SCAS660A - SEPTEMBER 2001 - REVISED DECEMBER 2002

 Phase-Lock Loop Clock Driver for Double Data-Rate Synchronous DRAM 	PW PACK (TOP VIE	-
 Applications Spread Spectrum Clock Compatible Operating Frequency: 60 MHz to 180 MHz Low Jitter (cyc–cyc): ±50 ps 	GND [1 ⁰ Y0 [2 Y0 [3 V _{DDQ} [4	28] GND 27] Y3 26] Y3 25] V _{DDQ}
 Distributes One Differential Clock Input to Four Differential Clock Outputs 	GND [] 5 CLK [] 6	24 PWRDWN 23 FBIN
 Enters Low Power Mode and Three-State Outputs When Input CLK Signal Is Less Than 20 MHz or PWRDWN Is Low 	CLK [] 7 V _{DDQ} [] 8 AV _{DD} [] 9	22 FBIN 21 V _{DDQ} 20 FBOUT
 Operates From Dual 2.5-V Supplies 28-Pin TSSOP Package 	AGND [] 10 V _{DDQ} [] 11 Y1 [] 12	19] FBOUT 18] V _{DDQ} 17] Y2
 Consumes < 200-μA Quiescent Current 	$\frac{1}{Y1}$ $\frac{1}{13}$	16 1 <u>Y2</u>
 External Feedback PIN (FBIN, FBIN) Are Used to Synchronize the Outputs to the Input Clocks 	GND [14	15 GND

description

The CDCV855 is a high-performance, low-skew, low-jitter zero delay buffer that distributes a differential clock input pair (CLK, CLK) to four differential pairs of clock outputs (Y[0:3], Y[0:3]) and one differential pair of feedback clock outputs (FBOUT, FBOUT). When PWRDWN is high, the outputs switch in phase and frequency with CLK. When PWRDWN is low, all outputs are disabled to a high-impedance state (3-state), and the PLL is shut down (low-power mode). The device also enters this low-power mode when the input frequency falls below a suggested detection frequency that is below 20 MHz (typical 10 MHz). An input frequency detection circuit detects the low-frequency condition and after applying a >20-MHz input signal this detection circuit turns on the PLL again and enables the outputs.

When AV_{DD} is tied to GND, the PLL is turned off and bypassed for test purposes. The CDCV855 is also able to track spread spectrum clocking for reduced EMI.

Since the CDCV855 is based on PLL circuitry, it requires a stabilization time to achieve phase-lock of the PLL. This stabilization time is required following power up. The CDCV855 is characterized for both commercial and industrial temperature ranges.

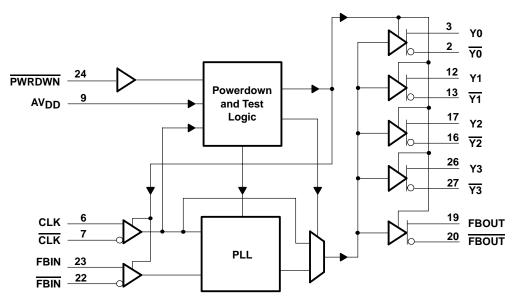
	PACKAGED DEVICES				
'A	TSSOP (PW)				
0°C to 70°C	CDCV855PW				
-40°C to 85°C	CDCV855IPW				

AVAILABLE OPTIONS

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 2002, Texas Instruments Incorporated


SCAS660A - SEPTEMBER 2001 - REVISED DECEMBER 2002

FUNCTION TABLE (Select Functions)

	INPUT	S		OUTPUTS				PLL	
AV _{DD}	PWRDWN	CLK	CLK	Y[0:3]	Y[0:3]	FBOUT	FBOUT		
GND	Н	L	Н	L	Н	L	Н	Bypassed/Off	
GND	Н	Н	L	Н	L	Н	L	Bypassed/Off	
Х	L	L	Н	Z	Z	Z	Z	Off	
Х	L	Н	L	Z	Z	Z	Z	Off	
2.5 V (nom)	Н	L	Н	L	Н	L	Н	On	
2.5 V (nom)	Н	Н	L	Н	L	Н	L	On	
2.5 V (nom)	Х	<20 MHz†	<20 MHz†	Z	Z	Z	Z	Off	

