

Data sheet acquired from Harris Semiconductor

CD74HC166, CD74HCT166

High Speed CMOS Logic 8-Bit Parallel-In/Serial-Out Shift Register

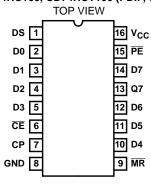
February 1998

Features

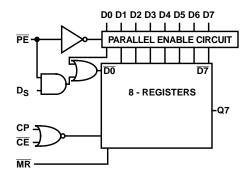
- · Buffered Inputs
- Typical $f_{MAX} = 50MHz$ at $V_{CC} = 5V$, $C_L = 15pF$, $T_A = 25^{O}C$
- Fanout (Over Temperature Range)
 - Standard Outputs...... 10 LSTTL Loads
 - Bus Driver Outputs 15 LSTTL Loads
- Wide Operating Temperature Range . . . -55°C to 125°C
- Balanced Propagation Delay and Transition Times
- Significant Power Reduction Compared to LSTTL Logic ICs
- HC Types
 - 2V to 6V Operation
 - High Noise Immunity: N_{IL} = 30%, N_{IH} = 30% of V_{CC}

- at $V_{CC} = 5V$
- HCT Types
 - 4.5V to 5.5V Operation
 - Direct LSTTL Input Logic Compatibility, V_{IL} = 0.8V (Max), V_{IH} = 2V (Min)
 - CMOS Input Compatibility, I $_I \leq 1 \mu A$ at $V_{OL},\,V_{OH}$

Ordering Information


PART NUMBER	TEMP. RANGE (°C)	_	
CD74HC166E	-55 to 125	16 Ld PDIP	E16.3
CD74HCT166E	-55 to 125	16 Ld PDIP	E16.3
CD74HC166M	-55 to 125	16 Ld SOIC	M16.15
CD74HCT166M	-55 to 125	16 Ld SOIC	M16.15
CD54HC166W	-55 to 125	Wafer	

NOTES:


- 1. When ordering, use the entire part number. Add the suffix 96 to obtain the variant in the tape and reel.
- Wafer and die is available which meets all electrical specifications. Please contact your local sales office or Harris customer service for ordering information.

Pinout

CD74HC166, CD74HCT166 (PDIP, SOIC)

Functional Diagram

TRUTH TABLE

		INP		INTE					
MASTER	PARALLEL	CLOCK		PARALLEL		Q ST		OUTPUT	
RESET	ENABLE	I I		SERIAL	D0 D7	Q0	Q1	Q7	
L	Х	X	Х	Х	Х	L	L	L	
Н	Х	L	L	Х	Х	Q00	Q10	Q0	
Н	L	L	1	Х	ah	а	b	h	
Н	Н	L	1	Н	Х	Н	Q0n	Q6n	
Н	Н	L	1	L	Х	L	Q0n	Q6n	
Н	Х	Н	1	Х	Х	Q00	Q10	Q70	

NOTES:

H = High Voltage Level

L = Low Voltage Level

X = Don't Care

 \uparrow = Transition from Low to High Level

a...h = The level of steady-state input at inputs D0 thru D7, respectively.

Q00, Q10, Q70 = The level of Q0, Q1, or Q7, respectively, before the indicated steady-state input conditions were established.

Q0n, Q6n = The level of Q0 or Q6, respectively, before the most recent ↑ transition of the clock.

Absolute Maximum Ratings

DC Supply Voltage, V $_{CC}$... -0.5V to 7V DC Input Diode Current, I $_{IK}$ For V $_{I}$ < -0.5V or V $_{I}$ > V $_{CC}$ + 0.5V ± 20 mA DC Output Diode Current, I $_{OK}$ For V $_{O}$ < -0.5V or V $_{O}$ > V $_{CC}$ + 0.5V ± 20 mA DC Drain Current, per Output, I $_{O}$ For -0.5V < V $_{O}$ < V $_{CC}$ + 0.5V ± 25 mA DC Output Source or Sink Current per Output Pin, I $_{O}$ For V $_{O}$ > -0.5V or V $_{O}$ < V $_{CC}$ + 0.5V ± 25 mA DC V $_{CC}$ or Ground Current, I $_{CC}$ or I $_{GND}$... ± 25 mA

