Data sheet acquired from Harris Semiconductor SCHS185C

High-Speed CMOS Logic Dual Decade Ripple Counter

Features

- Two BCD Decade or Bi-Quinary Counters
- One Package Can Be Configured to Divide-by-2, 4, $5,10,20,25,50$ or 100
- Two Master Reset Inputs to Clear Each Decade Counter Individually
- Fanout (Over Temperature Range)
- Standard Outputs 10 LSTTL Loads
- Bus Driver Outputs 15 LSTTL Loads
- Wide Operating Temperature Range . . - $55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
- Balanced Propagation Delay and Transition Times
- Significant Power Reduction Compared to LSTTL Logic ICs
- HC Types
- 2V to 6V Operation
- High Noise Immunity: $\mathbf{N}_{\mathrm{IL}}=30 \%, \mathrm{~N}_{\mathrm{IH}}=30 \%$ of V_{CC} at $V_{C C}=5 \mathrm{~V}$
- HCT Types
- 4.5V to 5.5V Operation
- Direct LSTTL Input Logic Compatibility, $\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}$ (Max), $\mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V}$ (Min)
- CMOS Input Compatibility, $\mathrm{I}_{\mathrm{I}} \leq 1 \mu \mathrm{~A}$ at $\mathrm{V}_{\mathrm{OL}}, \mathrm{V}_{\mathrm{OH}}$

Pinout

CD54HCT390
(CERDIP)

CD74HC390, CD74HCT390
(PDIP, SOIC)
TOP VIEW

Description

The CD74HC390 and 'HCT390 dual 4-bit decade ripple counters are high-speed silicon-gate CMOS devices and are pin compatible with low-power Schottky TTL (LSTTL). These devices are divided into four separately clocked sections. The counters have two divide-by-2 sections and two divide-by- 5 sections. These sections are normally used in a BCD decade or bi-quinary configuration, since they share a common master reset (nMR). If the two master reset inputs (1MR and 2 MR) are used to simultaneously clear all 8 bits of the counter, a number of counting configurations are possible within one package. The separate clock inputs (nCPO and $n \overline{\mathrm{CP}}$) of each section allow ripple counter or frequency division applications of divide-by-2, 4. 5, 10, 20, 25, 50 or 100. Each section is triggered by the High-to-Low transition of the input pulses ($\mathrm{n} \overline{\mathrm{CPO}}$ and $\mathrm{n} \overline{\mathrm{CP} 1}$).

For BCD decade operation, the nQ0 output is connected to the nCP1 input of the divide-by- 5 section. For bi-quinary decade operation, the nO 3 output is connected to the $\mathrm{n} \overline{\mathrm{CPO}}$ input and $n Q_{0}$ becomes the decade output.

The master reset inputs (1MR and 2MR) are active-High asynchronous inputs to each decade counter which operates on the portion of the counter identified by the " 1 " and " 2 " prefixes in the pin configuration. A High level on the nMR input overrides the clock and sets the four outputs Low.

Ordering Information

PART NUMBER	TEMP. RANGE ($\left.{ }^{\circ} \mathrm{C}\right)$	PACKAGE
CD54HCT390F3A	-55 to 125	16 Ld CERDIP
CD74HC390E	-55 to 125	16 Ld PDIP
CD74HC390M	-55 to 125	16 Ld SOIC
CD74HC390MT	-55 to 125	16 Ld SOIC
CD74HC390M96	-55 to 125	16 Ld SOIC
CD74HCT390E	-55 to 125	16 Ld PDIP
CD74HCT390M	-55 to 125	16 Ld SOIC
CD74HCT390MT	-55 to 125	16 Ld SOIC
CD74HCT390M96	-55 to 125	16 Ld SOIC

NOTE: When ordering, use the entire part number. The suffix 96 denotes tape and reel. The suffix T denotes a small-quantity reel of 250 .

Functional Diagram

TRUTH TABLE

INPUTS		
$\mathbf{C P}$	MR	
\uparrow	L	No Change
\downarrow	L	Count
X	H	All Qs Low

$\mathrm{H}=$ High Voltage Level, L = Low Voltage Level, X = Don't Care,
$\uparrow=$ Transition from Low to High Level, $\downarrow=$ Transition from High to Low.

BCD COUNT SEQUENCE FOR $1 / 2$ THE 390

count	OUTPUTS			
	Q0	Q1	Q2	Q3
0	L	L	L	L
1	H	L	L	L
2	L	H	L	L
3	H	H	L	L
4	L	L	H	L
5	H	L	H	L
6	L	H	H	L
7	H	H	H	L
8	L	L	L	H
9	H	L	L	H

Output nQ0 connected to $\mathrm{n} \overline{\mathrm{CP}} 1$ with counter input on $\mathrm{n} \overline{\mathrm{CPO}}$.

B-QUINARY COUNT SEQUENCE FOR 1/2 THE 390

COUNT	OUTPUTS			
	Q0	Q1	Q2	Q3
0	L	L	L	L
1	L	H	L	L
2	L	L	H	L
3	L	H	H	L
4	L	L	L	H
5	H	L	L	L
6	H	H	H	L
7	H	L	H	L
8	H	H	H	L
9	H	L	L	H

Output nQ3 connected to $n \overline{\mathrm{CP}}$ with counter input on $n \overline{\mathrm{CP}} 1$.

Logic Diagram

Absolute Maximum Ratings

DC Supply Voltage, V_{CC}	-0.5V to 7V
DC Input Diode Current, $\mathrm{I}_{\text {IK }}$	
For $\mathrm{V}_{1}<-0.5 \mathrm{~V}$ or $\mathrm{V}_{1}>\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$.	. $\pm 20 \mathrm{~mA}$
DC Output Diode Current, IOK	
For $\mathrm{V}_{\mathrm{O}}<-0.5 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	$\pm 20 \mathrm{~mA}$
DC Output Source or Sink Current per Output Pin, I_{O}	
For $\mathrm{V}_{\mathrm{O}}>-0.5 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{O}}<\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	$\pm 25 \mathrm{~mA}$
DC V $\mathrm{CCC}^{\text {or }}$ Ground Current, $\mathrm{I}_{\text {CC }}$ or $\mathrm{I}_{\mathrm{GND}}$	$\pm 50 \mathrm{~mA}$

Thermal Information

Thermal Resistance (Typical, Note 1) $\quad \theta_{\mathrm{JA}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$
E (PDIP) Package
67
M (SOIC) Package.
73
Maximum Junction Temperature . $150^{\circ} \mathrm{C}$
Maximum Storage Temperature Range $65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Maximum Lead Temperature (Soldering 10s) $300^{\circ} \mathrm{C}$
(SOIC - Lead Tips Only)

Operating Conditions

Supply Voltage Range, V_{CC}
HC Types . 2 V to 6 V

HCT Types . 4.5 V to 5.5 V

Input Rise and Fall Time

2 V	1000ns (Max)
4.5 V .	. 500ns (Max)
6 V	400ns (Max)

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTE:

1. The package thermal impedance is calculated in accordance with JESD 51-7.

DC Electrical Specifications

PARAMETER	SYMBOL	TEST CONDITIONS		V_{cc} (V)	$25^{\circ} \mathrm{C}$			$-40^{\circ} \mathrm{C}$ TO $85{ }^{\circ} \mathrm{C}$		$-55^{\circ} \mathrm{C}$ TO $125^{\circ} \mathrm{C}$		UNITS
		$\mathrm{V}_{1}(\mathrm{~V})$	10 (mA)		MIN	TYP	MAX	MIN	MAX	MIN	MAX	
HC TYPES												
High Level Input Voltage	V_{IH}	-	-	2	1.5	-	-	1.5	-	1.5	-	V
				4.5	3.15	-	-	3.15	-	3.15	-	V
				6	4.2	-	-	4.2	-	4.2	-	V
Low Level Input Voltage	$\mathrm{V}_{\text {IL }}$	-	-	2	-	-	0.5	-	0.5	-	0.5	V
				4.5	-	-	1.35	-	1.35	-	1.35	V
				6	-	-	1.8	-	1.8	-	1.8	V
High Level Output Voltage CMOS Loads	V_{OH}	V_{IH} or V_{IL}	-0.02	2	1.9	-	-	1.9	-	1.9	-	V
			-0.02	4.5	4.4	-	-	4.4	-	4.4	-	V
			-0.02	6	5.9	-	-	5.9	-	5.9	-	V
High Level Output Voltage TTL Loads			-	-	-	-	-	-	-	-	-	V
			-4	4.5	3.98	-	-	3.84	-	3.7	-	V
			-5.2	6	5.48	-	-	5.34	-	5.2	-	V
Low Level Output Voltage CMOS Loads	$\mathrm{V}_{\text {OL }}$	V_{IH} or $\mathrm{V}_{\text {IL }}$	0.02	2	-	-	0.1	-	0.1	-	0.1	V
			0.02	4.5	-	-	0.1	-	0.1	-	0.1	V
			0.02	6	-	-	0.1	-	0.1	-	0.1	V
Low Level Output Voltage TTL Loads			-	-	-	-	-	-	-	-	-	V
			4	4.5	-	-	0.26	-	0.33	-	0.4	V
			5.2	6	-	-	0.26	-	0.33	-	0.4	V
Input Leakage Current	1	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \text { or } \\ & \mathrm{GND} \end{aligned}$	-	6	-	-	± 0.1	-	± 1	-	± 1	$\mu \mathrm{A}$
Quiescent Device Current	ICC	$\begin{gathered} \mathrm{V}_{\mathrm{CC}} \text { or } \\ \mathrm{GND} \end{gathered}$	0	6	-	-	8	-	80	-	160	$\mu \mathrm{A}$

DC Electrical Specifications (Continued)

PARAMETER	SYMBOL	TEST CONDITIONS		V_{Cc} (V)	$25^{\circ} \mathrm{C}$			$-40^{\circ} \mathrm{C}$ TO $85{ }^{\circ} \mathrm{C}$		$-55^{\circ} \mathrm{C}$ TO $125^{\circ} \mathrm{C}$		UNITS
		$\mathrm{V}_{1}(\mathrm{~V})$	10 (mA)		MIN	TYP	MAX	MIN	MAX	MIN	MAX	
HCT TYPES												
High Level Input Voltage	V_{IH}	-	-	$\begin{gathered} 4.5 \text { to } \\ 5.5 \end{gathered}$	2	-	-	2	-	2	-	V
Low Level Input Voltage	V_{IL}	-	-	$\begin{gathered} \hline 4.5 \text { to } \\ 5.5 \end{gathered}$	-	-	0.8	-	0.8	-	0.8	V
High Level Output Voltage CMOS Loads	V_{OH}	V_{IH} or V_{IL}	-0.02	4.5	4.4	-	-	4.4	-	4.4	-	V
High Level Output Voltage TTL Loads			-4	4.5	3.98	-	-	3.84	-	3.7	-	V
Low Level Output Voltage CMOS Loads	$\mathrm{V}_{\text {OL }}$	V_{IH} or V_{IL}	0.02	4.5	-	-	0.1	-	0.1	-	0.1	V
Low Level Output Voltage TTL Loads			4	4.5	-	-	0.26	-	0.33	-	0.4	V
Input Leakage Current	1	$\begin{gathered} \hline \mathrm{V}_{\mathrm{CC}} \text { and } \\ \mathrm{GND} \end{gathered}$	0	5.5	-	-	± 0.1	-	± 1	-	± 1	$\mu \mathrm{A}$
Quiescent Device Current	ICC	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \text { or } \\ & \mathrm{GND} \end{aligned}$	0	5.5	-	-	8	-	80	-	160	$\mu \mathrm{A}$
Additional Quiescent Device Current Per Input Pin: 1 Unit Load	$\Delta \mathrm{l}_{\mathrm{CC}}$ (Note 2)	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{CC}} \\ & -2.1 \end{aligned}$	-	$\begin{gathered} 4.5 \text { to } \\ 5.5 \end{gathered}$	-	100	360	-	450	-	490	$\mu \mathrm{A}$

NOTE:
2. For dual-supply systems theoretical worst case $\left(\mathrm{V}_{\mathrm{I}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V}\right)$ specification is 1.8 mA .

HCT Input Loading Table

INPUT	UNIT LOADS
$\mathrm{n} \overline{\mathrm{CPO}}$	0.45
$\mathrm{n} \overline{\mathrm{CP}}, \mathrm{MR}$	0.6

NOTE: Unit Load is I_{CC} limit specified in DC Electrical Table, e.g.,
$360 \mu \mathrm{~A}$ max at $25^{\circ} \mathrm{C}$.

Prerequisite for Switching Specifications

CHARACTERISTIC	SYMBOL	$\mathrm{V}_{\mathrm{Cc}}(\mathrm{V})$	$25^{\circ} \mathrm{C}$			$-40^{\circ} \mathrm{C} \mathrm{TO} 85{ }^{\circ} \mathrm{C}$		$-55^{\circ} \mathrm{C}$ TO $125^{\circ} \mathrm{C}$		UNITS
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
HC TYPES										
Maximum Clock Frequency	$\mathrm{f}_{\text {MAX }}$	2	6	-	-	5	-	4	-	MHz
		4.5	30	-	-	24	-	20	-	MHz
		6	35	-	-	28	-	24	-	MHz
Clock Pulse Width, $n \overline{\mathrm{CPO}}, \mathrm{n} \overline{\mathrm{CP} 1}$	${ }_{\text {t }}$ W	2	80	-	-	100	-	120	-	ns
		4.5	16	-	-	20	-	24	-	ns
		6	14	-	-	17	-	20	-	ns

CD74HC390, CD54HCT390, CD74HCT390

Prerequisite for Switching Specifications (Continued)

CHARACTERISTIC	SYMBOL	$\mathrm{V}_{\mathrm{Cc}}(\mathrm{V})$	$25^{\circ} \mathrm{C}$			$-40^{\circ} \mathrm{C}$ TO $85^{\circ} \mathrm{C}$		$-55^{\circ} \mathrm{C}$ TO $125^{\circ} \mathrm{C}$		UNITS
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
Reset Removal Time	trem	2	70	-	-	90	-	105	-	ns
		4.5	14	-	-	18	-	21	-	ns
		6	12	-	-	15	-	18	-	ns
Reset Pulse Width	tw	2	50	-	-	65	-	75	-	ns
		4.5	10	-	-	13	-	15	-	ns
		6	9	-	-	11	-	13	-	ns
HCT TYPES										
Maximum Clock Frequency	$\mathrm{f}_{\text {MAX }}$	4.5	27	-	-	22	-	18	-	MHz
Clock Pulse Width, n $\overline{\mathrm{CP}}$, n СР1	tw	4.5	19	-	-	24	-	29	-	ns
Reset Removal Time	$t_{\text {REM }}$	4.5	15	-	-	19	-	22	-	ns
Reset Pulse Width	tw	4.5	13	-	-	16	-	20	-	ns

Switching Specifications Input $t_{r}, t_{f}=6 n s$

PARAMETER	SYMBOL	TEST CONDITIONS	v_{Cc} (V)	$25^{\circ} \mathrm{C}$			$-40^{\circ} \mathrm{C}$ TO $85^{\circ} \mathrm{C}$		$-55^{\circ} \mathrm{C}$ TO $125^{\circ} \mathrm{C}$		UNITS
				MIN	TYP	MAX	MIN	MAX	MIN	MAX	
HC TYPES											
Propagation Delay (Figure 1) $\mathrm{n} \overline{\mathrm{CPO}}$ to nQ_{0}	$\overline{\text { tpLH, }}$$\mathrm{t}_{\mathrm{PHL}}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	2	-	-	175	-	220	-	265	ns
			4.5	-	-	35	-	44	-	53	ns
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	5	-	14	-	-	-	-	-	ns
		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	6	-	-	30	-	37	-	45	ns
$\mathrm{n} \overline{\mathrm{CP} 1}$ to nQ_{1}	$\mathrm{t}_{\mathrm{PLH}},$$\mathrm{t}_{\mathrm{PHL}}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	2	-	-	185	-	230	-	280	ns
			4.5	-	-	37	-	46	-	56	ns
			6	-	-	31	-	39	-	48	ns
$\mathrm{n} \overline{\mathrm{CP}} 1$ to nQ_{2}	tpLH, ${ }^{\text {tpHL }}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	2	-	-	245	-	305	-	370	ns
			4.5	-	-	49	-	61	-	74	ns
			6	-	-	42	-	52	-	63	ns
$\mathrm{n} \overline{\mathrm{CP}} 1$ to nQ_{3}	tpLH,$\mathrm{t}_{\mathrm{PHL}}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	2	-	-	180	-	225	-	270	ns
			4.5	-	-	36	-	45	-	54	ns
			5	-	15	-	-	-	-	-	ns
			6	-	-	31	-	38	-	46	ns
n $\overline{C P 0}$ to nQ3 ($n Q_{0}$ connected to $n \overline{\mathrm{CP}}$)	$\begin{aligned} & \hline \text { tpLH, } \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	2	-	-	365	-	455	-	550	ns
			4.5	-	-	73	-	91	-	110	ns
			6	-	-	62	-	77	-	94	ns
MR to Q_{n}	$\begin{aligned} & \hline \text { tpLH, } \\ & \text { tPHL } \end{aligned}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	2	-	-	190	-	240	-	285	ns
			4.5	-	-	38	-	48	-	57	ns
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	5	-	16	-	-	-	-	-	ns
		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	6	-	-	32	-	41	-	48	ns

CD74HC390, CD54HCT390, CD74HCT390

Switching Specifications Input $t_{r}, t_{f}=6 \mathrm{~ns}$ (Continued)

PARAMETER	SYMBOL	TEST CONDITIONS	$\begin{aligned} & \mathrm{V}_{\mathrm{Cc}} \\ & (\mathrm{~V}) \end{aligned}$	$25^{\circ} \mathrm{C}$			$-40^{\circ} \mathrm{C}$ TO $85{ }^{\circ} \mathrm{C}$		$-55^{\circ} \mathrm{C}$ TO $125^{\circ} \mathrm{C}$		UNITS
				MIN	TYP	MAX	MIN	MAX	MIN	MAX	
Output Transition Time (Figure 1)	${ }_{\text {t }}$ LH, $\mathrm{t}_{\text {THL }}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	2	-	-	75	-	95	-	110	ns
			4.5	-	-	15	-	19	-	22	ns
			6	-	-	13	-	16	-	19	ns
Input Capacitance	$\mathrm{C}_{\text {IN }}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	-	-	-	10	-	10	-	10	pF
Power Dissipation Capacitance (Notes 3, 4)	CPD	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	5	-	28	-	-	-	-	-	pF
HCT TYPES											
Propagation Delay (Figure 1) $\mathrm{n} \overline{\mathrm{CPO}}$ to nQ_{0}	$\begin{aligned} & \text { tpLH, } \\ & \text { tpHL } \end{aligned}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	4.5	-	-	40	-	50	-	60	ns
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	5	-	17	-	-	-	-	-	ns
$\mathrm{n} \overline{\mathrm{CP} 1}$ to nQ_{1}	tpLi, $\mathrm{t}_{\mathrm{PHL}}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	4.5	-	-	43	-	51	-	65	ns
$\mathrm{n} \overline{\mathrm{CP}} 1$ to nQ_{2}	tpLH, tphL	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	4.5	-	-	55	-	69	-	83	ns
$\mathrm{n} \overline{\mathrm{CP}} 1$ to nQ_{3}	tpLi, $\mathrm{t}_{\mathrm{PHL}}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	4.5	-	-	42	-	53	-	63	ns
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	5	-	18	-	-	-	-	-	ns
n $\overline{\mathrm{CPO}}$ to nQ2 ($\mathrm{n} \mathrm{Q}_{0}$ connected to $\mathrm{nCP1}$)	tpLh, tpHL	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	4.5	-	-	84	-	105	-	126	ns
MR to Q_{n}	tplh, ${ }^{\text {tpHL }}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	4.5	-	-	42	-	53	-	63	ns
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	5	-	18	-	-	-	-	-	ns
Output Transition	$\mathrm{t}_{\text {TLH }}, \mathrm{t}_{\text {THL }}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	4.5	-	-	15	-	19	-	22	ns
Input Capacitance	$\mathrm{C}_{\text {IN }}$	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	-	-	-	10	-	10	-	10	pF
Power Dissipation Capacitance (Notes 3, 4)	CPD	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	5	-	32	-	-	-	-	-	pF

NOTES:
3. $\mathrm{C}_{P D}$ is used to determine the dynamic power consumption, per multiplexer.
4. $P_{D}=V_{C C}{ }^{2} f_{i}\left(C_{P D}+C_{L}\right)$ where $f_{i}=$ Input Frequency, $C_{L}=$ Output Load Capacitance, $V_{C C}=$ Supply Voltage.

Test Circuits and Waveforms

FIGURE 1. HC AND HCU TRANSITION TIMES AND PROPAGATION DELAY TIMES, COMBINATION LOGIC

FIGURE 2. HCT TRANSITION TIMES AND PROPAGATION DELAY TIMES, COMBINATION LOGIC

PACKAGING INFORMATION

Orderable Device	Status ${ }^{(1)}$	Package Type	Package Drawing	Pins	Package Qty	$\text { Eco Plan }{ }^{(2)}$	Lead/Ball Finish	MSL Peak Temp ${ }^{(3)}$
5962-9098401MEA	ACTIVE	CDIP	J	16	1	TBD	Call TI	Level-NC-NC-NC
CD54HCT390F3A	ACTIVE	CDIP	J	16	1	TBD	Call TI	Level-NC-NC-NC
CD74HC390E	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	Level-NC-NC-NC
CD74HC390EE4	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	Level-NC-NC-NC
CD74HC390M	ACTIVE	SOIC	D	16	40	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
CD74HC390M96	ACTIVE	SOIC	D	16	2500	$\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
CD74HC390M96E4	ACTIVE	SOIC	D	16	2500	$\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
CD74HC390ME4	ACTIVE	SOIC	D	16	40	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
CD74HC390MT	ACTIVE	SOIC	D	16	250	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
CD74HC390MTE4	ACTIVE	SOIC	D	16	250	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM
CD74HCT390E	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	Level-NC-NC-NC
CD74HCT390EE4	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	Level-NC-NC-NC
CD74HCT390M	ACTIVE	SOIC	D	16	40	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
CD74HCT390M96	ACTIVE	SOIC	D	16	2500	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
CD74HCT390M96E4	ACTIVE	SOIC	D	16	2500	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no Sb/Br) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
CD74HCT390ME4	ACTIVE	SOIC	D	16	40	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no Sb/Br) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
CD74HCT390MT	ACTIVE	SOIC	D	16	250	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
CD74HCT390MTE4	ACTIVE	SOIC	D	16	250	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS \& no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb -Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb -Free products are suitable for use in specified lead-free processes.
Green (RoHS \& no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
${ }^{(3)}$ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

DIM PINS **	14	16	18	20
A	0.300 $(7,62)$ BSC			
B MAX	0.785 $(19,94)$.840 $(21,34)$	0.960 $(24,38)$	1.060 $(26,92)$
B MIN	-	-	-	-
C MAX	0.300 $(7,62)$	0.300 $(7,62)$	0.310 $(7,87)$	0.300 $(7,62)$
C MIN	0.245 $(6,22)$	0.245 $(6,22)$	0.220 $(5,59)$	0.245 $(6,22)$

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package is hermetically sealed with a ceramic lid using glass frit.
D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

N (R-PDIP-T**)
PLASTIC DUAL-IN-LINE PACKAGE
16 PINS SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C) Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).

D The 20 pin end lead shoulder width is a vendor option, either half or full width.

D (R-PDSO-G16)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed $0.006(0,15)$.
D. Falls within JEDEC MS-012 variation AC.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI .

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. Tl is not responsible or liable for such altered documentation.

Resale of Tl products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. Tl is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products

Applications

Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video \& Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments
Post Office Box 655303 Dallas, Texas 75265

Copyright © 2005, Texas Instruments Incorporated

