- CDC209 Replaces 74AC11208
- CDC209-7 Replaces 74AC11208-7
- Low-Skew Propagation Delay Specifications for Clock-Driver Applications
- CMOS-Compatible Inputs and Outputs
- Flow-Through Architecture Optimizes
 PCB Layout
- Characterized for Operation at 5-V and 3.3-V V_{CC}
- Center-Pin V_{CC} and GND Pin Configurations Minimize High-Speed Switching Noise
- EPIC™ (Enhanced-Performance Implanted CMOS) 1-µm Process
- 500-mA Typical Latch-Up Immunity at 125°C
- Package Options Include Plastic Small-Outline Package (DW) and Standard Plastic 300-mil DIPs (N)

DW OR N PACKAGE

description

The CDC209/209-7 contains dual clock-driver circuits that fanout one input signal to four outputs with minimum skew for clock distribution (see Figure 2). The device also offers two output-enable (OE1 and OE2) inputs for each circuit that can force the outputs to be disabled to a high-impedance state or to a high- or low-logic level independent of the signal on the respective A input.

Skew parameters are specified for a reduced temperature and voltage range common to many applications.

The CDC209/209-7 is characterized for operation from $T_A = -40$ °C to 85°C.

FUNCTION TABLES

	INPUTS			OUTI	PUTS	
10E1	1 <mark>0E2</mark>	1A	1Y1	1Y2	1Y3	1Y4
L	L	L	L	L	L	L
L	L	Н	Н	Н	Н	Н
L	Н	Χ	L	L	L	L
Н	L	Χ	Н	Н	Н	Н
Н	Н	Χ	Z	Z	Z	Z

	INPUTS			OUTI	PUTS	
20E1	2OE2	2A	2Y1	2Y2	2Y3	2Y4
L	L	L	L	L	L	L
L	L	Н	Н	Н	Н	н
L	Н	Χ	L	L	L	L
Н	L	Χ	Н	Н	Н	н
Н	Н	Χ	Z	Z	Z	z

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

EPIC is a trademark of Texas Instruments Incorporated.

logic symbol†

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC}	–0.5 V to 7 V
Input voltage range, V _I (see Note 1)	\dots -0.5 V to V _{CC} + 0.5 V
Output voltage range, VO (see Note 1)	\dots -0.5 V to V _{CC} + 0.5 V
Input clamp current, I_{IK} ($V_I < 0$ or $V_I > V_{CC}$)	±20 mA
Output clamp current, I _{OK} (V _O < 0 or V _O > V _{CC})	$\dots \dots \pm 50 \text{ mA}$
Continuous output current, I_O ($V_O = 0$ to V_{CC})	$\dots \dots \pm 50 \text{ mA}$
Continuous current through V _{CC} or GND	$\dots \dots \pm 200 \text{ mA}$
Maximum power dissipation at $T_A = 55^{\circ}$ C (in still air) (see Note 2): DW package	1.6 W
N package	1.3 W
Storage temperature range, T _{stq}	65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

2. The maximum package power dissipation is calculated using a junction temperature of 150°C and a board trace length of 750 mils, except for the N package, which has a trace length of zero. For more information, refer to the *Package Thermal Considerations* application note in the 1994 *ABT Advanced BiCMOS Technology Data Book*, literature number SCBD002B.

recommended operating conditions

			MIN	NOM	MAX	UNIT
Vcc	Supply voltage		3	5	5.5	V
		V _{CC} = 3 V	2.1			
V_{IH}	High-level input voltage	$V_{CC} = 4.5 \text{ V}$	3.15			V
		$V_{CC} = 5.5 \text{ V}$	3.85			
		V _{CC} = 3 V			0.9	
V_{IL}	Low-level input voltage	$V_{CC} = 4.5 \text{ V}$			1.35	V
		$V_{CC} = 5.5 \text{ V}$			1.65	
٧ _I	Input voltage		0		VCC	V
		V _{CC} = 3 V			-4	
loH	High-level output current	$V_{CC} = 4.5 \text{ V}$			-24	mA
		$V_{CC} = 5.5 \text{ V}$			-24	
		V _{CC} = 3 V			12	
loL	Low-level output current	$V_{CC} = 4.5 \text{ V}$			24	mA
		V _{CC} = 5.5 V			24	
$\Delta t/\Delta v$	Input transition rise or fall rate		0		10	ns/V
f _{clock}	Input clock frequency				60	MHz
T _A	Operating free-air temperature		-40		85	°C