[†] Typically 10 MHz

functional block diagram

Terminal Functions

TER	MINAL			
NAME	NO.	1/0	DESCRIPTION	
AGND	10		Ground for 2.5-V analog supply	
AV _{DD}	9		-V analog supply	
CLK, CLK	6, 7	I	Differential clock input	
FBIN, FBIN	23, 22	Ι	Feedback differential clock input	
FBOUT, FBOUT	19, 20	0	dback differential clock output	
GND	1, 5, 14, 15, 28		bund	
PWRDWN	24	I	Control input to turn device in the power-down mode	
V _{DDQ}	4, 8, 11, 18, 21, 25		2.5-V supply	
Y[0:3]	3, 12, 17, 26	0	Buffered output copies of input clock, CLK	
Y[0:3]	2, 13, 16, 27	0	Buffered output copies of input clock, CLK	

SCAS660A – SEPTEMBER 2001 – REVISED DECEMBER 2002

absolute maximum ratings over operating free-air temperature (unless otherwise noted)[†]

Supply voltage range, V_{DDQ} , AV_{DD}	5V 5V nA nA nA nA
	/W

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output negative voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

- 2. This value is limited to 3.6 V maximum.
- 3. The package thermal impedance is calculated in accordance with JESD 51.

recommended operating conditions (see Note 4)

		MIN	TYP	MAX	UNIT
Supply voltage, V _{DDQ} , AV _{DD}		2.3		2.7	V
	CLK, CLK, FBIN, FBIN			$V_{DDQ}/2 - 0.18$	
Low-level input voltage, VIL	PWRDWN	-0.3		0.7	V
	CLK, CLK, FBIN, FBIN	V _{DDQ} /2 + 0.18			
High-level input voltage, VIH	PWRDWN	1.7		V _{DDQ} + 0.3	V
DC input signal voltage (see Note 5)		-0.3		VDDQ	V
Differential input signal voltage, V_{ID} (see Note 6)	CLK, FBIN	0.36		V _{DDQ} + 0.6	V
Output differential cross-voltage, V _{O(X)} (see Note 7)		V _{DDQ} /2 – 0.2	V _{DDQ} /2	V _{DDQ} /2 + 0.2	V
Input differential pair cross-voltage, $V_{I(X)}$ (see Note	7)	V _{DDQ} /2 - 0.2		V _{DDQ} /2 + 0.2	V
High-level output current, IOH				-12	mA
Low-level output current, IOL				12	mA
Input slew rate, SR (see Figure 7)		1		4	V/ns
	Commercial	ommercial 0		85	°C
Operating free-air temperature, T_A	Industrial	-40		85	

NOTES: 4. Unused inputs must be held high or low to prevent them from floating.

5. DC input signal voltage specifies the allowable dc execution of differential input.

6. Differential input signal voltage specifies the differential voltage |VTR – VCP| required for switching, where VTR is the true input level and VCP is the complementary input level.

7. Differential cross-point voltage is expected to track variations of V_{DDQ} and is the voltage at which the differential signals must be crossing.

SCAS660A - SEPTEMBER 2001 - REVISED DECEMBER 2002

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	2	TEST C	ONDITIONS	MIN	TYP†	MAX	UNIT	
VIK	Input voltage	All inputs	V _{DDQ} = 2.3 V,	lı = –18 mA			-1.2	V	
.,			V_{DDQ} = min to max, I_{OH} = -1 mA		V _{DDQ} - 0.1				
VOH	High-level outpu	it voltage	V _{DDQ} = 2.3 V,	I _{OH} = -12 mA	1.7			V	
			V _{DDQ} = min to max	k, I _{OL} = 1 mA			0.1	v	
V _{OL}	Low-level outpu	t voltage	V _{DDQ} = 2.3 V,	I _{OL} = 12 mA			0.6	V	
ЮН	High-level outpu	ut current	V _{DDQ} = 2.3 V,	$V_{O} = 1 V$	-18	-32		mA	
IOL	Low-level outpu	t current	V _{DDQ} = 2.3 V,	V _O = 1.2 V	26	35		mA	
VOD	Output voltage	swing	Differential evidentia				$V_{DDQ} - 0.4$		
VOX	Output different cross-voltage [‡]	ial	Differential outputs are terminated with 120 Ω V		V _{DDQ} /2 - 0.2	V _{DDQ} /2	V _{DDQ} /2 + 0.2	V	
lj	Input current		V _{DDQ} = 2.7 V,	$V_{I} = 0 V \text{ to } 2.7 V$			±10	μA	
I _{OZ}	High-impedance current	e-state output	V _{DDQ} = 2.7 V,	$V_{O} = V_{DDQ}$ or GND			±10	μA	
IDD(PD)	Power-down cu V _{DDQ} + AV _{DD}	rrent on	CLK and $\overline{\text{CLK}} = 0 \text{ N}$ Σ of I _{DD} and AI _{DD}	IHz; PWRDWN = Low;		100	200	μΑ	
			Differential outputs are terminated with $120 \Omega / CL = 14 pF$			150	180	_	
IDD	Dynamic curren	t on VDDQ	Differential outputs are terminated with 120 Ω / CL = 0 pF	f _O = 167 MHz		130	160	mA	
AIDD	Supply current of	on AV _{DD}	f _O = 167 MHz			8	10	mA	
Cl	Input capacitant	ce	V _{DDQ} = 2.5 V	$V_{I} = V_{DDQ} \text{ or } GND$	2	2.5	3	pF	
с _о	Output capacita	nce	1	$V_{O} = V_{DDQ}$ or GND	2.5	3	3.5	pF	

[†] All typical values are at respective nominal V_{DDQ}.

[‡]Differential cross-point voltage is expected to track variation of V_{DDQ} and is the voltage at which the differential signals must be crossing.

timing requirements over recommended ranges of supply voltage and operating free-air temperature

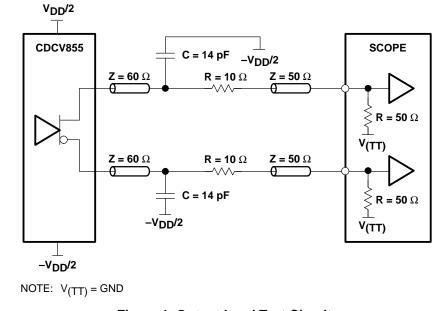
	PARAMETER	MIN	MAX	UNIT
f CLK	Operating clock frequency	60	180	MHz
	Input clock duty cycle	40%	60%	
	Stabilization time (PLL mode) [¶]		10	μs
	Stabilization time (Bypass mode) \S		30	ns

§ Recovery time required when the device goes from power-down mode into bypass mode (test mode with AVDD at GND).

Time required for the integrated PLL circuit to obtain phase lock of its feedback signal to its reference signal. For phase lock to be obtained, a fixed-frequency, fixed-phase reference signal must be present at CLK. Until phase lock is obtained, the specifications for propagation delay, skew, and jitter parameters given in the switching characteristics table are not applicable. This parameter does not apply for input modulation under SSC application.

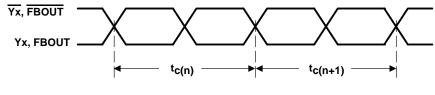
SCAS660A - SEPTEMBER 2001 - REVISED DECEMBER 2002

	PARAMETER	TES	T CONDITIONS	MIN	ΤΥΡ [†] ΜΑΧ	UNIT
^t PLH [‡]	Low-to-high level propagation delay time	Test mod	Test mode/CLK to any output		4.5	ns
^t PHL [‡]	High-to-low level propagation delay time	Test mod	e/CLK to any output		4.5	ns
^t jit(per) [§]	litter (neried) See Figure F	66 MHz		-55	55	ps
	Jitter (period), See Figure 5	100/133/2	167/180 MHz	-35	35	ps
•	66 M			-60	60	5
^t jit(cc) [§]	Jitter (cycle-to-cycle), See Figure 2	100/133/2	167/180 MHz	-50	50	ps
	66 MHz			-130	130	
^t jit(hper) [§]	Half-period jitter, See Figure 6	100 MHz	100 MHz		90	ps
		133/167/	133/167/180 MHz		75	
4			20Ω / 14 pF	1	2	V/ns
^t slr(o)	Output clock slew rate, See Figure 7	Load = 12	20Ω / 4 pF	1	3	V/ns
	Dynamic phase offset (this includes jitter), See Figure 3(b)		66 MHz	-180	180	ps
		SSC off	100/133 MHz	-130	130	
8			167/180 MHz	-90	90	
td(Ø) [§]			66 MHz	-230	230	
		SSC on	100/133 MHz	-170	170	
			167/180 MHz	-100	100	
4	66 MHz	66 MHz	66 MHz 100/133/167/180 MHz		150	
^t (Ø)	Static phase offset, See Figure 3(a)	100/133/			100	ps
tsk ₍₀₎ ¶	Output skew, See Figure 4				50	ps
tr, tf	Output rise and fall times (20% – 80%)	Load: 120	0 Ω/14 pF	650	900	ps


switching characteristics

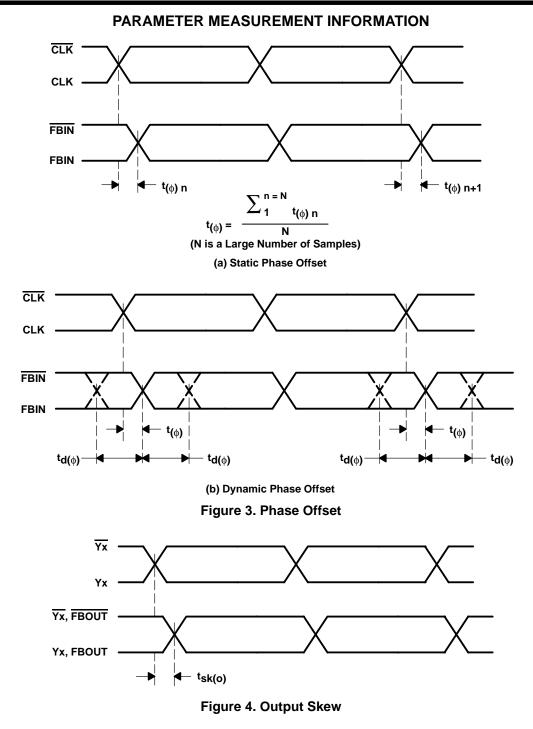
[†] All typical values are at a respective nominal V_{DDQ}. [‡] Refers to transition of noninverting output

§ This parameter is assured by design but can not be 100% production tested. If All differential output pins are terminated with 120 Ω /14 pF.



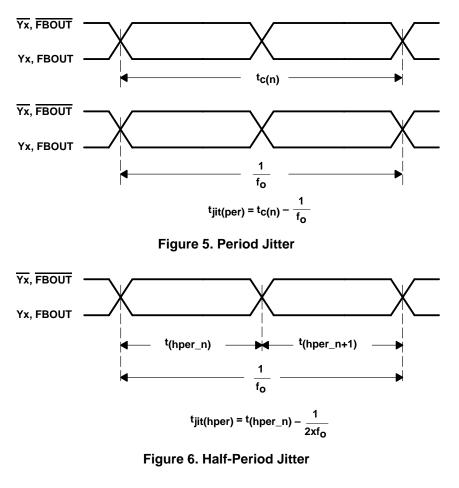
SCAS660A - SEPTEMBER 2001 - REVISED DECEMBER 2002

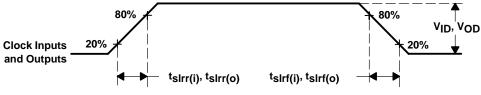
PARAMETER MEASUREMENT INFORMATION

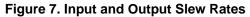


 $t_{jit(cc)} = t_{c(n)} - t_{c(n+1)}$

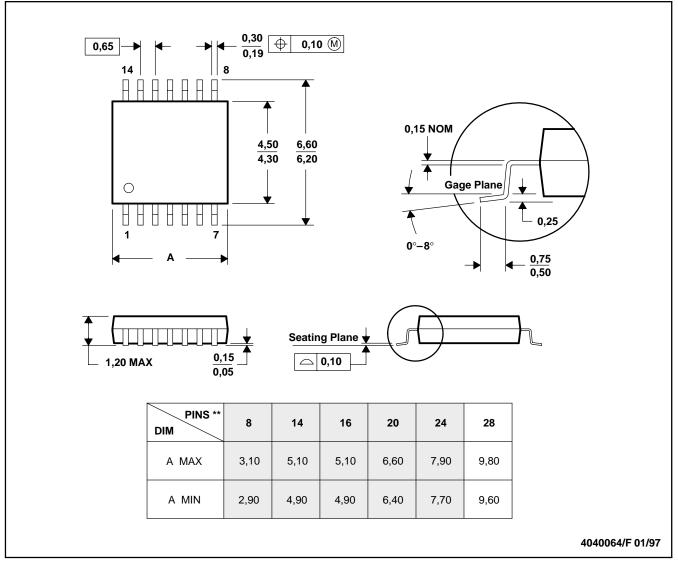
Figure 2. Cycle-to-Cycle Jitter


SCAS660A - SEPTEMBER 2001 - REVISED DECEMBER 2002





SCAS660A - SEPTEMBER 2001 - REVISED DECEMBER 2002



SCAS660A - SEPTEMBER 2001 - REVISED DECEMBER 2002

MECHANICAL DATA

PLASTIC SMALL-OUTLINE PACKAGE

PW (R-PDSO-G**) 14 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.

D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third–party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Mailing Address:

Texas Instruments Post Office Box 655303 Dallas, Texas 75265

Copyright © 2002, Texas Instruments Incorporated