

Sitronix

ST8009

Dot Matrix Lcd 96 Output LCD Common/Segment driver IC

DESCRIPTION

The ST8009 is a 96-output segment/common driver IC suitable for driving small/medium scale dot matrix LCD panels, and is used in PDA or electronic dictionary. The ST8009 is good as a segment driver or a common driver or a common/segment driver, and it can create low power consumption, high-resolution LCD. The ST8009 have eight modes can selected to set common and segment numbers by select pin. The ST8009 also have analog DC/DC converter to used.

FEATURES

- Number of LCD drive outputs: 96
- Supply voltage for LCD drive: Max +16V
- Supply voltage for the logic system: +2.5 to +5.5 V
- · Low power consumption and low output impedance
- · Display duty selectable by internal select register

SEL2,SEL1,SEL0		DUTY	BIAS	
0	0	0		Segment mode
0	0	1	1/16	1/5 or 1/4
0	1	0	1/32	1/6 or 1/5
0	1	1	1/48	1/7 or 1/5
1	0	0	1/64	1/9 or 1/7
1	0	1	1/80	1/9 or 1/7
1	1	0	1/96	1/10 or 1/8
1	1	1	1/06	1/10 or 1/8

• Low-power liquid crystal display power supply circuit equipped internally.

Booster circuit (with Boost ratio of 2X/3X/4X/5X/6X)

Regulator circuit

Follower circuit

· Abundant command functions

LCD bias set, electronic volume, V_{SS} voltage regulation internal resistor ratio and booster frequency.

All Functions have initial value, user can set by programmable.

• Package: 124-pin COB.

(Segment mode)

- · Shift clock frequency
 - -20 MHz (MAX.): $V_{DD} = +5.0 \pm 0.5 \text{ V}$
 - 15 MHz (MAX.): V_{DD} = +3.0 to + 4.5 V
 - 12 MHz (MAX.): V_{DD} = +2.5 to + 3.0 V
- · Adopts a data bus system
- 4-bit parallel / serial input modes are selectable by programmable.
- Automatic transfer function of an enable signal
- Automatic counting function which, in the chip selection mode, causes the internal clock to be stopped by automatically counting 16、32、48、64、80、96 bits of input data
- · Line latch circuits are reset when XDISPOFF active

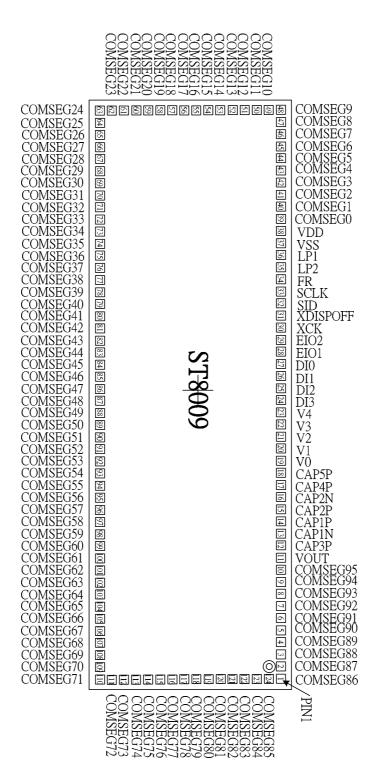
(Common mode)

- Shift clock frequency: 4 MHz (MAX.)
- Built-in X-bit shift register
- Available in a single mode
- Y₁->Y_X Single mode

Yx->Y1 Single mode

PS:X=16、32、48、64、64、80、96

The above 4 shift directions are register selectable


• Shift register circuits are reset when XDISPOFF active

PAD ARRANGEMENT

Chip size: 5070.0(um) x1790.0 (um)

Pad size: 80 (um) x80 (um) Pad pin pitch: 100 (um) ~ 140 (um)

Origin: chip center (0,0) Chip Thickness: 19 mil

Substrate Connect to Vss.

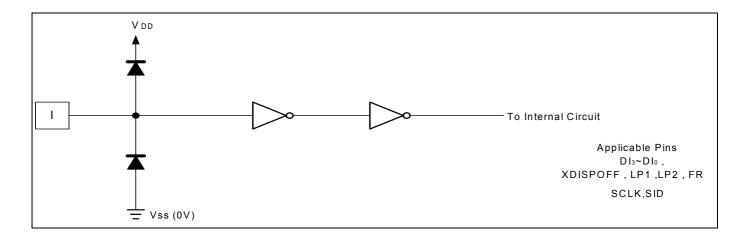
Pad Configuration

Pad No.	Function	Х	Υ
1	CS[86]	2450	810
2	CS[87]	2310	810
3	CS[88]	2180	810
4	CS[89]	2060	810
5	CS[90]	1950	810
6	CS[91]	1850	810
7	CS[92]	1750	810
8	CS[93]	1650	810
9	CS[94]	1550	810
10	CS[95]	1450	810
11	VOUT	1350	810
12	CAP3P	1250	810
13	CAP1N	1150	810
14	CAP1P	1050	810
15	CAP2P	950	810
16	CAP2N	850	810
17	CAP4P	750	810
18	CAP5P	650	810
19	V0	550	810
20	V1	450	810
21	V2	350	810
22	V3	250	810
23	V4	150	810
24	ED[3]	50	810
25	ED[2]	-50	810
26	ED[1]	-150	810
27	ED[0]	-250	810
28	EIO1	-350	810
29	EIO2	-450	810
30	XCKPAD	-550	810
31	XDISPAD	-650	810
32	SIDPAD	-750	810

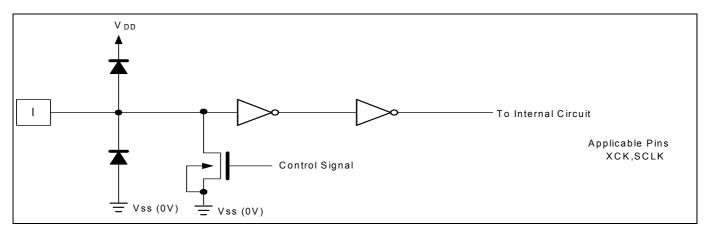
Pad No.	Function	Х	Υ
33	SCLKPAD	-850	810
34	FRPAD	-950	810
35	LP2PAD	-1050	810
36	LP1PAD	-1150	810
37	VSS	-1250	810
38	VDD	-1350	810
39	CS[0]	-1450	810
40	CS[1]	-1550	810
41	CS[2]	-1650	810
42	CS[3]	-1750	810
43	CS[4]	-1850	810
44	CS[5]	-1950	810
45	CS[6]	-2060	810
46	CS[7]	-2180	810
47	CS[8]	-2310	810
48	CS[9]	-2450	810
49	CS[10]	-2450	680
50	CS[11]	-2450	560
51	CS[12]	-2450	450
52	CS[13]	-2450	350
53	CS[14]	-2450	250
54	CS[15]	-2450	150
55	CS[16]	-2450	50
56	CS[17]	-2450	-50
57	CS[18]	-2450	-150
58	CS[19]	-2450	-250
59	CS[20]	-2450	-350
60	CS[21]	-2450	-450
61	CS[22]	-2450	-560
62	CS[23]	-2450	-680
63	CS[24]	-2450	-810
64	CS[25]	-2310	-810
	1		

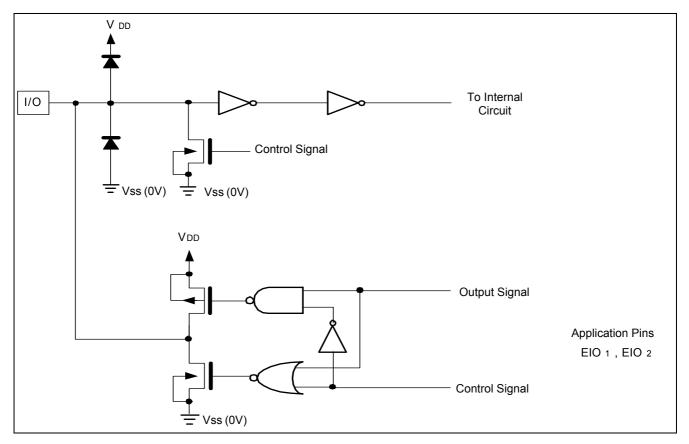
Pad No.	Function	Х	Υ
65	CS[26]	-2180	-810
66	CS[27]	-2060	-810
67	CS[28]	-1950	-810
68	CS[29]	-1850	-810
69	CS[30]	-1750	-810
70	CS[31]	-1650	-810
71	CS[32]	-1550	-810
72	CS[33]	-1450	-810
73	CS[34]	-1350	-810
74	CS[35]	-1250	-810
75	CS[36]	-1150	-810
76	CS[37]	-1050	-810
77	CS[38]	-950	-810
78	CS[39]	-850	-810
79	CS[40]	-750	-810
80	CS[41]	-650	-810
81	CS[42]	-550	-810
82	CS[43]	-450	-810
83	CS[44]	-350	-810
84	CS[45]	-250	-810
85	CS[46]	-150	-810
86	CS[47]	-50	-810
87	CS[48]	50	-810
88	CS[49]	150	-810
89	CS[50]	250	-810
90	CS[51]	350	-810
91	CS[52]	450	-810
92	CS[53]	550	-810
93	CS[54]	650	-810
94	CS[55]	750	-810
95	CS[56]	850	-810
96	CS[57]	950	-810
97	CS[58]	1050	-810

Pad No.	Function	Х	Υ
98	CS[59]	1150	-810
99	CS[60]	1250	-810
100	CS[61]	1350	-810
101	CS[62]	1450	-810
102	CS[63]	1550	-810
103	CS[64]	1650	-810
104	CS[65]	1750	-810
105	CS[66]	1850	-810
106	CS[67]	1950	-810
107	CS[68]	2060	-810
108	CS[69]	2180	-810
109	CS[70]	2310	-810
110	CS[71]	2450	-810
111	CS[72]	2450	-680
112	CS[73]	2450	-560
113	CS[74]	2450	-450
114	CS[75]	2450	-350
115	CS[76]	2450	-250
116	CS[77]	2450	-150
117	CS[78]	2450	-50
118	CS[79]	2450	50
119	CS[80]	2450	150
120	CS[81]	2450	250
121	CS[82]	2450	350
122	CS[83]	2450	450
123	CS[84]	2450	560
124	CS[85]	2450	680