CDC209, CDC209-7 DUAL 1-LINE TO 4-LINE CLOCK DRIVERS WITH 3-STATE OUTPUTS SCAS108D - MARCH 1990 - REVISED MAY 1997

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST COND	DITIONS	T _{A†}	MIN	TYP	MAX	UNIT
			Voc - 2 V	25°C	2.9			
			VCC = 3 V	Full range	2.9			
		Jan - 50	V00 = 4 5 V	25°C	4.4			
		I _{OH} = -50 μA	$V_{CC} = 4.5 \text{ V}$	Full range	4.4			
			V _{CC} = 5.5 V	25°C	5.4			
			VCC = 5.5 V	Full range	5.4			
Vон	High-level output voltage	I _{OH} = -4 mA	V _{CC} = 3 V	25°C	2.58			V
		10H = -4111/	VCC = 3 V	Full range	2.48			
			V _{CC} = 4.5 V	25°C	3.94			
		$I_{OH} = -24 \text{ mA}$	VCC = 4.5 V	Full range	3.8			
		IOH - 24 IIIA	V _{CC} = 5.5 V	25°C	4.94			
			VCC = 3.5 V	Full range	4.8			
		$I_{OH} = -75 \text{ mA}^{\ddagger}$,	V _{CC} = 5.5 V	Full range	3.85			
		I _{OL} = 50 μA	V _{CC} = 3 V	25°C			0.1	
			100 01	Full range			0.1	
			$V_{CC} = 4.5 \text{ V}$ $V_{CC} = 5.5 \text{ V}$ $V_{CC} = 3 \text{ V}$	25°C			0.1	
				Full range			0.1	
				25°C			0.1	
				Full range			0.1	
VOL	Low-level output voltage			25°C			0.36	V
				Full range			0.44	
			V _{CC} = 4.5 V	25°C			0.36	
		I _{OL} = 24 mA		Full range			0.44	
		J OL	V _{CC} = 5.5 V	25°C			0.36	
				Full range			0.44	
		I _{OL} = 75 mA [‡] ,	V _{CC} = 5.5 V	Full range			1.65	
tı	Input current	V _I = V _{CC} or GND	V _{CC} = 5.5 V	25°C			±0.1	μΑ
<u> </u>	·	1 00		Full range			±1	•
loz	High-impedance output current	VO = VCC or GND	V _{CC} = 5.5 V	25°C			±0.5	μΑ
L				Full range			±5	•
Icc	Supply current	$V_I = V_{CC}$ or GND,	V _{CC} = 5.5 V	25°C			8	μΑ
		IO = 0		Full range			80	•
Ci	Input capacitance	V _I = V _{CC} or GND	V _{CC} = 5 V	25°C		4		pF _
Со	Output capacitance	$V_O = V_{CC}$ or GND	V _{CC} = 5 V	25°C		10		pF

[†] Full range is $T_A = -40^{\circ}$ C to 85°C.

[‡] Not more than one output should be tested at a time, and the duration of the test should not exceed 10 ms.

switching characteristics over recommended operating free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted) (see Figure 1)

	PARAMETER	FROM (INPUT)	TO (OUTPUT)	T _{A†}	MIN	TYP	MAX	UNIT
t=	Propagation delay time, low-to-high level	1A and 2A	Any Y	25°C	4.8	11.1	13.1	ns
tPLH	Propagation delay time, low-to-night level	TA and 2A	Ally I	Full range	4.8		14.6	ns
t	PHL Propagation delay time, high-to-low level 1A and 2A Any Y	Any V	25°C	5.1	12.2	14.3	ns	
PHL		Ally I	Full range	5.1		15.6	ns	
t=	Propagation delay time, low-to-high level	1OE1, 1OE2, and	Any Y	25°C	5.2	11.9	14.2	ns
tPLH	Propagation delay time, low-to-night level	20E1, 20E2		Full range	5.2		15.8	ns
t=	Propagation delay time, high-to-low level	1OE1, 1OE2, and	Any Y	25°C	7.8	13.3	15.7	ns
tPHL	Propagation delay time, high-to-low level	2 0E1 , 2 0E2	Ally I	Full range	7.8		17.4	ns
	Enable time to the high level	10E2 or 20E2	Any Y	25°C	5.1	11.8	14.2	ns
tPZH	Chable time to the high level	1012 01 2012	Ally I	Full range	5.1		15.7	ns
t	Enable time to the low level	10E1 or 20E1	Any Y	25°C	6.8	16.3	19.5	ns
^t PZL	Litable time to the low level	TOLT OF ZOLT	Ally I	Full range	6.8		22.8	ns
tp	Disable time from the high level	10E2 or 20E2	Any Y	25°C	3.4	6.9	8.6	ns
tPHZ	Disable time from the high level	1012 01 2012	Ally I	Full range	3.4		9.2	ns
to. 7	Disable time from the low level	10E1 or 20E1	Any Y	25°C	4.1	7.5	9.4	ns
^t PLZ	Disable time from the low level	1001012001	Ally Y	Full range	4.1		10.2	ns

