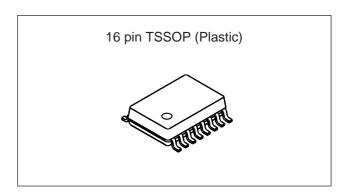
SONY

CXG1090TN


High Power 2 × 4 Antenna Switch MMIC with Integrated Control Logic

Description

The CXG1090TN is a high power antenna switch MMIC. The CXG1090TN is suited to connect Tx/Rx to one of 4 antennas in cellular handset such as PDC.

The CXG1090TN has the integrated control logic and can be operated with CMOS input.

This IC is designed using the Sony's GaAs J-FET process which enable the CXG1090TN to be operated with low voltage.

Features

• Low insertion loss: 0.30dB (Typ.)@900MHz, 0.40dB (Typ.)@1.5GHz

Small package: TSSOP-16pin
High power handling: PldB: 37dBm
CMOS compatible input control
Low bias voltage: VDD = 3.0V

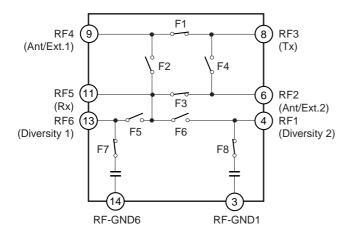
Applications

 2×4 antenna switch for digital cellular telephones such as PDC handsets.

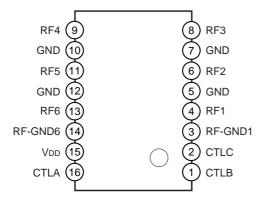
Structure

GaAs J-FET MMIC

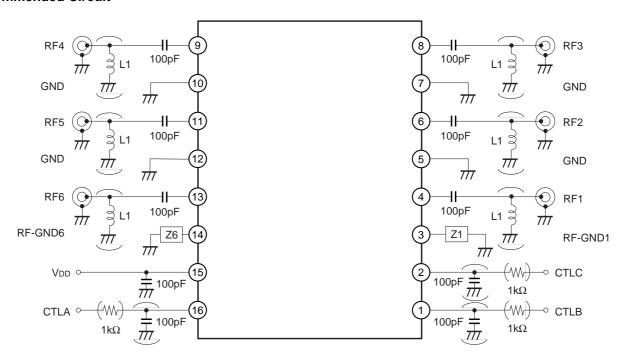
Absolute Maximum Ratings


Bias voltage
 Control voltage
 VDD
 V @Ta = 25°C
 V @Ta = 25°C
 V @Ta = 25°C

Operating temperature Topr -35 to +85 °C
 Storage temperature Tstg -65 to +150 °C


GaAs MMICs are ESD sensitive devices. Special handling precautions are required.

Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.


Block Diagram

Package Outline/Pin Configuration

Recommended Circuit

Truth Table

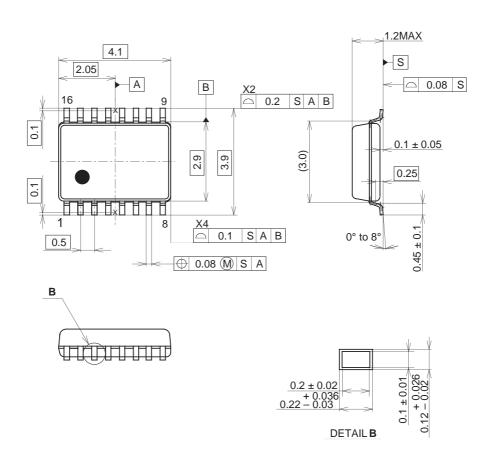
Control			ON	F1	F2	F3	F4	C E	Ee	F7	F8
CTLA	CTLB	CTLC	ON	ГІ	Г	гэ	F4	F5	F6	Г/	ГО
Н	L	L	RF3 → RF2	OFF	ON	OFF	ON	OFF	OFF	ON	ON
Н	L	Н	RF3 → RF4	ON	OFF	ON	OFF	OFF	OFF	ON	ON
L	L	L	RF5 → RF2	ON	OFF	ON	OFF	OFF	OFF	ON	ON
L	L	Н	RF5 → RF4	OFF	ON	OFF	ON	OFF	OFF	ON	ON
L	Н	L	RF5 → RF6	OFF	OFF	OFF	OFF	ON	OFF	OFF	ON
L	Н	Н	RF5 → RF1	OFF	OFF	OFF	OFF	OFF	ON	ON	OFF

DC Bias Condition

(Ta = 25°C)

Parameter	Min.	Тур.	Max.	Unit
Vctl (H) A to C	2.4		3.6	V
Vctl (L) A to C	0		0.8	V
VDD	2.8		3.2	V

Electrical Characteristics


(Vctl (L) = 0V, Vctl (H) = 3V, Ta = 25°C)

Parameter		Frequency	Condition	Min.	Typ	Max.	Unit
Faiailletei	DE0 DE0			IVIII I.	Тур.		
	RF3-RF2	889 to 960MHz	,		0.32	0.55	dB
	RF3-RF4	889 to 960MHz	Pin = 29.5dBm, VDD = 2.8 to 3.0V		0.30	0.55	dB
Insertion loss	RF5-RF2	810 to 885MHz	Pin = 7dBm, V _{DD} = 2.8 to 3.0V		0.55	0.85	dB
miscrition loss	RF5-RF4	810 to 885MHz	Pin = 7dBm, VDD = 2.8 to 3.0V		0.55	0.85	dB
	RF5-RF1	810 to 885MHz	Pin = 7dBm, VDD = 2.8 to 3.0V		0.5	0.8	dB
	RF5-RF6	810 to 885MHz	Pin = 7dBm, VDD = 2.8 to 3.0V		0.5	0.8	dB
	RF3-RF2	889 to 960MHz	Pin = 29.5dBm, V _{DD} = 2.8 to 3.0V	17	19		dB
	RF3-RF4	889 to 960MHz	Pin = 29.5dBm, VDD = 2.8 to 3.0V	17	21		dB
Isolation	RF5-RF2	810 to 885MHz	Pin = 7dBm, V _{DD} = 2.8 to 3.0V	17	21		dB
Isolation	RF5-RF4	810 to 885MHz	Pin = 7dBm, V _{DD} = 2.8 to 3.0V	17	19		dB
	RF5-RF1	810 to 885MHz	Pin = 7dBm, VDD = 2.8 to 3.0V	27	34		dB
	RF5-RF6	810 to 885MHz	Pin = 7dBm, VDD = 2.8 to 3.0V	20	25		dB
VSWR	Each ON Port	810 to 960MHz				1.4	
ACP (±50kHz)	RF3-RF2	889 to 960MHz	Pin = 29.5 dBm, V _{DD} = 3.0 V*1		-67	-57	dBc
ACP (±30KHZ)	RF3-RF4	669 to 960ivinz	Pin = 29.5dBm, Vdd = 2.8V*1		-67	-55	dBc
ACP (±100kHz)	RF3-RF2	889 to 960MHz	Pin = 29.5dBm, Vdd = 3.0V*1		-75	-65	dBc
ACF (±100KHZ)	RF3-RF4	869 to 960IVITI2	Pin = 29.5dBm, Vdd = 2.8V*1		-75	-62	dBc
2nd harmonics	RF3-RF2	889 to 960MHz	Pin = 29.5dBm, Vdd = 3.0V*1		-67	-60	dBc
211d Hairilonics	RF3-RF4	889 to 900ivii 12	Pin = 29.5 dBm, V _{DD} = 2.8 V*1		-67	-57	dBc
3nd harmonics	RF3-RF2	889 to 960MHz	Pin = 29.5dBm, Vdd = 3.0V*1		-67	-60	dBc
Silu Hairilonics	RF3-RF4	009 10 9001017	Pin = 29.5dBm, Vdd = 2.8V*1		-67	-57	dBc
Control current					85	150	μΑ
Bias current			VDD = 3.0V		0.45	1	mA
Dias current			VDD = 2.8V		0.4	0.9	mA
Switching speed					1.0	5.0	μs

^{*1} Input Signal: ACP (\pm 50kHz) < -65dBc, APC (\pm 100kHz) < -75dBc, 2nd harmonics < -65dBc, 3rd harmonics < -65dBc

Package Outline Unit: mm

16PIN TSSOP(PLASTIC)

PACKAGE STRUCTURE

SONY CODE	TSSOP-16P-L01
EIAJ CODE	
JEDEC CODE	

PACKAGE MATERIAL	EPOXY RESIN
LEAD TREATMENT	SOLDER PLATING
LEAD MATERIAL	COPPER ALLOY
PACKAGE MASS	0.03g