PIN DESCRIPTION

SYMBOL	I/O	DESCRIPTION	No of Num	
COMSEG ₀ -COMSEG ₉₅	0	LCD drive output	96	
V ₀ ~V ₄	Р	Power supply for LCD drive	5	
V _{DD}	Р	Power supply for logic system (+2.5 to +5.5 V)	1	
FIO. FIO.	1/0	Input/output for chip selection at segment mode and FLM input output	2	
EIO ₂ , EIO ₁	I/O	function at com/seg mix mode or common mode		
DIo-DI3	I	Display data input at segment mode	4	
XCK	I	Clock input for taking display data at segment mode	1	
XDISPOFF	I	Control input for output of non-select level	1	
LP1	I	Latch pulse input for display data at segment mode	1	
LP2	I	Shift clock input for shift register at common mode	1	
FR	I	AC-converting signal input for LCD drive waveform	1	
Vss	Р	Ground (0 V)	1	
CAP1-	0	DC/DC voltage converter. Connect a capacitor between this terminal	1	
CAP I-	U	and the CAP2- terminal.		
CAP1+	0	DC/DC voltage converter. Connect a capacitor between this terminal	1	
CAFT		and the CAP1- terminal.	I	
CAP2-	0	DC/DC voltage converter. Connect a capacitor between this terminal	1	
CAI 2-		and the CAP2- terminal.	'	
CAP2+		DC/DC voltage converter. Connect a capacitor between this terminal	1	
OAI ZI	0	and the CAP2- terminal.	'	
CAP3+	0	DC/DC voltage converter. Connect a capacitor between this terminal	1	
OAI 5)	and the CAP1- terminal.	'	
CAP4+	0	DC/DC voltage converter. Connect a capacitor between this terminal	1	
OAI 41)	and the CAP2- terminal.	'	
CAP5+	0	DC/DC voltage converter. Connect a capacitor between this terminal		
		and the CAP1- terminal.		
VOUT	0	DC/DC voltage converter. Connect a capacitor between this terminal	1	
V 00 1		and VSS.	'	
SID	I	The command data. See Figure1	1	
SCLK	ı	The serial clock input. See Figure1	1	


BLOCK DIAGRAM


NPUT/OUTPUT CIRCUITS

Input Circuit (1)

Input Circuit (2)

Input/Output Circuit

FUNCTIONAL DESCRIPTION

(Segment mode)

SYMBOL	FUNCTION		
V _{DD}	Logic system power supply pin, connected to +2.5 to +5.5 V.		
Vss	Ground pin, connected to 0 V.		
	This is a multi-level power supply for the liquid crystal drive. The voltage Supply applied is determined		
	by the liquid crystal cell, and is changed through the use of a resistive voltage divided or through		
V ₀ V ₁	changing the impedance using an op. amp. Voltage levels are determined based on VSS, and must		
V ₂ V ₃	maintain the relative magnitudes shown below.		
V ₄	V_0 V_1 V_2 V_3 V_4 V_{ss}		
	When the power supply turns on, the internal power supply circuits produce the V1 to V4 voltages		
	shown below. The voltage settings are selected using the LCD bias set command.		
	Input pins for display data		
	• In 4-bit parallel input mode, input data into the 4 pins, Dl3-Dl0.		
DI3-DI0	• In serial input mode, input data into the 1 pin,DIo.		
טוט-טוט	Then DI ₃ -DI ₁ must connect to Vss .		
	Refer to "RELATIONSHIP BETWEEN THE DISPLAY DATA AND LCD DRIVE OUTPUT		
	PINS" in Functional Operations.		
LP1	Latch pulse input pin for display data		
LFI	Data is latched at the falling edge of the clock pulse.		
	Control input pin for output of non-select level		
	• The input signal is level-shifted from logic voltage level to LCD drive voltage level, and controls the		
	LCD drive circuit.		
	• When set to VSS level "L", the LCD drive output pins (COMSEG ₁ -COMSEG ₉₆) are set to level Vss.		
XDISPOFF	• When set to "L", the contents of the line latch are reset, but the display data are read in the		
ADIOF OF F	data latch regardless of the condition of XDISPOFF. When the XDISPOFF function is canceled,		
	the driver outputs non-select level (V2 or V3), then outputs the contents of the data latch at the next		
	falling edge of the LP. At that time, if XDISPOFF removal time does not correspond to what is shown		
	in AC characteristics, it cannot output the reading data correctly.		
	Table of truth-values is shown in "TRUTH TABLE" in Functional Operations.		
	AC signal input pin for LCD drive waveform		
FR	• The input signal is level-shifted from logic voltage level to LCD drive voltage level, and controls the		
	LCD drive circuit.		
	Normally it inputs a frame inversion signal.		
	• The LCD drive output pins' output voltage levels can be set using the line latch output signal and the		
	FR signal.		
	Table of truth-values is shown in "TRUTH TABLE" in Functional Operations.		
EIO1, EIO2	Input/output pins for chip selection.		

<u>Sitronix</u>	<u>518009</u>
	AT segment mode:
	• When L/R register is set '0', EIO ₁ is set for output, and EIO ₂ is set for input(connect to Vss).
	• When L/R register is set '1', EIO ₁ is set for input(connect to Vss), and EIO ₂ is set for output.
	• During output, set to "H" while LP • XCK is "H" and after 96 bits of data have been read, set
	to "L" for one cycle (from falling edge to failing edge of XCK), after which it returns to "H".
	During input, the chip is selected while EI is set to "L" after the LP signal is input. The chip is
	non-selected after 96 bits of data have been read.
COMCEC	LCD drive output pins
COMSEG ₁	• Corresponding directly to each bit of the data latch, one level (V ₀ , V ₂ ,V ₃ ,V _{ss}) is selected and output.
-COMSEG ₉₆	Table of truth values is shown in "TRUTH TABLE" in Functional Operations.
CAP1-	DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2- terminal.
CAP1+	DC/DC voltage converter. Connect a capacitor between this terminal and the CAP1- terminal.
CAP2-	DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2- terminal.
CAP2+	DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2- terminal.
CAP3+	DC/DC voltage converter. Connect a capacitor between this terminal and the CAP1- terminal.
CAP4+	DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2- terminal.
VOUT	DC/DC voltage converter. Connect a capacitor between this terminal and VSS.
SID	The serial command data. See Figure1
SCLK	The serial clock input. See Figure1

(Common mode)

SYMBOL	FUNCTION
V _{DD}	Logic system power supply pin, connected to +2.5 to +5.5 V.
Vss	Ground pin, connected to 0 V.
	This is a multi-level power supply for the liquid crystal drive. The voltage Supply applied is
	determined by the liquid crystal cell, and is changed through the use of a resistive voltage
V ₀ , V ₁	divided or through changing the impedance using an op. amp. Voltage levels are
V2, V3	determined based on VDD, and must maintain the relative magnitudes shown below.
V ₄	V ₀ V ₁ V ₂ V ₃ V ₄ V _{ss}
	When the power supply turns ON, the internal power supply circuits produce the V1 to V4
	voltages shown below. The voltage settings are selected using the LCD bias set command.
	Shift clock pulse input pin for bi-directional shift register
LP2	• * Data is shifted at the falling edge of the clock pulse.
LP2	When use gray scale mode, then must use the pin.
	When use monochrome mode, then the pin should be connected with LP1 together.
	Control input pin for output of non-select level
	• The input signal is level-shifted from logic voltage level to LCD drive voltage level, and
	controls the LCD drive circuit.
	• When set to Vss level "L", the LCD drive output pins (COMSEGo-COMSEGx) are set to
XDISPOFF	level Vss.
ADIOI OI I	• When set to "L", the contents of the shift register are reset to not reading data. When the
	/DISPOFF function is canceled, the driver outputs non-select level (V ₁ or V ₄), and the shift
	data is read at the next falling edge of the LP. At that time, if /DISPOFF removal time does
	not correspond to what is shown in AC characteristics, the shift data is not read correctly.
	Table of truth-values is shown in "TRUTH TABLE" in Functional Operations.
	AC signal input pin for LCD drive waveform
	• The input signal is level-shifted from logic voltage level to LCD drive voltage level, and
	controls the LCD drive circuit.
FR	Normally it inputs a frame inversion signal.
	• The LCD drive output pins' output voltage levels can be set using the shift register output
	signal and the FR signal.
	Table of truth-values is shown in "TRUTH TABLE" in Functional Operations.
DI3-DI0	Not used. Connect DI ₃ -DI ₀ to V _{SS} , not floating.
XCK	Not used
	XCK is pulled down in common mode, so connect to Vss .
	LCD drive output pins
COMSEG ₀ –COMSEG ₉₅	• Corresponding directly to each bit of the shift register, one level (V ₀ V ₁ , V ₄ , or V _{ss}) is
	Selected and output.
	Table of truth-values is shown in "TRUTH TABLE" in Functional Operations.

<u> </u>	310009
	Shift data Input/output pins for shift register
	• EIO₁ is output pin when L/R is at Vss level "L", EIO₁ is input pin when L/R is at Vdd level
	"H"
	• When L/R register ='1', EIO₁ is used as input pin, it will be connect to FLM.
	• When L/R register ='0', EIO₁ is used as output pin, it won't be connect to FLM.
EIO ₁ , EIO ₂	• ElO₂ is input pin when L/R is at Vss level "L", ElO₁ is output pin when L/R is at Vdd level
	"H"
	• When L/R register ='1', EIO₂ is used as output pin, it won't be connect to FLM,
	• When L/R register ='0', EIO ₂ is used as input pin, it will be connect to FLM
	• Refer to "RELATIONSHIP BETWEEN THE DISPLAY DATA AND LCD DRIVE OUTPUT
	PINS" in Functional Operations.
CAP1-	DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2-
CAP I-	terminal.
CAP1+	DC/DC voltage converter. Connect a capacitor between this terminal and the CAP1-
CAPIT	terminal.
CAP2-	DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2-
CAP2-	terminal.
CAP2+	DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2-
CAPZ+	terminal.
CAP3+	DC/DC voltage converter. Connect a capacitor between this terminal and the CAP1-
CAP3+	terminal.
CAP4+	DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2-
	terminal.
VOUT	DC/DC voltage converter. Connect a capacitor between this terminal and VSS.
SID	The serial command data. See Figure1
SCLK	The serial clock input. See Figure1

(common /segment mix mode)

SYMBOL	FUNCTION		
V _{DD}	Logic system power supply pin, connected to +2.5 to +5.5 V.		
Vss	Ground pin, connected to 0 V.		
	This is a multi-level power supply for the liquid crystal drive. The voltage Supply applied is determined		
	by the liquid crystal cell, and is changed through the use of a resistive voltage divided or through		
V ₀ V ₁	changing the impedance using an op. amp. Voltage levels are determined based on VSS, and must		
V ₂ V ₃	maintain the relative magnitudes shown below.		
V ₄	V_0 V_1 V_2 V_3 V_4 V_{ss}		
	When the power supply turns ON, the internal power supply circuits produce the V1to V4voltages		
	shown below. The voltage settings are selected using the LCD bias set command.		
	Input pins for display data		
	• In 4-bit parallel input mode, input data into the 4 pins, DI3-DI0.		
DI3-DI0	• In serial input mode, input data into the 1 pin,Dlo.		
DI3-DI0	Connect DI ₃ -DI ₁ to V _{SS} .		
	Refer to "RELATIONSHIP BETWEEN THE DISPLAY DATA AND LCD DRIVE OUTPUT		
	PINS" in Functional Operations.		
XCK	Clock input pin for taking display data		
XON	* Data is read at the falling edge of the clock pulse.		
LP1	Latch pulse input pin for display data		
LFI	Data is latched at the falling edge of the clock pulse.		
	Shift clock pulse input pin for bi-directional shift register		
LP2	• * Data is shifted at the falling edge of the clock pulse.		
LI Z	When use gray scale mode, then must use the pin.		
	When use monochrome mode, then the pin should be connected with LP1 together.		
	Control input pin for output of non-select level		
	• The input signal is level-shifted from logic voltage level to LCD drive voltage level, and controls the		
	LCD drive circuit.		
	• When set to VSS level "L", the LCD drive output pins (COMSEG ₀ -COMSEG ₉₅) are set to level Vss.		
XDISPOFF	• When set to "L", the contents of the line latch are reset, but the display data are read in the		
ABIOI OI I	data latch regardless of the condition of XDISPOFF. When the XDISPOFF function is canceled,		
	the driver outputs non-select level (V ₂ or V ₃), then outputs the contents of the data latch at the next		
	falling edge of the LP. At that time, if XDISPOFF removal time does not correspond to what is shown		
	in AC characteristics, it cannot output the reading data correctly.		
	Table of truth-values is shown in "TRUTH TABLE" in Functional Operations.		
	AC signal input pin for LCD drive waveform		
FR	• The input signal is level-shifted from logic voltage level to LCD drive voltage level, and controls the		
	LCD drive circuit.		
	Normally it inputs a frame inversion signal.		

FR signal. • Table of truth-values is shown in "TRUTH TABLE" in Functional Operations. Input/output pins for chip selection AT common/segment mode: • When L/R register is '0' , ElO₁ is set output, and ElO₂ is set for input. ElO₁ : segment chip enable output, as default segment is enabled internally and be non-selected after 16,32,48,64 or 80 bits of data have been read. Depend on select mode. ElO₂ :common shift data input, no sift data output • When L/R register is '1', ElO₁ is set for input, and ElO₂ is set for output. ElO₁ :common shift data, no shift data output ElO₂ : segment chip enable output, as default segment is enabled internally and be non-selected after 16,32,48,64 or 80 bits of data have been read. Depend on select mode. • During output, set to "H" while LP • XCK is "H" and after 96 bits of data have been read, set to "L" for one cycle (from falling edge to failing edge of XCK), after which it returns to "H". During input, the chip is selected while El is set to "L" after the LP signal is input. The chip is non-selected after 96 bits of data have been read. COMSEG₁ -COMSEG₃ • Corresponding directly to each bit of the data latch, one level (V₀, V₂, V₃, V₃) is selected and output "Table of truth values is shown in "TRUTH TABLE" in Functional Operations. CAP1- DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2- terminal. CAP2- DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2- terminal. CAP2- DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2- terminal. CAP3+ DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2- terminal. CAP3+ DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2- terminal. CAP3+ DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2- terminal. CAP4+ DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2- terminal.	<u>Sili Offix</u>	378009
Table of truth-values is shown in "TRUTH TABLE" in Functional Operations. Input/output pins for chip selection AT common/segment mode: When L/R register is "0", ElO₁ is set output, and ElO₂ is set for input. ElO₁ : segment chip enable output, as default segment is enabled internally and be non-selected after 16,32,48,64 or 80 bits of data have been read. Depend on select mode. ElO₂ : common shift data input, no sift data output When L/R register is "1", ElO₁ is set for input, and ElO₂ is set for output. ElO₁ : common shift data, no shift data output ElO₂ : segment chip enable output, as default segment is enabled internally and be non-selected after 16,32,48,64 or 80 bits of data have been read. Depend on select mode. • During output, set to "H" while LP • XCK is "H" and after 96 bits of data have been read, set to "L" for one cycle (from falling edge to failing edge of XCK), after which it returns to "H". During input, the chip is selected while El is set to "L" after the LP signal is input. The chip is non-selected after 96 bits of data have been read. COMSEG₁ COMSEG₃ CO		• The LCD drive output pins' output voltage levels can be set using the line latch output signal and the
Input/output pins for chip selection AT common/segment mode: *When L/R register is '0', ElO₁ is set output, and ElO₂ is set for input. ElO₁: segment chip enable output, as default segment is enabled internally and be non-selected after 16,32,48,64 or 80 bits of data have been read. Depend on select mode. ElO₂: common shift data input, no sift data output *When L/R register is '1', ElO₁ is set for input, and ElO₂ is set for output. ElO₁: common shift data, no shift data output ElO₂: segment chip enable output, as default segment is enabled internally and be non-selected after 16,32,48,64 or 80 bits of data have been read. Depend on select mode. *During output, set to "H" while LP * XCK is "H" and after 96 bits of data have been read, set to "L" for one cycle (from falling edge to failing edge of XCK), after which it returns to "H". During input, the chip is selected while El is set to "L" after the LP signal is input. The chip is non-selected after 96 bits of data have been read. COMSEG₁ -COMSEG₃ *COMSEG₃ *Corresponding directly to each bit of the data latch, one level (V₀, V₂, V₃, V₀₂) is selected and output after the late of truth values is shown in "TRUTH TABLE" in Functional Operations. CAP1- CAP1- DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2- terminal. CAP2- DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2- terminal. CAP2- DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2- terminal. CAP3+ DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2- terminal. CAP3+ DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2- terminal. CAP3+ DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2- terminal. CAP4+ DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2- terminal. CAP4+ DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2- terminal. This is the command mode sel		FR signal.
AT common/segment mode: • When L/R register is '0', EIO ₁ is set output, and EIO ₂ is set for input. EIO ₁ : segment chip enable output, as default segment is enabled internally and be non-selected after 16,32,48,64 or 80 bits of data have been read. Depend on select mode. EIO ₂ : common shift data input, no sift data output • When L/R register is '1', EIO ₁ is set for input, and EIO ₂ is set for output. EIO ₁ : common shift data, no shift data output EIO ₂ : segment chip enable output, as default segment is enabled internally and be non-selected after 16,32,48,64 or 80 bits of data have been read. Depend on select mode. • During output, set to "H" while LP • XCK is "H" and after 96 bits of data have been read, set to "L" for one cycle (from falling edge to failing edge of XCK), after which it returns to "H". During input, the chip is selected while EI is set to "L" after the LP signal is input. The chip is non-selected after 96 bits of data have been read. COMSEG ₁ -COMSEG ₃ • Ordersponding directly to each bit of the data latch, one level (Vo, Vz, Vs, Vs, Vs) is selected and output albert of truth values is shown in "TRUTH TABLE" in Functional Operations. CAP1- CAP1- CCPC voltage converter. Connect a capacitor between this terminal and the CAP2- terminal. CAP2- DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2- terminal. CAP2- DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2- terminal. CAP3+ DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2- terminal. CAP3+ DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2- terminal. CAP3+ DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2- terminal. CAP4+ DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2- terminal. CAP4+ DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2- terminal. CAP4+ DC/DC voltage converter. Connect a capacitor be		Table of truth-values is shown in "TRUTH TABLE" in Functional Operations.
When L/R register is '0', EIO ₁ is set output, and EIO ₂ is set for input. EIO ₁ : segment chip enable output, as default segment is enabled internally and be non-selected after 16,32,48,64 or 80 bits of data have been read. Depend on select mode. EIO ₂ : common shift data input, no sift data output When L/R register is '1', EIO ₁ is set for input, and EIO ₂ is set for output. EIO ₂ : segment chip enable output, as default segment is enabled internally and be non-selected after 16,32,48,64 or 80 bits of data have been read. Depend on select mode. During output, set to "H" while LP · XCK is "H" and after 96 bits of data have been read, set to "L" for one cycle (from falling edge to failing edge of XCK), after which it returns to "H". During input, the chip is selected while EI is set to "L" after the LP signal is input. The chip is non-selected after 96 bits of data have been read. COMSEG ₁		Input/output pins for chip selection
EIO1: segment chip enable output, as default segment is enabled internally and be non-selected after 16,32,48,64 or 80 bits of data have been read. Depend on select mode. EIO2: common shift data input, no sift data output *When L/R register is '1', EIO1 is set for input, and EIO2 is set for output. EIO1: common shift data, no shift data output EIO2: segment chip enable output, as default segment is enabled internally and be non-selected after 16,32,48,64 or 80 bits of data have been read. Depend on select mode. *During output, set to "H" while LP * XCK is "H" and after 96 bits of data have been read, set to "L" for one cycle (from falling edge to failing edge of XCK), after which it returns to "H". During input, the chip is selected while EI is set to "L" after the LP signal is input. The chip is non-selected after 96 bits of data have been read. COMSEG1 COMSEG3 *COMSEG3* *COMSEG4* *Table of truth values is shown in "TRUTH TABLE" in Functional Operations. CAP1- DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2- terminal. CAP2- DC/DC voltage converter. Connect a capacitor between this terminal and the CAP1- terminal. CAP2- DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2- terminal. CAP3+ DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2- terminal. CAP3+ DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2- terminal. CAP3+ DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2- terminal. CAP4+ DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2- terminal. CAP4- DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2- terminal. CAP4- DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2- terminal. CAP4- DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2- terminal. CAP4- DC/DC voltage converter. Connect a capacitor between this terminal		AT common/segment mode:
after 16,32,48,64 or 80 bits of data have been read. Depend on select mode. EIO2 :common shift data input, no sift data output *When L/R register is '1', EIO1 is set for input, and EIO2 is set for output. EIO1 :common shift data, no shift data output *When L/R register is '1', EIO1 is set for input, and EIO2 is set for output. EIO2 : segment chip enable output, as default segment is enabled internally and be non-selected after 16,32,48,64 or 80 bits of data have been read. Depend on select mode. *During output, set to "H" while LP * XCK is "H" and after 96 bits of data have been read, set to "L" for one cycle (from falling edge to failing edge of XCK), after which it returns to "H". During input, the chip is selected while EI is set to "L" after the LP signal is input. The chip is non-selected after 96 bits of data have been read. LCD drive output pins *Corresponding directly to each bit of the data latch, one level (Vo, V2, V3, Vss) is selected and output "Table of truth values is shown in "TRUTH TABLE" in Functional Operations. CAP1- DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2- terminal. CAP2- DC/DC voltage converter. Connect a capacitor between this terminal and the CAP1- terminal. CAP3+ DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2- terminal. CAP4+ DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2- terminal. CAP4+ DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2- terminal. CAP4+ DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2- terminal. CAP4+ DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2- terminal. CAP4- DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2- terminal. CAP4- DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2- terminal. VOUT DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2- terminal.		• When L/R register is '0', EIO ₁ is set output, and EIO ₂ is set for input.
EIO2 :common shift data input, no sift data output *When L/R register is "1", EIO1 is set for input, and EIO2 is set for output. EIO1 :common shift data, no shift data output EIO2 : segment chip enable output, as default segment is enabled internally and be non-selected after 16,32,48,64 or 80 bits of data have been read. Depend on select mode. *During output, set to "H" while LP • XCK is "H" and after 96 bits of data have been read, set to "L" for one cycle (from falling edge to failing edge of XCK), after which it returns to "H". During input, the chip is selected while EI is set to "L" after the LP signal is input. The chip is non-selected after 96 bits of data have been read. COMSEG1 -COMSEG36 **COMSEG366** **COMSEG366		EIO ₁ : segment chip enable output, as default segment is enabled internally and be non-selected
When L/R register is '1', EIO1 is set for input, and EIO2 is set for output. EIO1 :common shift data, no shift data output EIO2 : segment chip enable output, as default segment is enabled internally and be non-selected after 16,32,48,64 or 80 bits of data have been read. Depend on select mode. *During output, set to "H" while LP • XCK is "H" and after 96 bits of data have been read, set to "L" for one cycle (from falling edge to failing edge of XCK), after which it returns to "H". During input, the chip is selected while EI is set to "L" after the LP signal is input. The chip is non-selected after 96 bits of data have been read. LCD drive output pins *Corresponding directly to each bit of the data latch, one level (Vo, V2, V3, Vss) is selected and output *Table of truth values is shown in "TRUTH TABLE" in Functional Operations. CAP1- DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2- terminal. CAP2- DC/DC voltage converter. Connect a capacitor between this terminal and the CAP1- terminal. CAP2+ DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2- terminal. CAP3+ DC/DC voltage converter. Connect a capacitor between this terminal and the CAP1- terminal. CAP4+ DC/DC voltage converter. Connect a capacitor between this terminal and the CAP1- terminal. CAP4+ DC/DC voltage converter. Connect a capacitor between this terminal and the CAP1- terminal. CAP4+ DC/DC voltage converter. Connect a capacitor between this terminal and the CAP1- terminal. CAP4+ DC/DC voltage converter. Connect a capacitor between this terminal and the CAP1- terminal. CAP4+ DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2- terminal. This is the command mode select pin. When XCS="L" then write command to the LCD, when no used the command mode then must fixed to Vdd . See Figure1		after 16,32,48,64 or 80 bits of data have been read. Depend on select mode.