[†] Full range is $T_A = -40^{\circ}$ C to 85°C.

switching characteristics over recommended operating free-air temperature range, V_{CC} = 5 V \pm 0.5 V (unless otherwise noted) (see Figure 1)

	PARAMETER	FROM (INPUT)	TO (OUTPUT)	T _{A†}	MIN	TYP	MAX	UNIT
tou	Propagation delay time, low-to-high level	1A and 2A	Any Y	25°C	4.2	5.5	9	ns
tPLH	1 Topagation delay time, low-to-night level	TA dilu ZA	Ally I	Full range	4.2		9.9	115
tp	Propagation delay time, high-to-low level 1A and 2A Any Y	25°C	4.2	7	9.3	ns		
tPHL	1 Topagation delay time, high-to-low level	TA dilu ZA	Ally I	Full range	4.2		10.1	113
t=	Propagation delay time, low-to-high level	1 0E1 , 1 0E2 , and	Any Y	25°C	4.6	7.3	9.6	ns
tPLH	rropagation delay time, low-to-night level	2OE1, 2OE2	Ally I	Full range	4.6		10.7	115
tp	Propagation delay time, high-to-low level	1 OE1 , 1 OE2 , and	Any Y	25°C	4.8	7.7	10.2	ns
^t PHL	1 Topagation delay time, high-to-low level	20E1, 20E2	Ally I	Full range	4.8		11	113
t	Enable time to the high level	10E2 or 20E2	Any Y	25°C	4.3	7.2	9.4	ns
tPZH	Litable time to the high level	TOLZ OF ZOLZ	Ally I	Full range	4.3		4	113
	Enable time to the low level	10E1 or 20E1	Any Y	25°C	5.3	9	12.2	ns
tPZL	Litable time to the low level	1001012001	Ally I	Full range	5.3		13.5	115
t	Disable time from the high level	10E2 or 20E2	Any Y	25°C	3	5.4	7.5	ns
tPHZ	Disable time from the high level	1012 01 2012	Ally I	Full range	3		8	115
to. 7	7 Disable time from the low level 1OE1 or 2OE1 Any Y	25°C	3.7	5.7	7.5	ns		
^t PLZ	Disable time nom the low level	1021012021	Ally I	Full range	3.7		8.2	115

[†] Full range is $T_A = -40^{\circ}$ C to 85°C.

switching characteristics, V_{CC} = 5 V \pm 0.25 V, T_A = 25°C to 70°C (see Note 3 and Figures 1 and 2)

PARAMETER		FROM	то	CDC209		CDC209-7		UNIT	
	FARAINETER	(INPUT)	(OUTPUT)	MIN	MAX	MIN	MAX	UNIT	
tPLH	Propagation delay time, low-to-high level	1A and 2A	Any Y	6	8.5	6	8.5	200	
tPHL	Propagation delay time, high-to-low level	TA and ZA	ra and za	Ally 1	6	9.3	6	9.3	ns
tsk(o)	output skew time	1A and 2A	Any Y		1		0.7	ns	

NOTE 3: All specifications are valid only for all outputs switching simultaneously and in phase.

operating characteristics, V_{CC} = 5 V, T_A = 25°C

PARAMETER			TEST CONDITIONS		MIN	TYP	MAX	UNIT
C _{pd} Power dissipation capacitance per bank	Outputs enabled	C. 50 pF	f = 1 MHz	95		nE		
	rower dissipation capacitance per bank	Outputs disabled	$C_L = 50 \text{ pF},$	f = 1 MHz		10		pr

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_L includes probe and jig capacitance.

- B. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50~\Omega$, $t_f \leq$ 3 ns. For testing pulse duration: $t_f = t_f = 1$ to 3 ns. Pulse polarity can be either high-to-low-to-high or low-to-high-to-low.
- C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.

Figure 1. Load Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION

- NOTE D: Output skew, $t_{Sk(0)}$, is calculated as the greater of:

 The difference between the fastest and slowest of t_{PLHn} (n = 1, 2, ..., 8)

 The difference between the fastest and slowest of t_{PHLn} (n = 1, 2, ..., 8)

Figure 2. Waveforms for Calculation of $t_{sk(o)}$

MECHANICAL INFORMATION

DW (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

16 PIN SHOWN

- NOTES: A. All linear dimensions are in inches (millimeters).
 - B. This drawing is subject to change without notice.
 - C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
 - D. Falls within JEDEC MS-013

MECHANICAL INFORMATION

N (R-PDIP-T**)

16 PIN SHOWN

PLASTIC DUAL-IN-LINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MS-001 (20 pin package is shorter then MS-001.)

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated