- CDC209 Replaces 74AC11208

CDC209-7 Replaces 74AC11208-7

- Low-Skew Propagation Delay Specifications for Clock-Driver Applications
- CMOS-Compatible Inputs and Outputs
- Flow-Through Architecture Optimizes PCB Layout
- Characterized for Operation at 5-V and $3.3-\mathrm{V} \mathrm{V}_{\mathrm{CC}}$
- Center-Pin $V_{C C}$ and GND Pin Configurations Minimize High-Speed Switching Noise
- EPIC ${ }^{\text {TM }}$ (Enhanced-Performance Implanted CMOS) $1-\mu \mathrm{m}$ Process
- 500-mA Typical Latch-Up Immunity at $125^{\circ} \mathrm{C}$
- Package Options Include Plastic Small-Outline Package (DW) and Standard Plastic 300-mil DIPs (N)

DW OR N PACKAGE

(TOP VIEW)

$1 \mathrm{Y} 2{ }^{1}$	\cup_{20}	1Y1
$1 \mathrm{Y} 3{ }^{2}$	19	$1 \mathrm{1A}$
$1 \mathrm{Y} 4 \mathrm{Cl}^{3}$	18] $\overline{\mathrm{OE} 1}$
GND [4	17	1 $\overline{\text { OE2 }}$
GND [5	16	V_{CC}
GND 6	15	V_{CC}
GND ${ }^{7}$	14	1] 2A
2Y1 8	13] $2 \overline{\mathrm{OE}}$
$2 \mathrm{Y} 2{ }^{\text {d }}$	12	2] $2 \overline{O E 2}$
2 Y 3 [10	11] 2 Y 4

description

The CDC209/209-7 contains dual clock-driver circuits that fanout one input signal to four outputs with minimum skew for clock distribution (see Figure 2). The device also offers two output-enable ($\overline{\mathrm{OE} 1}$ and $\overline{\mathrm{OE} 2}$) inputs for each circuit that can force the outputs to be disabled to a high-impedance state or to a high- or low-logic level independent of the signal on the respective A input.
Skew parameters are specified for a reduced temperature and voltage range common to many applications. The CDC209/209-7 is characterized for operation from $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

INPUTS			OUTPUTS			
10E1	10E2	1A	1Y1	1Y2	1Y3	1Y4
L	L	L	L	L	L	L
L	L	H	H	H	H	H
L	H	X	L	L	L	L
H	L	X	H	H	H	H
H	H	X	Z	Z	Z	Z

INPUTS			OUTPUTS			
2 $\overline{\mathrm{OE}}$	2 $\overline{\mathrm{OE} 2}$	2A	2Y1	2Y2	2Y3	2Y4
L	L	L	L	L	L	L
L	L	H	H	H	H	H
L	H	X	L	L	L	L
H	L	X	H	H	H	H
H	H	X	Z	Z	Z	Z

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

DUAL 1-LINE TO 4-LINE CLOCK DRIVERS

WITH 3-STATE OUTPUTS
SCAS108D - MARCH 1990 - REVISED MAY 1997

logic symbol \dagger

† This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

recommended operating conditions

			MIN	NOM	MAX	UNIT
v_{CC}	Supply voltage		3	5	5.5	V
V_{IH}	High-level input voltage	$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$	2.1			V
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	3.15			
		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	3.85			
V_{IL}	Low-level input voltage	$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$			0.9	V
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$			1.35	
		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$			1.65	
V_{1}	Input voltage		0		V_{CC}	V
IOH	High-level output current	$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$			-4	mA
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$			-24	
		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$			-24	
${ }^{\text {IOL}}$	Low-level output current	$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$			12	mA
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$			24	
		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$			24	
$\Delta t / \Delta v$	Input transition rise or fall rate		0		10	ns/V
$\mathrm{f}_{\text {clock }}$	Input clock frequency				60	MHz
$\mathrm{T}_{\text {A }}$	Operating free-air temperature		-40		85	${ }^{\circ} \mathrm{C}$

DUAL 1-LINE TO 4-LINE CLOCK DRIVERS

WITH 3-STATE OUTPUTS
SCAS108D - MARCH 1990 - REVISED MAY 1997
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS		$\mathrm{T}_{\text {A }}$	MIN	TYP	MAX	UNIT
V_{OH}	High-level output voltage	$\mathrm{IOH}=-50 \mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$	$25^{\circ} \mathrm{C}$	2.9			V
				Full range	2.9			
			$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	$25^{\circ} \mathrm{C}$	4.4			
				Full range	4.4			
			$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	$25^{\circ} \mathrm{C}$	5.4			
				Full range	5.4			
		$\mathrm{IOH}=-4 \mathrm{~mA}$	$V_{C C}=3 \mathrm{~V}$	$25^{\circ} \mathrm{C}$	2.58			
				Full range	2.48			
		$\mathrm{IOH}=-24 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	$25^{\circ} \mathrm{C}$	3.94			
				Full range	3.8			
			$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	$25^{\circ} \mathrm{C}$	4.94			
				Full range	4.8			
		$\mathrm{I} \mathrm{OH}=-75 \mathrm{~mA} \ddagger$,	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	Full range	3.85			
VOL	Low-level output voltage	$\mathrm{lOL}=50 \mu \mathrm{~A}$	$V_{C C}=3 \mathrm{~V}$	$25^{\circ} \mathrm{C}$			0.1	V
				Full range			0.1	
			$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	$25^{\circ} \mathrm{C}$			0.1	
				Full range			0.1	
			$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	$25^{\circ} \mathrm{C}$			0.1	
				Full range			0.1	
		$\mathrm{IOL}=12 \mathrm{~mA}$	$V_{C C}=3 \mathrm{~V}$	$25^{\circ} \mathrm{C}$			0.36	
				Full range			0.44	
		$\mathrm{IOL}=24 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	$25^{\circ} \mathrm{C}$			0.36	
				Full range			0.44	
			$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	$25^{\circ} \mathrm{C}$			0.36	
				Full range			0.44	
		$\mathrm{IOL}=75 \mathrm{~mA} \ddagger$,	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	Full range			1.65	
I	Input current	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	$25^{\circ} \mathrm{C}$			± 0.1	$\mu \mathrm{A}$
				Full range			± 1	
	High-impedance output current	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}$ or GND	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	$25^{\circ} \mathrm{C}$			± 0.5	$\mu \mathrm{A}$
				Full range			± 5	
ICC	Supply current	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or GND, } \\ & \mathrm{l}=0 \end{aligned}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	$25^{\circ} \mathrm{C}$			8	$\mu \mathrm{A}$
				Full range			80	
C_{i}	Input capacitance	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}$ or GND	$V_{C C}=5 \mathrm{~V}$	$25^{\circ} \mathrm{C}$		4		pF
C_{0}	Output capacitance	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\text {CC }}$ or GND	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	$25^{\circ} \mathrm{C}$		10		pF

\dagger Full range is $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
\ddagger Not more than one output should be tested at a time, and the duration of the test should not exceed 10 ms .
switching characteristics over recommended operating free-air temperature range, $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$ (unless otherwise noted) (see Figure 1)

	PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\mathrm{T}_{\text {A } \dagger}$	MIN	TYP	MAX	UNIT
tPLH	Propagation delay time, low-to-high level	1 A and 2A	Any Y	$25^{\circ} \mathrm{C}$	4.8	11.1	13.1	ns
				Full range	4.8		14.6	ns
tPHL	Propagation delay time, high-to-low level	1 A and 2A	Any Y	$25^{\circ} \mathrm{C}$	5.1	12.2	14.3	ns
				Full range	5.1		15.6	ns
tPLH	Propagation delay time, low-to-high level	$\begin{gathered} 1 \overline{\mathrm{OE} 1}, 1 \overline{\mathrm{OE} 2}, \text { and } \\ 2 \overline{\mathrm{OE} 1}, 2 \overline{\mathrm{OE} 2} \end{gathered}$	Any Y	$25^{\circ} \mathrm{C}$	5.2	11.9	14.2	ns
				Full range	5.2		15.8	ns
tPHL	Propagation delay time, high-to-low level	$\begin{gathered} 1 \overline{\mathrm{OE} 1}, 1 \overline{\mathrm{OE},} \text {, and } \\ 2 \overline{\mathrm{OE} 1}, 2 \overline{\mathrm{OE} 2} \end{gathered}$	Any Y	$25^{\circ} \mathrm{C}$	7.8	13.3	15.7	ns
				Full range	7.8		17.4	ns
tPZH	Enable time to the high level	10E2 or 2OE2	Any Y	$25^{\circ} \mathrm{C}$	5.1	11.8	14.2	ns
				Full range	5.1		15.7	ns
tPZL	Enable time to the low level	1OE1 or 2OE1	Any Y	$25^{\circ} \mathrm{C}$	6.8	16.3	19.5	ns
				Full range	6.8		22.8	ns
tPHZ	Disable time from the high level	10E2 or 2OE2	Any Y	$25^{\circ} \mathrm{C}$	3.4	6.9	8.6	ns
				Full range	3.4		9.2	ns
tPLZ	Disable time from the low level	1OE1 or 2OE1	Any Y	$25^{\circ} \mathrm{C}$	4.1	7.5	9.4	ns
				Full range	4.1		10.2	ns

\dagger Full range is $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
switching characteristics over recommended operating free-air temperature range, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 0.5 \mathrm{~V}$ (unless otherwise noted) (see Figure 1)

	PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\mathrm{T}_{\text {A } \dagger}$	MIN	TYP	MAX	UNIT
tPLH	Propagation delay time, low-to-high level	1 A and 2 A	Any Y	$25^{\circ} \mathrm{C}$	4.2	5.5	9	ns
				Full range	4.2		9.9	
tPHL	Propagation delay time, high-to-low level	1A and 2A	Any Y	$25^{\circ} \mathrm{C}$	4.2	7	9.3	ns
				Full range	4.2		10.1	
tPLH	Propagation delay time, low-to-high level	$\begin{gathered} 1 \overline{\mathrm{OE} 1}, 1 \overline{\mathrm{OE} 2} \text {, and } \\ 2 \overline{\mathrm{OE} 1}, 2 \overline{\mathrm{OE} 2} \end{gathered}$	Any Y	$25^{\circ} \mathrm{C}$	4.6	7.3	9.6	ns
				Full range	4.6		10.7	
tPHL	Propagation delay time, high-to-low level	$\begin{gathered} 1 \overline{\mathrm{OE} 1}, 1 \overline{\mathrm{OE}}, \text { and } \\ 2 \overline{\mathrm{OE}}, 2 \overline{\mathrm{OE} 2} \end{gathered}$	Any Y	$25^{\circ} \mathrm{C}$	4.8	7.7	10.2	ns
				Full range	4.8		11	
tPZH	Enable time to the high level	10 E 2 or 2OE2	Any Y	$25^{\circ} \mathrm{C}$	4.3	7.2	9.4	ns
				Full range	4.3		4	
tPZL	Enable time to the low level	1OE1 or 2OE1	Any Y	$25^{\circ} \mathrm{C}$	5.3	9	12.2	ns
				Full range	5.3		13.5	
tPHZ	Disable time from the high level	1 EE 2 or 2OE2	Any Y	$25^{\circ} \mathrm{C}$	3	5.4	7.5	ns
				Full range	3		8	
tPLZ	Disable time from the low level	1OE1 or 2OE1	Any Y	$25^{\circ} \mathrm{C}$	3.7	5.7	7.5	ns
				Full range	3.7		8.2	

\dagger Full range is $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

DUAL 1-LINE TO 4-LINE CLOCK DRIVERS

WITH 3-STATE OUTPUTS
SCAS108D - MARCH 1990 - REVISED MAY 1997
switching characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 0.25 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ (see Note 3 and Figures 1 and 2)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	CDC209		CDC209-7		UNIT
			MIN	MAX	MIN	MAX	
tPLH Propagation delay time, low-to-high level	1 A and 2 A	Any Y	6	8.5	6	8.5	ns
tPHL Propagation delay time, high-to-low level			6	9.3	6	9.3	
tsk(o) output skew time	1 A and 2A	Any Y		1		0.7	ns

NOTE 3: All specifications are valid only for all outputs switching simultaneously and in phase.
operating characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER			TEST CONDITIONS		MIN	TYP	MAX	UNIT
C_{pd}	Power dissipation capacitance per bank	Outputs enabled	$C_{L}=50 \mathrm{pF}$,	$\mathrm{f}=1 \mathrm{MHz}$		95		pF
		Outputs disabled				10		

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_{L} includes probe and jig capacitance.
B. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 3 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 3 \mathrm{~ns}$. For testing pulse duration: $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=1$ to 3 ns . Pulse polarity can be either high-to-low-to-high or low-to-high-to-low.
C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.

Figure 1. Load Circuit and Voltage Waveforms

NOTE D: Output skew, $\mathrm{t}_{\mathrm{sk}}(\mathrm{o})$, is calculated as the greater of:

- The difference between the fastest and slowest of tpLHn ($\mathrm{n}=1,2, \ldots, 8$)
- The difference between the fastest and slowest of tPHLn ($n=1,2, \ldots, 8$)

Figure 2. Waveforms for Calculation of $\mathrm{t}_{\mathbf{s k}(0)}$

MECHANICAL INFORMATION

DW (R-PDSO-G**)
PLASTIC SMALL-OUTLINE PACKAGE
16 PIN SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed $0.006(0,15)$.
D. Falls within JEDEC MS-013

MECHANICAL INFORMATION

N (R-PDIP-T**)
PLASTIC DUAL-IN-LINE PACKAGE
16 PIN SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Falls within JEDEC MS-001 (20 pin package is shorter then MS-001.)

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. Tl's publication of information regarding any third party's products or services does not constitute Tl's approval, warranty or endorsement thereof.