Thermal Information

Thermal Resistance (Typical, Note 3)	θ_{JA} (oC/W)
PDIP Package	90
SOIC Package	160
Maximum Junction Temperature	150 ⁰ C
Maximum Storage Temperature Range	65°C to 150°C
Maximum Lead Temperature (Soldering 10s)	300 ^o C
(SOIC - Lead Tips Only)	

Operating Conditions

Temperature Range (T_A)55 $^{\circ}$ C to 125 $^{\circ}$ C Supply Voltage Range, V_{CC}
HC Types2V to 6V
HCT Types
DC Input or Output Voltage, V _I , V _O 0V to V _{CC}
Input Rise and Fall Time
2V
4.5V 500ns (Max)
6V

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTE:

3. $\theta_{\mbox{\scriptsize JA}}$ is measured with the component mounted on an evaluation PC board in free air.

DC Electrical Specifications

			ST ITIONS			25°C		-40°C T	O 85°C	-55°C T	O 125°C			
PARAMETER	SYMBOL	V _I (V)	I _O (mA)	V _{CC} (V)	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNITS		
HC TYPES														
High Level Input	V _{IH}	-	-	2	1.5	-	-	1.5	-	1.5	-	V		
Voltage				4.5	3.15	-	-	3.15	-	3.15	-	V		
				6	4.2	-	-	4.2	-	4.2	-	V		
Low Level Input	V _{IL}	-	-	2	-	-	0.5	-	0.5	-	0.5	V		
Voltage				4.5	-	-	1.35	-	1.35	-	1.35	V		
				6	-	-	1.8	-	1.8	-	1.8	V		
High Level Output	V _{OH}	V _{IH} or	-0.02	2	1.9	-	-	1.9	-	1.9	-	V		
Voltage CMOS Loads		V _{IL}	-0.02	4.5	4.4	-	-	4.4	-	4.4	-	V		
			-0.02	6	5.9	-	-	5.9	-	5.9	-	V		
High Level Output	1					-4	4.5	3.98	-	-	3.84	-	3.7	-
Voltage TTL Loads			-5.2	6	5.48	-	-	5.34	-	5.2	-	V		
Low Level Output	V _{OL}	V _{IH} or	0.02	2	-	-	0.1	-	0.1	-	0.1	V		
Voltage CMOS Loads		V _{IL}	0.02	4.5	-	-	0.1	-	0.1	-	0.1	V		
			0.02	6	-	-	0.1	-	0.1	-	0.1	V		
Low Level Output	1		4	4.5	-	-	0.26	-	0.33	-	0.4	V		
Voltage TTL Loads			5.2	6	-	-	0.26	-	0.33	-	0.4	V		
Input Leakage Current	II	V _{CC} or GND	-	6	=	-	±0.1	-	±1	-	±1	μА		

DC Electrical Specifications (Continued)

			ST ITIONS			25°C		-40°C T	O 85°C	-55°C T	O 125°C	
PARAMETER	SYMBOL	V _I (V)	I _O (mA)	V _{CC} (V)	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNITS
Quiescent Device Current	Icc	V _{CC} or GND	0	6	-	-	8	-	80	-	160	μА
HCT TYPES												
High Level Input Voltage	V _{IH}	-	-	4.5 to 5.5	2	-	-	2	-	2	-	V
Low Level Input Voltage	V _{IL}	-	-	4.5 to 5.5	-	-	0.8	-	0.8	-	0.8	V
High Level Output Voltage CMOS Loads	V _{OH}	V _{IH} or V _{IL}	-0.02	4.5	4.4	-	-	4.4	-	4.4	-	V
High Level Output Voltage TTL Loads			-4	4.5	3.98	-	-	3.84	-	3.7	-	V
Low Level Output Voltage CMOS Loads	V _{OL}	V _{IH} or V _{IL}	0.02	4.5	-	-	0.1	-	0.1	-	0.1	V
Low Level Output Voltage TTL Loads			4	4.5	-	-	0.26	-	0.33	-	0.4	V
Input Leakage Current	lı	V _{CC} to GND	0	5.5	-	-	±0.1	-	±1	-	±1	μА
Quiescent Device Current	Icc	V _{CC} or GND	0	5.5	-	-	8	-	80	-	160	μА
Additional Quiescent Device Current Per Input Pin: 1 Unit Load (Note 4)	Δl _{CC}	V _{CC} -2.1	-	4.5 to 5.5	-	100	360	-	450	-	490	μΑ

NOTE:

HCT Input Loading Table

INPUT	UNIT LOADS
DS, D0-D7	0.2
PE	0.35
CP, CE	0.5
MR	0.2

NOTE: Unit Load is Δl_{CC} limit specified in DC Electrical Specifications table, e.g., 360µA max at 25°C.

Prerequisite For Switching Specifications

			25°C		-40°C TO 85°C		-55°C TO 125°C		
PARAMETER	SYMBOL	V _{CC} (V)	MIN	MAX	MIN	MAX	MIN	MAX	UNITS
HC TYPES									
Clock Frequency (Figure 1)	f _{MAX}	2	6	-	5	-	4	-	MHz
		4.5	30	-	25	-	20	-	MHz
		6	35	-	29	-	23	-	MHz

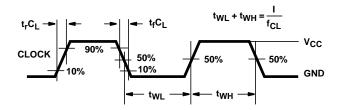
^{4.} For dual-supply systems theoretical worst case ($V_I = 2.4V$, $V_{CC} = 5.5V$) specification is 1.8mA.

Prerequisite For Switching Specifications (Continued)

			25	°C	-40°C T	O 85°C	-55°C TO 125°C		
PARAMETER	SYMBOL	V _{CC} (V)	MIN	MAX	MIN	MAX	MIN	MAX	UNITS
MR Pulse Width	t _w	2	100	-	125	-	150	-	ns
(Figure 1)		4.5	20	-	25	-	30	-	ns
		6	17	-	21	-	26	-	ns
Clock Pulse Width	t _W	2	80	-	100	-	120	-	ns
(Figure 1)		4.5	16	-	20	-	24	-	ns
		6	14	-	17	-	20	-	ns
Set-up Time	t _{SU}	2	80	-	100	-	120	-	ns
Data and CE to Clock (Figure 5)		4.5	16	-	20	-	24	-	ns
(1.19.1.0.0)		6	14	-	17	-	20	-	ns
Hold Time	t _H	2	1	-	1	-	1	-	ns
Data to Clock (Figure 5)		4.5	1	-	1	-	1	-	ns
		6	1	-	1	-	1	-	ns
Removal Time MR to Clock (Figure 5)	t _{REM}	2	0	-	0	-	0	-	ns
		4.5	0	-	0	-	0	-	ns
(1.19.1.1.1)		6	0	-	0	-	0	-	ns
Set-up Time	t _{SU}	2	145	-	180	-	220	-	ns
PE to CP (Figure 5)		4.5	29	-	36	-	44	-	ns
(· ·g··· · · · ·		6	25	-	31	-	38	-	ns
Hold Time	t _H	2	0	-	0	-	0	-	ns
PE to CP or CE (Figure 5)		4.5	0	-	0	-	0	-	ns
(1.19.1.0.0)		6	0	-	0	-	0	-	ns
HCT TYPES				•					
Clock Frequency (Figure 2)	f _{MAX}	4.5	25	-	20	-	16	-	MHz
MR Pulse Width (Figure 2)	t _w	4.5	35	-	44	-	53	-	ns
Clock Pulse Width (Figure 2)	t _w	4.5	20	-	25	-	30	-	ns
Set-up Time Data and $\overline{\text{CE}}$ to Clock (Figure 6)	tsu	4.5	16	-	20	-	24	-	ns
Hold Time Data to Clock (Figure 6)	t _H	4.5	0	-	0	-	0	-	ns
Removal Time MR to Clock (Figure 6)	^t REM	4.5	0	-	0	-	0	-	ns
Set-up Time PE to CP (Figure 6)	tsu	4.5	30	-	38	-	45	-	ns
Hold Time PE to CP or CE (Figure 6)	tH	4.5	0	-	0	-	0	-	ns

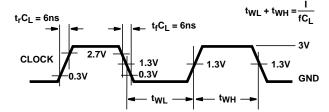
Switching Specifications Input $t_{\rm f},\,t_{\rm f}=$ 6ns

		TEST		25	°C	-40°C TO 85°C	-55°C TO 125°C	
PARAMETER	SYMBOL	CONDITIONS	V _{CC} (V)	TYP	MAX	MAX	MAX	UNITS
HC TYPES					_			
Propagation Delay,	t _{PLH} , t _{PHL}	C _L = 50pF	2	-	160	200	240	ns
Clock to Output (Figure 3)			4.5	-	32	40	48	ns
		C _L = 15pF	5	13	-	-	-	ns
		CL = 50pF	6	-	27	34	41	ns


Switching Specifications Input t_r, t_f = 6ns (Continued)

		TEST		25	°C	-40°C TO 85°C	-55°C TO 125°C	
PARAMETER	SYMBOL	CONDITIONS	V _{CC} (V)	TYP	MAX	MAX	MAX	UNITS
Output Transition Time	t _{TLH} , t _{THL}	C _L = 50pF	2	-	75	95	110	ns
(Figure 3)			4.5	-	15	19	22	ns
			6	-	13	16	19	ns
Propagation Delay	t _{PHL}	C _L = 50pF	2	-	160	200	240	ns
MR to Output (Figure 3)			4.5	-	32	40	48	ns
(riguic o)			6	-	27	34	41	ns
Input Capacitance	Cl	-	-	-	10	10	10	pF
Power Dissipation Capacitance (Notes 5, 6)	C _{PD}	-	5	41	-	-	-	pF
HCT TYPES					•			
Propagation Delay, Clock to Output (Figure 4)	t _{PLH} , t _{PHL}	C _L = 50pF	4.5	-	40	50	60	ns
Output Transition Time (Figure 4)	t _{TLH} , t _{THL}	C _L = 50pF	4.5	-	15	19	22	ns
Propagation Delay MR to Output (Figure 4)	[†] PHL	C _L = 50pF	4.5	-	40	50	60	ns
Input Capacitance	Cl	-	-	-	10	10	10	pF

NOTES:


- 5. $C_{\mbox{\scriptsize PD}}$ is used to determine the dynamic power consumption, per gate.
- 6. $P_{D} = C_{PD} V_{CC}^2 f_i + \sum (C_L V_{CC}^2 + f_O)$ where f_i = Input Frequency, f_O = Output Frequency, C_L = Output Load Capacitance, V_{CC} = Supply Voltage.

Test Circuits and Waveforms

NOTE: Outputs should be switching from 10% V $_{CC}$ to 90% V $_{CC}$ in accordance with device truth table. For f_{MAX} , input duty cycle = 50%.

FIGURE 1. HC CLOCK PULSE RISE AND FALL TIMES AND PULSE WIDTH

NOTE: Outputs should be switching from 10% V_{CC} to 90% V_{CC} in accordance with device truth table. For f_{MAX} , input duty cycle = 50%.

FIGURE 2. HCT CLOCK PULSE RISE AND FALL TIMES AND PULSE WIDTH

Test Circuits and Waveforms (Continued)

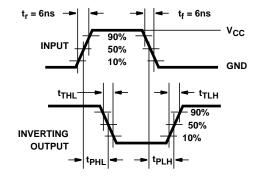


FIGURE 3. HC AND HCU TRANSITION TIMES AND PROPAGA-TION DELAY TIMES, COMBINATION LOGIC

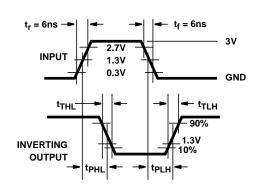


FIGURE 4. HCT TRANSITION TIMES AND PROPAGATION DELAY TIMES, COMBINATION LOGIC

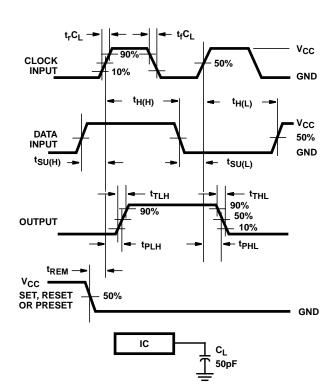


FIGURE 5. HC SETUP TIMES, HOLD TIMES, REMOVAL TIME, AND PROPAGATION DELAY TIMES FOR EDGE TRIGGERED SEQUENTIAL LOGIC CIRCUITS

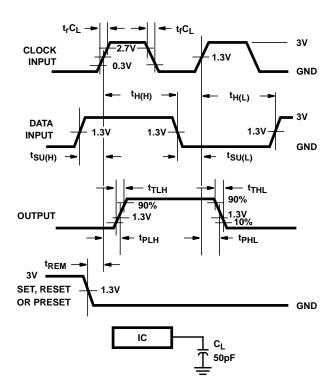


FIGURE 6. HCT SETUP TIMES, HOLD TIMES, REMOVAL TIME, AND PROPAGATION DELAY TIMES FOR EDGE TRIGGERED SEQUENTIAL LOGIC CIRCUITS

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated