

GND

Y10 2

5

Π7

10

Π 11

12

Y9 **1**4

OE

A **[**] 6

P0

P1 8

Y8 🛛 9

V<sub>CC</sub>

Y7

GND

**DB OR DW PACKAGE** 

(TOP VIEW)

24 GND

23 Y1

22 V<sub>CC</sub>

20 GND

17 GND

21 Y2

19 Y3

18 Y4

16 Y5

14 Y6

15 V<sub>CC</sub>

13 GND

### FEATURES

- Low Output Skew, Low Pulse Skew for Clock-Distribution and Clock-Generation Applications
- Operates at 3.3-V V<sub>CC</sub>
- LVTTL-Compatible Inputs and Outputs
- Supports Mixed-Mode Signal Operation (5-V Input and Output Voltages With 3.3-V V<sub>CC</sub>)
- Distributes One Clock Input to Ten Outputs
- Distributed V<sub>CC</sub> and Ground Pins Reduce Switching Noise
- High-Drive Outputs (-32-mA I<sub>OH</sub>, 32-mA I<sub>OL</sub>)
- State-of-the-Art *EPIC*-IIB™ BiCMOS Design Significantly Reduces Power Dissipation
- Package Options Include Plastic Small-Outline (DW) and Shrink Small-Outline (DB) Packages

### DESCRIPTION

The CDC351 is a high-performance clock-driver circuit that distributes one input (A) to ten outputs (Y) with minimum skew for clock distribution. The output-enable ( $\overline{OE}$ ) input disables the outputs to a high-impedance state. The CDC351 operates at nominal 3.3-V V<sub>CC</sub>.

The propagation delays are adjusted at the factory using the P0 and P1 pins. The factory adjustments ensure that the part-to-part skew is minimized and is kept within a specified window. Pins P0 and P1 are not intended for customer use and should be connected to GND.

| INP | OUTPUTS |    |
|-----|---------|----|
| А   | ŌĒ      | Yn |
| L   | Н       | Z  |
| н   | Н       | Z  |
| L   | L       | L  |
| н   | L       | Н  |

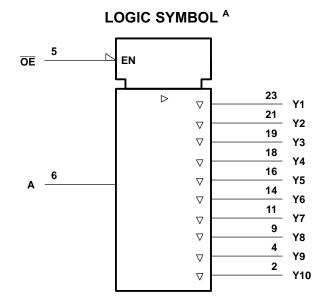
### **FUNCTION TABLE**

### **AVAILABLE OPTIONS**

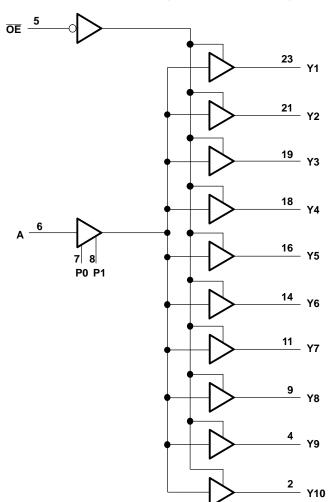
ΓN

| T <sub>A</sub> | Shrink Small-Outline Package (DB) (1) | Small-Outline Package (DW) (1) |
|----------------|---------------------------------------|--------------------------------|
| 0°C to 70°C    | CDC351DB                              | CDC351DW                       |
| – 40°C to 85°C | CDC351IDB                             | CDC351IDW                      |

(1) This package is available tape and reel. Order by adding an R to the orderable part number (e.g., CDC351DBR).


EPIC-IIB is a trademark of Texas Instruments.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.


# CDC351. CDC351I 1-LINE TO 10-LINE CLOCK DRIVER WITH 3-STATE OUTPUTS



SCAS441D-FEBRUARY 1994-REVISED OCTOBER 2003



Note A: This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.



