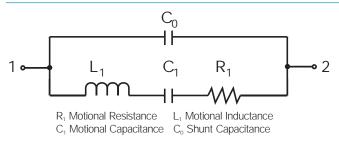
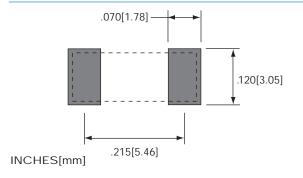


## **CX-6-SM CRYSTAL**

800 kHz to 1.35 MHz Ultra-Low Profile (1mm) Miniature Surface Mount Quartz Crystal


#### **DESCRIPTION**

The CX-6-SM quartz crystals are leadless devices designed for surface mounting on printed circuit boards or hybrid substrates. They are hermetically sealed in a rugged, miniature ceramic package. They are manufactured using the STATEK-developed photolithographic process, and are designed utilizing the experience acquired by producing millions of crystals for industrial, commercial, military and medical applications. Maximum process temperature should not exceed 260°C.




- Ultra-low profile (1mm)
- Extensional mode
- Ideal for use with microprocessors
- Designed for low power applications
- Low aging
- Full military testing available
- Ideal for battery operated applications
- Designed and manufactured in the USA

# **EQUIVALENT CIRCUIT**




## SUGGESTED LAND PATTERN







### PACKAGE DIMENSIONS



| TYP.      |                                                      | MAX.                                                                                    |                                                                                                                                                                                                                                                                                                                                                                   |
|-----------|------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| INCHES    | mm                                                   | INCHES                                                                                  | mm                                                                                                                                                                                                                                                                                                                                                                |
| .265      | 6.73                                                 | .280                                                                                    | 7.11                                                                                                                                                                                                                                                                                                                                                              |
| .103      | 2.62                                                 | .114                                                                                    | 2.90                                                                                                                                                                                                                                                                                                                                                              |
| -         | -                                                    | see below                                                                               |                                                                                                                                                                                                                                                                                                                                                                   |
| .050      | 1.27                                                 | .060                                                                                    | 1.52                                                                                                                                                                                                                                                                                                                                                              |
| GLASS LID |                                                      | CERAMIC LID                                                                             |                                                                                                                                                                                                                                                                                                                                                                   |
| INCHES    | mm                                                   | INCHES                                                                                  | mm                                                                                                                                                                                                                                                                                                                                                                |
| .039      | 0.99                                                 | .053                                                                                    | 1.35                                                                                                                                                                                                                                                                                                                                                              |
| .041      | 1.04                                                 | .055                                                                                    | 1.40                                                                                                                                                                                                                                                                                                                                                              |
| .044      | 1.12                                                 | .058                                                                                    | 1.47                                                                                                                                                                                                                                                                                                                                                              |
|           | .265<br>.103<br>-<br>.050<br>GLASS<br>INCHES<br>.039 | INCHES mm  .265 6.73  .103 2.62   .050 1.27  GLASS LID  INCHES mm  .039 0.99  .041 1.04 | INCHES         mm         INCHES           .265         6.73         .280           .103         2.62         .114           -         -         see be           .050         1.27         .060           GLASS LID         CERAMIC           INCHES         mm         INCHES           .039         0.99         .053           .041         1.04         .055 |

10133 - Rev A



#### **SPECIFICATIONS**

Specifications are typical at 25°C unless otherwise noted. Specifications are subject to change without notice.

Frequency Range 800 kHz - 1.35 MHz

Functional Mode Extensional

Calibration Tolerance\* A ± 0.05% (± 500ppm)

B ± 0.1% C ± 1.0%

Load Capacitance 7 pF

Motional Resistance (R<sub>1</sub>) 5 k $\Omega$  MAX

Motional Capacitance ( $C_1$ ) 1.2fF Quality Factor (Q) 150 k Shunt Capacitance ( $C_0$ ) 1.0 pF Drive Level 3  $\mu$ W MAX. Turning Point ( $T_0$ )\*\* 35°C

Temperature Coefficient (k) -0.035 ppm/°C<sup>2</sup>

Note: Frequency (f) deviation from frequency (f<sub>O</sub>) @ turning

point temperature  $(T_O)$ ;  $\frac{f - f_O}{f_O} = k(T - T_O)^2$ 

Aging, first year 5ppm MAX.

Shock 1000g peak, 0.3 msec.,1/2 sine Vibration, survival 10g rms, 20-1,000 Hz random

Operating Temperature -10°C to +70°C Commercial -40°C to +85°C Industrial

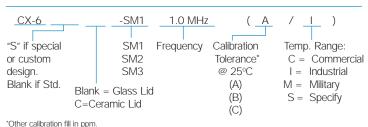
-55°C to +125°C Military

Storage Temperature -55°C to +125°C Max Process Temperature 260°C for 20 sec.

### **PACKAGING**

CX-6-SM - Tray Pack (Standard)

-16mm tape, 7" or 13" reels (Optional) Per EIA 481 (see data sheet 10109)


## **TERMINATIONS**

| <u>Designation</u> | <u>Iermination</u> |  |
|--------------------|--------------------|--|
| SM1                | Gold Plated        |  |
| SM2                | Nickel Solder Plat |  |

SM2 Nickel, Solder Plated

SM3 Nickel, Solder Plated and Solder Dipped

#### HOW TO ORDER CX-6-SM CRYSTALS



# TYPICAL APPLICATION FOR A PIERCE OSCILLATOR

The low profile CX miniature surface mount crystal is ideal for small, high density, battery operated portable products. The CX crystal designed in a Pierce oscillator (single inverter) circuit provides very low current consumption and high stability. A conventional CMOS Pierce oscillator circuit is shown below. The crystal is effectively inductive and in a PI-network circuit with  $C_D$  and  $C_G$  provides the additional phase shift necessary to sustain oscillation. The oscillation frequency ( $f_{\rm O}$ ) is 15 to 150 ppm above the crystal's series resonant frequency ( $f_{\rm S}$ ).

#### **Drive Level**

 $R_A$  is used to limit the crystal's drive level by forming a voltage divider between  $R_A$  and  $C_D.\ R_A$  also stabilizes the oscillator against changes in the amplifiers output resistance ( $R_0$ ).  $R_A$  should be increased for higher voltage operation.

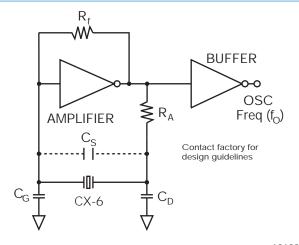
## **Load Capacitance**

The CX crystal calibration tolerance is influenced by the effective circuit capacitances, specified as the load capacitance ( $C_L$ ).  $C_L$  is approximately equal to:

$$C_{L} = \frac{C_{D} \times C_{G}}{C_{D} + C_{G}} + C_{S}$$
 (1)

NOTE:  $C_D$  and  $C_G$  include stray layout to ground and  $C_S$  is the stray shunt capacitance between the crystal terminal. In practice, the effective value of  $C_L$  will be less than that calculated from  $C_D$ ,  $C_G$  and  $C_S$  values because of the effect of the amplifier output resistance.  $C_S$  should be minimized.

The oscillation frequency  $(f_O)$  is approximately equal to:


$$f_0 = f_S \left[ 1 + \frac{C_1}{2(C_0 + C_1)} \right]$$
 (2)

Where

f<sub>S</sub> = Series resonant frequency of the crystal

 $C_1$  = Motional Capacitance  $C_0$  = Shunt Capacitance

# CONVENTIONAL CMOS PIERCE OSCILLATOR CIRCUIT







<sup>\*</sup> Tighter frequency calibration available

<sup>\*\*</sup> Other turning point available.