

Product Description

Stanford Microdevices' SGA-0163 is a high performance cascadeable 50-ohm amplifier designed for operation at voltages as low as 2.1V. This RFIC uses the latest Silicon Germanium Heterostructure Bipolar Transistor (SiGe HBT) process featuring 1 micron emitters with F₊ up to 50 GHz.

This circuit uses a Darlington pair topology with resistive feedback for broadband performance as well as stability over its entire temperature range. Internally matched to 50 Ohm impedance, the SGA-0163 requires only DC blocking and bypass capacitors for external components.

SGA-0163

DC-4500 MHz, Silicon Germanium Cascadeable Gain Block

Product Features

- DC-4500 MHz Operation
- Single Voltage Supply
- Low Current Draw: 8mA at 2.1V typ.
- · High Output Intercept: 10 dBm typ. at 1950MHz

Applications

- Oscillator Amplifiers
- Broadband Gain Blocks
- IF/RF Buffer Amplifiers

Symbol	Parameters: Test Conditions: Z ₀ = 50 Ohms, I _D = 8 mA, T = 25°C		Units	Min.	Тур.	Max.
P _{1dB}	Output Power at 1dB Compression	f = 850 MHz f = 1950 MHz f = 2400 MHz	dBm dBm dBm		-1.8 -1.8 -2.4	
IP ₃	Third Order Intercept Point Power out per tone = -17 dBm	f = 850 MHz f = 1950 MHz f = 2400 MHz	dBm dBm dBm		9.4 9.8 9.2	
S ₂₁	Small Signal Gain	f = 850 MHz f = 1950 MHz f = 2400 MHz	dB dB dB		12.7 12.0 11.6	
BW _{3dB}	3dB Bandwidth		MHz		4500	
S ₁₁	Input VSWR	f = DC - 4500MHz	-		1.6:1	
S ₂₂	Output VSWR	f = DC - 4500MHz	-		1.3:1	
S ₁₂	Reverse Isolation	f = 850 MHz f = 1950 MHz f = 2400 MHz	dB dB dB		17.6 18.1 18.3	
NF	Noise Figure	f = 1950 MHz	dB		4.6	
V _D	Device Voltage		V		2.1	
R _{th} , j-I	Thermal Resistance (junction - lead)		°C/W		255	

The information provided herein is believed to be reliable at press time. Stanford Microdevices assumes no responsibility for inaccuracies or omissions. Stanford Microdevices assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. Stanford Microdevices does not authorize or warrant any Stanford Microdevices product for use in life-support devices and/or systems.

Copyright 2000 Stanford Microdevices, Inc. All worldwide rights reserved.

EDS-101494 Rev A

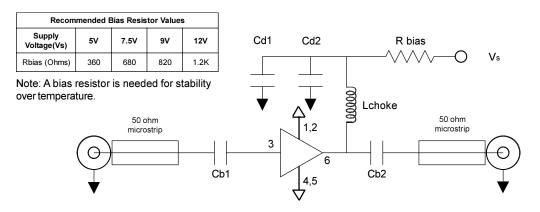
Absolute Maximum Ratings

Operation of this device above any one of these parameters may cause permanent damage.

Bias Conditions should also satisfy the following expression: I_DV_D (max) < $(T_J - T_{OP})/R_{th}$,j-I

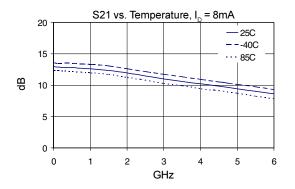
Parameter	Value	Unit
Supply Current	16	mA
Device Voltage	6	٧
Operating Temperature	-40 to +85	°C
Maximum Input Power	-4	dBm
Storage Temperature Range	-40 to +150	°C
Operating Junction Temperature	+150	°C

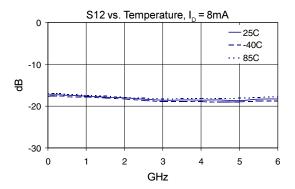
Key parameters, at typical operating frequencies:

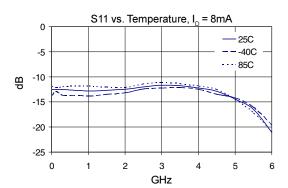

	Typical		Test Condition		
Parameter	25°C	Unit	(I _D = 8mA, unless otherwise noted)		
100 MHz					
Gain	12.9	dB			
Output IP3	9.4	dBm	Tone spacing = 1 MHz, Pout per tone = -17dBm		
Output P1dB	-1.5	dBm			
Input Return Loss	12.5	dB			
Reverse Isolation	17.3	dB			
Noise Figure	4.6	dB	Z _s = 50 Ohms		
500 MHz					
Gain	12.8	dB			
Output IP3	9.5	dBm	Tone spacing = 1 MHz, Pout per tone = -17dBm		
Output P1dB	-1.5	dBm			
Input Return Loss	12.7	dB			
Reverse Isolation	17.4	dB			
Noise Figure	4.6	dB	$Z_s = 50 \text{ Ohms}$		
850 MHz					
Gain	12.7	dB			
Output IP3	9.4	dBm	Tone spacing = 1 MHz, Pout per tone = -17dBm		
Output P1dB	-1.8	dBm			
Input Return Loss	12.8	dB			
Reverse Isolation	17.6	dB			
Noise Figure	4.7	dB	$Z_s = 50 \text{ Ohms}$		
1950 MHz					
Gain	12.0	dB			
Output IP3	9.8	dBm	Tone spacing = 1 MHz, Pout per tone = -17dBm		
Output P1dB	-1.8	dBm			
Input Return Loss	12.4	dB			
Reverse Isolation	18.1	dB			
Noise Figure	4.6	dB	Z _s = 50 Ohms		
2400 MHz					
Gain	11.6	dB			
Output IP3	9.2	dBm	Tone spacing = 1 MHz, Pout per tone = -17dBm		
Output P1dB	-2.5	dBm			
Input Return Loss	12.1	dB			
Reverse Isolation	18.3	dB			
3500 MHz					
Gain	10.6	dB			
Output IP3	9.3	dBm	Tone spacing = 1 MHz, Pout per tone = -17dBm		
Output P1dB	-2.7	dBm			
Input Return Loss	11.8	dB			
Reverse Isolation	18.5	dB			

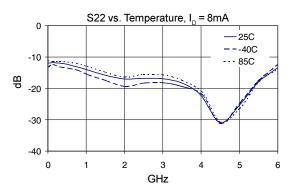
EDS-101494 Rev A

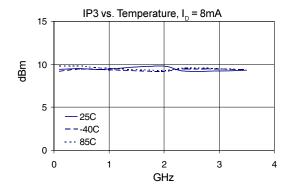
Pin #	Function	Description	Device Schematic
1	GND	Connection to ground. For best performance use via holes (as close to ground leads as possible) to reduce lead inductance.	
2	GND	Same as Pin 1	
3	RF IN	RF input pin. This pin requires the use of an external DC blocking capacitor chosen for the frequency of operation.	
4	GND	Same as Pin 1	
5	GND	Same as Pin 1	
6	RF OUT	RF output and bias pin. Bias should be supplied to this pin through an external series resistor and RF choke inductor. Because DC biasing is present on this pin, a DC blocking capacitor should be used in most applications (see application schematic). The supply side of this bias network should be well bypassed.	

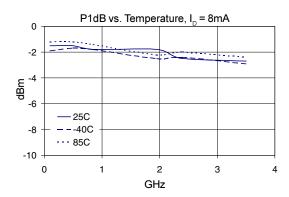

Application Schematic

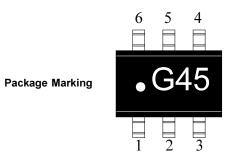


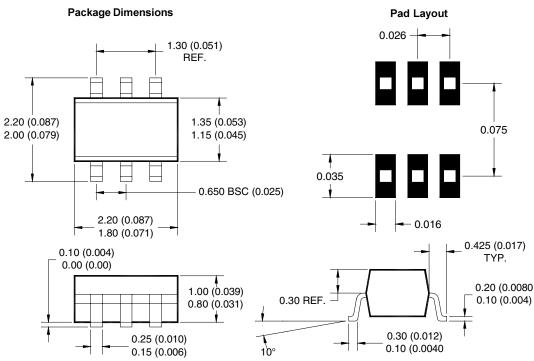

Reference Designator	Function	500 MHz	850 MHz	1950 M Hz	2400 MHz
Cb1	DC Blocking	220 pF	100 pF	68 pF	56 pF
Cb2	DC Blocking	220 pF	100 pF	68 pF	56 pF
Cd1	Decoupling	1 uF	1 uF	1 uF	1 uF
Cd2	Decoupling	100 pF	68 pF	22 pF	22 pF
Lchoke	AC Blocking	68 nH	33 nH	22 nH	18 nH











Caution: ESD sensitive Appropriate precautions in handling, packaging and testing devices must be observed.

Part Number Ordering Information Part Number Reel Size Devices/Reel SGA-0163 7" 3000

Note: Pin 1 is on lower left when you can read package marking

DIMENSIONS ARE IN INCHES [MM]