R}_{\mathrm{L}}=110 \Omega,$ $\overline{R E}$ at 3 V , See Figure 6			6	$\mu \mathrm{s}$	

(1) All typical values are at $25^{\circ} \mathrm{C}$ and with a $5-\mathrm{V}$ supply.
${ }^{(2)} \mathrm{t}_{\mathrm{sk}}(\mathrm{pp})$ is the magnitude of the difference in propagation delay times between any specified terminals of two devices when both devices operate with the same supply voltages, at the same temperature, and have identical packages and test circuits.

INSTRUMENTS

RECEIVER ELECTRICAL CHARACTERISTICS

over operating free-air temperature range unless otherwise noted

PARAMETER			TEST CONDITIONS			MIN	TYP(1)	MAX	UNIT
$\mathrm{V}_{\text {IT+ }}$	Positive-going input threshold voltage		$\mathrm{l} \mathrm{O}=-8 \mathrm{~mA}$					-0.01	V
$\mathrm{V}_{\text {IT- }}$	Negative-going inputthreshold voltage		$\mathrm{l} \mathrm{O}=8 \mathrm{~mA}$			-0.2			V
$V_{\text {hys }}$	Hysteresis voltage ($\mathrm{V}_{\mathrm{IT}+}-\mathrm{V}_{\mathrm{IT}}$)						35		mV
$\mathrm{V}_{\text {IK }}$	Enable-inputclamp voltage		$\mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$			-1.5			V
V_{OH}	High-level output voltage		$\mathrm{V}_{\mathrm{ID}}=200 \mathrm{mV}$,	$\mathrm{I} \mathrm{OH}=-8 \mathrm{~mA}$,	See Figure 7	4			V
V_{OL}	Low-level output voltage		$\mathrm{V}_{\text {ID }}=-200 \mathrm{mV}$,	$\mathrm{IOL}=8 \mathrm{~mA}$,	See Figure 7			0.4	V
Ioz	High-impedance-state output current		$\mathrm{V}_{\mathrm{O}}=0$ or V_{CC}	$\overline{\mathrm{RE}}$ at V_{CC}		-1		1	$\mu \mathrm{A}$
1	Bus input current	HVD05	Other input at 0 V	V_{A} or $\mathrm{V}_{\mathrm{B}}=12 \mathrm{~V}$			0.23	0.5	mA
				V_{A} or $\mathrm{V}_{\mathrm{B}}=12 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$		0.3	0.5	
				V_{A} or $\mathrm{V}_{\mathrm{B}}=-7 \mathrm{~V}$		-0.4	-0.13		
				V_{A} or $\mathrm{V}_{\mathrm{B}}=-7 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$	-0.4	-0.15		
		HVD06, HVD07	Other input at 0 V	V_{A} or $\mathrm{V}_{\mathrm{B}}=12 \mathrm{~V}$			0.06	0.1	mA
				V_{A} or $\mathrm{V}_{\mathrm{B}}=12 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$		0.08	0.13	
				V_{A} or $\mathrm{V}_{\mathrm{B}}=-7 \mathrm{~V}$		-0.1	-0.05		
				V_{A} or $\mathrm{V}_{\mathrm{B}}=-7 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$	-0.05	-0.03		
IIH	High-level input current, $\overline{\mathrm{RE}}$		$\mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V}$			-60	-26.4		$\mu \mathrm{A}$
ILL	Low-level input current, $\overline{\mathrm{RE}}$		$\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}$			-60	-27.4		$\mu \mathrm{A}$
$\mathrm{C}_{\text {(diff) }}$	Differential input capacitance		$\mathrm{V}_{\mathrm{I}}=0.4 \sin (4 \mathrm{E} 6 \pi \mathrm{t})+0.5 \mathrm{~V}, \quad \mathrm{DE}$ at 0 V				16		pF
ICC	Supply current		$\overline{R E}$ at 0 V , D \& DE at 0 V , No load	Receiver enabled	driver disabled		5	10	mA
			$\overline{\mathrm{RE}}$ at V_{CC}, $D E$ at 0 V , D at V_{CC}, No load	Receiverdisabled (standby)	d driver disabled		1	5	$\mu \mathrm{A}$
			$\overline{\mathrm{RE}}$ at 0 V , $D \& D E$ at $V_{C C}$, No load	Receiver enabled	driver enabled		9	15	mA

(1) All typical values are at $25^{\circ} \mathrm{C}$ and with a $5-\mathrm{V}$ supply.

SLLS533B - MAY 2002 - REVISED MAY 2003

RECEIVER SWITCHING CHARACTERISTICS

over operating free-air temperature range unless otherwise noted

PARAMETER			TEST CONDITIONS	MIN	TYP(1)	MAX	UNIT	
tplH	Propagation delay time, low-to-high-level output 1/2 UL	HVD05	$\begin{aligned} & V_{I D}=-1.5 \mathrm{~V} \text { to } 1.5 \mathrm{~V}, \\ & C_{L}=15 \mathrm{pF}, \\ & \text { See Figure } 8 \end{aligned}$		14.6	25	ns	
tPHL	Propagation delay time, high-to-low-level output 1/2 UL	HVD05			14.6	25	ns	
tPLH	Propagation delay time, low-to-high-level output 1/8 UL	HVD06			55	70	ns	
		HVD07			55	70		
tPHL	Propagation delay time, high-to-low-level output 1/8 UL	HVD06			55	70	ns	
		HVD07			55	70		
$\mathrm{t}_{\text {sk }}(\mathrm{p})$	Pulse skew (\|tPHL - tPLH)	HVD05				2	ns
		HVD06				4.5		
		HVD07				4.5		
$\mathrm{t}_{\text {sk(pp) }}{ }^{(2)}$	Part-to-partskew	HVD05				6.5	ns	
		HVD06				14		
		HVD07				14		
tr_{r}	Output signal rise time		$C_{L}=15 \mathrm{pF},$ See Figure 8		2	3	ns	
$\mathrm{tf}^{\text {f }}$	Output signal fall time				2	3		
tPZH1	Output enable time to high level		$C_{L}=15 \mathrm{pF},$ DE at 3 V , See Figure 9			10	ns	
tPZL1	Output enable time to low level					10		
tPHZ	Output disable time from high level					15		
tplZ	Output disable time from low level					15		
tPZH2	Propagation delay time, standby-to-high-level output		$C_{L}=15 \mathrm{pF}$, DE at 0 , See Figure 10			6	$\mu \mathrm{s}$	
tPZL2	Propagation delay time, standby-to-low-level output					6		

(1) All typical values are at $25^{\circ} \mathrm{C}$ and with a $5-\mathrm{V}$ supply.
(2) $t_{\mathrm{sk}}(\mathrm{pp})$ is the magnitude of the difference in propagation delay times between any specified terminals of two devices when both devices operate with the same supply voltages, at the same temperature, and have identical packages and test circuits.

PARAMETER MEASUREMENT INFORMATION

Figure 1. Driver V_{OD} Test Circuit and Voltage and Current Definitions

Figure 2. Driver $\mathrm{V}_{\text {OD }}$ With Common-Mode Loading Test Circuit
C_{L} Includes Fixture and Instrumentation Capacitance

Input: PRR = $500 \mathrm{kHz}, \mathbf{5 0 \%}$ Duty Cycle, $\mathrm{t}_{\mathbf{r}}<6 \mathrm{~ns}, \mathrm{t}_{\mathbf{f}}<6 \mathrm{~ns}, \mathrm{Z}_{\mathrm{O}}=50 \Omega$
Figure 3. Test Circuit and Definitions for the Driver Common-Mode Output Voltage

Generator: $\operatorname{PRR}=500 \mathrm{kHz}, \mathbf{5 0 \%}$ Duty Cycle, $\mathrm{t}_{\mathbf{r}}<6 \mathbf{n s}, \mathrm{t}_{\mathrm{f}}<6 \mathbf{n s}, \mathrm{Z}_{\mathbf{0}}=50 \Omega$
Figure 4. Driver Switching Test Circuit and Voltage Waveforms

Generator: $P R R=100 \mathrm{kHz}, 50 \%$ Duty Cycle, $\mathrm{t}_{\mathbf{r}}<6 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}}<6 \mathrm{~ns}, \mathrm{Z}_{\mathbf{o}}=50 \Omega$
Figure 5. Driver High-Level Enable and Disable Time Test Circuit and Voltage Waveforms

Generator: $P R R=100 \mathrm{kHz}, 50 \%$ Duty Cycle, $\mathrm{t}_{\mathrm{r}}<6 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}}<6 \mathrm{~ns}, \mathrm{Z}_{\mathbf{O}}=50 \Omega$
Figure 6. Driver Low-Level Output Enable and Disable Time Test Circuit and Voltage Waveforms

Figure 7. Receiver Voltage and Current Definitions

Figure 8. Receiver Switching Test Circuit and Voltage Waveforms

Figure 9. Receiver Enable and Disable Time Test Circuit and Voltage Waveforms With Drivers Enabled

Figure 10. Receiver Enable Time From Standby (Driver Disabled)

NOTE: This test is conducted to test survivability only. Data stability at the R output is not specified.
Figure 11. Test Circuit, Transient Over Voltage Test

FUNCTION TABLES

DRIVER			
INPUT	ENABLE	OUTPUTS	
D	DE	A	B
H	H	H	L
L	H	L	H
X	L	Z	Z
Open	H	H	L
X	Open	Z	Z

RECEIVER

DIFFERENTIAL INPUTS	ENABLE	OUTPUT
$\mathbf{V}_{\mathbf{I D}}=\mathrm{V}_{\mathbf{A}}-\mathrm{V}_{\mathbf{B}}$	$\overline{\mathbf{R E}}$	\mathbf{R}
$\mathrm{V}_{\text {ID }} \leq-0.2 \mathrm{~V}$	L	L
$-0.2 \mathrm{~V}<\mathrm{V}_{\text {ID }}<-0.01 \mathrm{~V}$	L	$?$
$-0.01 \mathrm{~V} \leq \mathrm{V}_{\text {ID }}$	L	H
X	H	Z
Open Circuit	L	H
Short Circuit	L	H
X	Open	Z

H = high level; $L=$ low level; $Z=$ high impedance; $X=$ irrelevant; ? = indeterminate

EQUIVALENT INPUT AND OUTPUT SCHEMATIC DIAGRAMS

	R1/R2	R3
SN65HVD05	$9 \mathrm{k} \Omega$	$45 \mathrm{k} \Omega$
SN65HVD06	$36 \mathrm{k} \Omega$	$180 \mathrm{k} \Omega$
SN65HVD07	$36 \mathrm{k} \Omega$	$180 \mathrm{k} \Omega$

TYPICAL CHARACTERISTICS

Figure 12

HVD05
RMS SUPPLY CURRENT
vs
SIGNALING RATE

Figure 14

HVD06
MAXIMUM RECOMMENDED STILL-AIR OPERATING TEMPERATURE
vs
SIGNALING RATE
(D - PACKAGE)

Figure 13

HVD06
RMS SUPPLY CURRENT
vs
SIGNALING RATE

Figure 15

HVD07
RMS SUPPLY CURRENT
vs
SIGNALING RATE

Figure 16
DRIVER HIGH-LEVEL OUTPUT CURRENT
vs
HIGH-LEVEL OUTPUT VOLTAGE

Figure 18

BUS INPUT CURRENT
VS
BUS INPUT VOLTAGE

Figure 17

DRIVER LOW-LEVEL OUTPUT CURRENT
vs
LOW-LEVEL OUTPUT VOLTAGE

Figure 19

INSTRUMENTS
www.ti.com

Figure 20

DRIVER OUTPUT CURRENT
vs
SUPPLY VOLTAGE

Figure 21

Figure 22

APPLICATION INFORMATION

Device	Number of Devices on Bus
HVD05	64
HVD06	256
HVD07	256

NOTE: Theline should be terminated at both ends with its characteristic impedance $\left(\mathrm{R}_{\mathrm{T}}=\mathrm{Z}_{\mathrm{O}}\right)$. Stub lengths off the main line should be kept as short as possible.

Figure 23. Typical Application Circuit

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Falls within JEDEC MS-001

D (R-PDSO-G**)
8 PINS SHOWN

PIMS	8	14	16
A MAX	0.197 $(5,00)$	0.344 $(8,75)$	0.394 $(10,00)$
	0.189	0.337	0.386
	$(4,80)$	$(8,55)$	$(9,80)$

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion, not to exceed $0.006(0,15)$.
D. Falls within JEDEC MS-012

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using Tl components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other Tl intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI .

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. Tl is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. Tl is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products \& application solutions:

Products

Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
	Video \& Imaging	www.ti.com/video	
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments
Post Office Box 655303 Dallas, Texas 75265

[^0]: (1) All typical values are at $25^{\circ} \mathrm{C}$ and with a $5-\mathrm{V}$ supply