## LOGIC DIAGRAM (POSITIVE LOGIC)



SCAS441D-FEBRUARY 1994-REVISED OCTOBER 2003

### ABSOLUTE MAXIMUM RATINGS

over operating free-air temperature range (unless otherwise noted) (1)

|                    | – 0.5 V to 4.6 V |
|--------------------|------------------|
|                    | – 0.5 V to 7 V   |
| V <sub>0</sub> (2) | – 0.5 V to 3.6 V |
|                    | 64 mA            |
|                    | – 18 mA          |
|                    | – 50 mA          |
| DB package         | 147°C/ W         |
| DW package         | 101°C/ W         |
|                    | – 65°C to 150°C  |
|                    | DB package       |

- (1) Stresses beyond those listed under, absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under, recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
- (2) The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
- (3) The package thermal impedance is calculated in accordance with JESD51.

### **RECOMMENDED OPERATING CONDITIONS (1)**

|                    |                                |        |        | MIN  | MAX  | UNIT |
|--------------------|--------------------------------|--------|--------|------|------|------|
| V <sub>CC</sub>    | Supply voltage                 |        |        | 3    | 3.6  | V    |
| VIH                | High-level input voltage       |        |        | 2    |      | V    |
| VIL                | Low-level input voltage        |        |        |      | 0.8  | V    |
| VI                 | Input voltage                  |        | 0      | 5.5  | V    |      |
| I <sub>OH</sub>    | High-level output current      |        |        |      | - 32 | mA   |
| I <sub>OL</sub>    | Low-level output current       |        |        |      | 32   | mA   |
| f <sub>clock</sub> | Input clock frequency          |        |        |      | 100  | MHz  |
| T <sub>A</sub>     |                                | Comn   | ercial | 0    | 70   | °C   |
|                    | Operating free-air temperature | Indust | ial    | - 40 | 85   | °C   |

(1) Unused pins (input or I/O) must be held high or low.

#### **ELECTRICAL CHARACTERISTICS**

over recommended operating free-air temperature range (unless otherwise noted)

| PARAMETER          | TEST CONDITIONS                          |                           |                  | MIN | TYP | MAX  | UNIT |
|--------------------|------------------------------------------|---------------------------|------------------|-----|-----|------|------|
| V <sub>IK</sub>    | V <sub>CC</sub> = 3 V,                   | I <sub>I</sub> = –18 mA   |                  |     |     | -1.2 | V    |
| V <sub>OH</sub>    | V <sub>CC</sub> = 3 V,                   | I <sub>OH</sub> = –32 mA  |                  | 2   |     |      | V    |
| V <sub>OL</sub>    | V <sub>CC</sub> = 3 V,                   | I <sub>OL</sub> = 32 mA   |                  |     |     | 0.5  | V    |
| li -               | V <sub>CC</sub> = 3.6 V,                 | $V_{I} = V_{CC}$ or GND   |                  |     |     | ±1   | μA   |
| I <sub>0</sub> (1) | V <sub>CC</sub> = 3.6 V,                 | V <sub>O</sub> = 2.5 V    |                  | –15 |     | -150 | mA   |
| I <sub>OZ</sub>    | V <sub>CC</sub> = 3.6 V,                 | V <sub>O</sub> = 3 V or 0 |                  |     |     | ±10  | μA   |
|                    |                                          |                           | Outputs high     |     |     | 0.3  |      |
| I <sub>CC</sub>    | $V_{CC}$ = 3.6 V, $I_{O}$ = 0, $V_{I}$ = | = V <sub>CC</sub> or GND  | Outputs low      |     |     | 25   | mA   |
|                    |                                          |                           | Outputs disabled |     |     | 0.3  |      |
| C <sub>i</sub>     | V <sub>I</sub> = V <sub>CC</sub> or GND, | V <sub>CC</sub> = 3.3 V,  | f = 10 MHz       |     | 4   |      | pF   |
| Co                 | $V_{O} = V_{CC}$ or GND,                 | V <sub>CC</sub> = 3.3 V,  | f = 10 MHz       |     | 6   |      | pF   |

(1) Not more than one output should be tested at a time, and the duration of the test should not exceed one second.



SCAS441D-FEBRUARY 1994-REVISED OCTOBER 2003

### SWITICHING CHARACTERISTICS

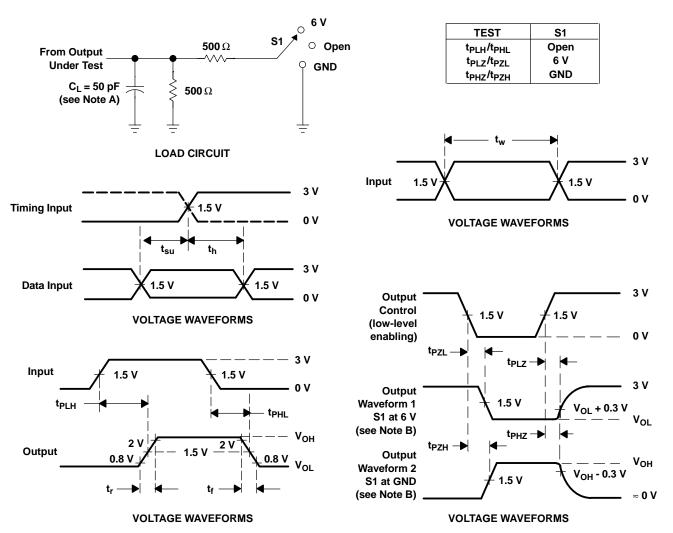
 $C_L$  = 50 pF (see Figure 1 and Figure 2)

| PARAMETER           | FROM<br>(INPUT) | TO<br>(OUTPUT) | V <sub>CC</sub> = 3. | 3 V, T <sub>A</sub> : | = 25°C | $V_{CC} = 3 V to$<br>$T_A = 0^{\circ}C to$ | o 3.6 V,<br>o 70°C | V <sub>CC</sub> = 3 V te<br>T <sub>A</sub> = -40°C |     | UNIT |
|---------------------|-----------------|----------------|----------------------|-----------------------|--------|--------------------------------------------|--------------------|----------------------------------------------------|-----|------|
|                     | (INPUT)         | (001901)       | MIN                  | TYP                   | MAX    | MIN                                        | MAX                | MIN                                                | MAX |      |
| t <sub>PLH</sub>    | - A             | Y              | 3.2                  | 3.7                   | 4.2    |                                            |                    |                                                    |     | 20   |
| t <sub>PHL</sub>    | A               | ř              | 3                    | 3.5                   | 4      |                                            |                    |                                                    |     | ns   |
| t <sub>PZH</sub>    | OE              | Y              | 1.8                  | 3.8                   | 5.5    | 1.3                                        | 5.9                | 1.1                                                | 6.1 |      |
| t <sub>PZL</sub>    | UE              | ř              | 1.8                  | 3.8                   | 5.5    | 1.3                                        | 5.9                | 1.1                                                | 6.1 | ns   |
| t <sub>PHZ</sub>    | OE              | Y              | 1.8                  | 3.9                   | 5.9    | 1.7                                        | 6.3                | 1.5                                                | 6.5 |      |
| t <sub>PLZ</sub>    | UE              | ř              | 1.8                  | 4.2                   | 5.9    | 1.7                                        | 6.4                | 1.5                                                | 6.6 | ns   |
| t <sub>sk(o)</sub>  | А               | Y              |                      | 0.3                   | 0.5    |                                            | 0.5                |                                                    | 0.6 | ns   |
| t <sub>sk(p)</sub>  | А               | Y              |                      | 0.2                   | 0.8    |                                            | 0.8                |                                                    | 0.9 | ns   |
| t <sub>sk(pr)</sub> | А               | Y              |                      |                       | 1      |                                            | 1                  |                                                    | 1.1 | ns   |
| t <sub>r</sub>      | А               | Y              |                      |                       |        |                                            | 1.5                |                                                    | 1.5 | ns   |
| t <sub>f</sub>      | А               | Y              |                      |                       |        |                                            | 1.5                |                                                    | 1.5 | ns   |

## SWITCHING CHARACTERISTICS TEMPERATURE AND $V_{cc}$ COEFFICIENTS

over recommended operating free-air temperature and  $V_{\text{CC}}$  range (1)

|                           | PARAMETER                                                            | FROM<br>(INPUT) | TO<br>(OUTPUT) | MIN MAX  | UNIT       |
|---------------------------|----------------------------------------------------------------------|-----------------|----------------|----------|------------|
| §t <sub>PLH</sub> (T)     | Average temperature coefficient of low to high propagation delay     | А               | Y              | 65 (2)   | ps/10°C    |
| §t <sub>PHL</sub> (T)     | Average temperature coefficient of high to low propagation delay     | А               | Y              | 45 (2)   | ps/10°C    |
| $t_{PLH}(V_{CC})$         | Average $V_{CC}$ coefficient of low to high propagation delay        | А               | Y              | -140 (3) | ps/ 100 mV |
| $t_{\rm PHL}(V_{\rm CC})$ | Average $V_{\text{CC}}$ coefficient of high to low propagation delay | А               | Y              | -120 (3) | ps/ 100 mV |


(1) These data were extracted from characterization material and are not tested at the factory.

 $\begin{array}{ll} (2) & $t_{\mathsf{PLH}}(\mathsf{T})$ and $t_{\mathsf{PHL}}(\mathsf{T})$ are virtually independent of $V_{\mathsf{CC}}$. \\ (3) & $t_{\mathsf{PLH}}(V_{\mathsf{CC}})$ and $t_{\mathsf{PHL}}(V_{\mathsf{CC}})$ are virtually independent of temperature. \\ \end{array}$ 



## CDC351. CDC351 1-LINE TO 10-LINE CLOCK DRIVER WITH 3-STATE OUTPUTS

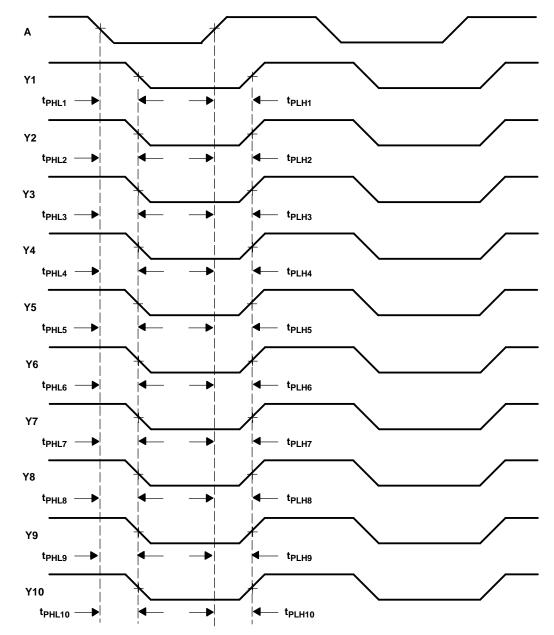
SCAS441D-FEBRUARY 1994-REVISED OCTOBER 2003



A. C<sub>L</sub> includes probe and jig capacitance.

B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.

C. All input pulses are supplied by generators having the following characteristics: PRR  $\leq$  10 MHz, Z<sub>O</sub> = 50  $\Omega$ , t<sub>r</sub> $\leq$  2.5 ns, t<sub>f</sub> $\leq$  2.5 ns.


D. The outputs are measured one at a time with one transition per measurement.

#### Figure 1. Load Circuit and Voltage Waveforms

# CDC351. CDC351I 1-LINE TO 10-LINE CLOCK DRIVER WITH 3-STATE OUTPUTS



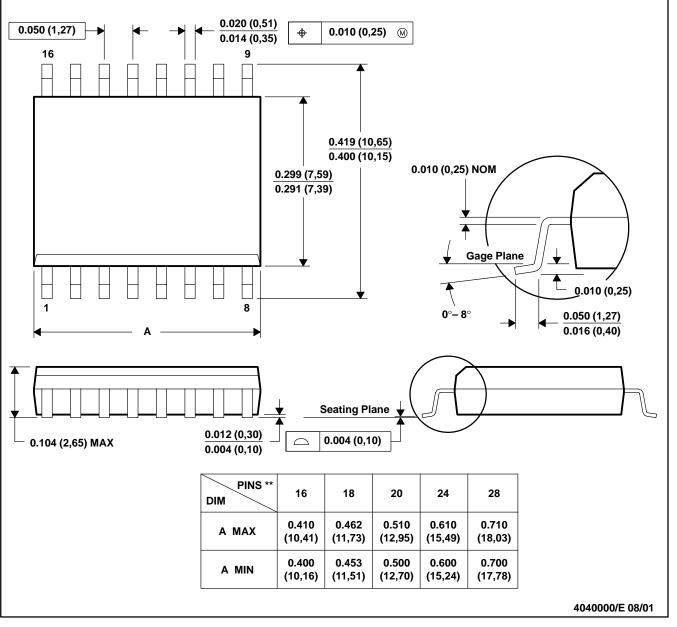
SCAS441D-FEBRUARY 1994-REVISED OCTOBER 2003



- A. Output skew,  $t_{\mbox{sk}(\mbox{o})}$  , is calculated as the greater of:
- The difference between the fastest and slowest of  $t_{PLHn}$  (n = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
- The difference between the fastest and slowest of  $t_{PHLn}$  (n = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
- B. Pulse skew,  $t_{sk(p)}$ , is calculated as the greater of |  $t_{PLHn}$   $t_{PHLn}$  | (n = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10).
- C. Process skew,  $t_{sk(pr)}$ , is calculated as the greater of:

— The difference between the fastest and slowest of t<sub>PLHn</sub> (n = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10) across multiple devices under identical operating conditions

— The difference between the fastest and slowest of  $t_{PHLn}$  (n = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10) across multiple devices under identical operating conditions


Figure 2. Waveforms for Calculation of  $t_{sk(o)},\,t_{sk(p)},\,t_{sk(pr)}$ 

## **MECHANICAL DATA**

MSOI003E - JANUARY 1995 - REVISED SEPTEMBER 2001

#### PLASTIC SMALL-OUTLINE PACKAGE

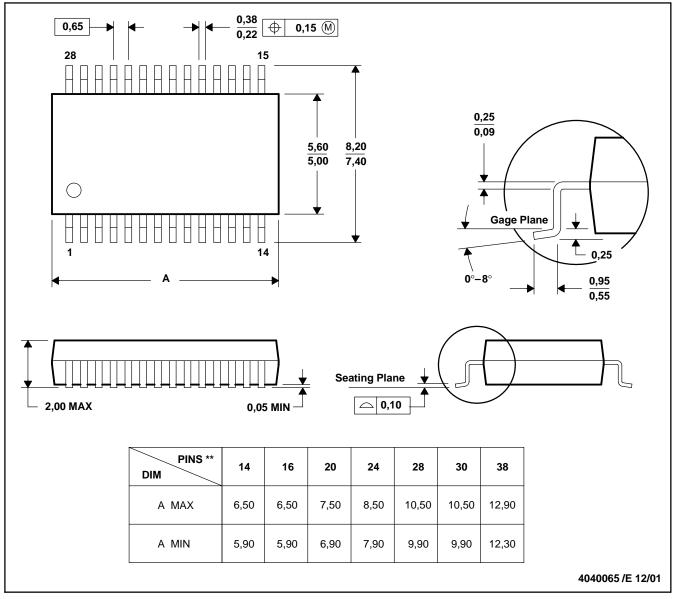
DW (R-PDSO-G\*\*) 16 PINS SHOWN



NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MS-013




# **MECHANICAL DATA**

MSSO002E - JANUARY 1995 - REVISED DECEMBER 2001

## DB (R-PDSO-G\*\*)

PLASTIC SMALL-OUTLINE

28 PINS SHOWN



NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.
- D. Falls within JEDEC MO-150



#### **IMPORTANT NOTICE**

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

| Products         |                        | Applications       |                           |
|------------------|------------------------|--------------------|---------------------------|
| Amplifiers       | amplifier.ti.com       | Audio              | www.ti.com/audio          |
| Data Converters  | dataconverter.ti.com   | Automotive         | www.ti.com/automotive     |
| DSP              | dsp.ti.com             | Broadband          | www.ti.com/broadband      |
| Interface        | interface.ti.com       | Digital Control    | www.ti.com/digitalcontrol |
| Logic            | logic.ti.com           | Military           | www.ti.com/military       |
| Power Mgmt       | power.ti.com           | Optical Networking | www.ti.com/opticalnetwork |
| Microcontrollers | microcontroller.ti.com | Security           | www.ti.com/security       |
|                  |                        | Telephony          | www.ti.com/telephony      |
|                  |                        | Video & Imaging    | www.ti.com/video          |
|                  |                        | Wireless           | www.ti.com/wireless       |

Mailing Address:

Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2003, Texas Instruments Incorporated