EIO1: common shift data, no shift data output EIO2: segment chip enable output, as default segment is enabled internally and be non-selected after 16,32,48,64 or 80 bits of data have been read. Depend on select mode. • During output, set to "H" while LP • XCK is "H" and after 96 bits of data have been read, set to "L" for one cycle (from falling edge to failing edge of XCK), after which it returns to "H". During input, the chip is selected while EI is set to "L" after the LP signal is input. The chip is non-selected after 96 bits of data have been read. COMSEG1 -COMSEG3 • Corresponding directly to each bit of the data latch, one level (Vo, V2, V3, Vss) is selected and output • Table of truth values is shown in "TRUTH TABLE" in Functional Operations. CAP1- DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2- terminal. CAP2- DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2- terminal. CAP2- DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2- terminal. CAP3+ DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2- terminal. CAP4+ DC/DC voltage converter. Connect a capacitor between this terminal and the CAP1- terminal. CAP4+ DC/DC voltage converter. Connect a capacitor between this terminal and the CAP1- terminal. CAP4+ DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2- terminal. CAP4+ DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2- terminal. CAP4+ DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2- terminal. This is the command mode select pin. When XCS="L" then write command to the LCD, when no used the command mode then must fixed to Vdd . See Figure1		EIO ₂ :common shift data input, no sift data output
EIO1: common shift data, no shift data output EIO2: segment chip enable output, as default segment is enabled internally and be non-selected after 16,32,48,64 or 80 bits of data have been read. Depend on select mode. *During output, set to "H" while LP *XCK is "H" and after 96 bits of data have been read, set to "L" for one cycle (from falling edge to failing edge of XCK), after which it returns to "H". During input, the chip is selected while EI is set to "L" after the LP signal is input. The chip is non-selected after 96 bits of data have been read. LCD drive output pins *Corresponding directly to each bit of the data latch, one level (Vo, V2,V3,Vss) is selected and output *Table of truth values is shown in "TRUTH TABLE" in Functional Operations. CAP1- DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2- terminal. CAP2- DC/DC voltage converter. Connect a capacitor between this terminal and the CAP1- terminal. CAP2- DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2- terminal. CAP3+ DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2- terminal. CAP4+ DC/DC voltage converter. Connect a capacitor between this terminal and the CAP1- terminal. CAP4+ DC/DC voltage converter. Connect a capacitor between this terminal and the CAP1- terminal. CAP4+ DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2- terminal. CAP4+ DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2- terminal. CAP4+ DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2- terminal. This is the command mode select pin. When XCS="L" then write command to the LCD, when no used the command mode then must fixed to Vdd . See Figure1	EIO. EIO.	• When L/R register is '1', EIO ₁ is set for input, and EIO ₂ is set for output.
after 16,32,48,64 or 80 bits of data have been read. Depend on select mode. • During output, set to "H" while LP • XCK is "H" and after 96 bits of data have been read, set to "L" for one cycle (from falling edge to failing edge of XCK), after which it returns to "H". During input, the chip is selected while EI is set to "L" after the LP signal is input. The chip is non-selected after 96 bits of data have been read. COMSEG1 -COMSEG36000000000000000000000000000000000000	EIO1, EIO2	EIO ₁ :common shift data, no shift data output
During output, set to "H" while LP • XCK is "H" and after 96 bits of data have been read, set to "L" for one cycle (from falling edge to failing edge of XCK), after which it returns to "H". During input, the chip is selected while El is set to "L" after the LP signal is input. The chip is non-selected after 96 bits of data have been read. COMSEG1 COMSEG36 COMSEG46 COMSEG566 COMSEG567 COMSEG567 COMSEG567 COMSEG567 COMSEG568 COMSEG569 COMSEG5698 COMSE		ElO ₂ : segment chip enable output, as default segment is enabled internally and be non-selected
to "L" for one cycle (from falling edge to failing edge of XCK), after which it returns to "H". During input, the chip is selected while EI is set to "L" after the LP signal is input. The chip is non-selected after 96 bits of data have been read. LCD drive output pins * Corresponding directly to each bit of the data latch, one level (Vo, V2, V3, Vss) is selected and output to "Table of truth values is shown in "TRUTH TABLE" in Functional Operations. CAP1- DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2- terminal. CAP2- DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2- terminal. CAP2+ DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2- terminal. CAP3+ DC/DC voltage converter. Connect a capacitor between this terminal and the CAP1- terminal. CAP3+ DC/DC voltage converter. Connect a capacitor between this terminal and the CAP1- terminal. CAP4+ DC/DC voltage converter. Connect a capacitor between this terminal and the CAP1- terminal. CAP4+ DC/DC voltage converter. Connect a capacitor between this terminal and the CAP1- terminal. CAP4+ DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2- terminal. VOUT DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2- terminal. VOUT DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2- terminal. VOUT DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2- terminal. VOUT DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2- terminal.		after 16,32,48,64 or 80 bits of data have been read. Depend on select mode.
During input, the chip is selected while EI is set to "L" after the LP signal is input. The chip is non-selected after 96 bits of data have been read. COMSEG1 -COMSEG96 • Corresponding directly to each bit of the data latch, one level (Vo, V2, V3, Vss) is selected and output • Table of truth values is shown in "TRUTH TABLE" in Functional Operations. CAP1- DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2- terminal. CAP1+ DC/DC voltage converter. Connect a capacitor between this terminal and the CAP1- terminal. CAP2- DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2- terminal. CAP2+ DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2- terminal. CAP3+ DC/DC voltage converter. Connect a capacitor between this terminal and the CAP1- terminal. CAP4+ DC/DC voltage converter. Connect a capacitor between this terminal and the CAP1- terminal. CAP4+ DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2- terminal. VOUT DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2- terminal. VOUT DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2- terminal. VOUT DC/DC voltage converter. Connect a capacitor between this terminal and VSS. This is the command mode select pin. When XCS="L" then write command to the LCD, when no used the command mode then must fixed to Vdd . See Figure1		• During output, set to "H" while LP • XCK is "H" and after 96 bits of data have been read, set
non-selected after 96 bits of data have been read. COMSEG1 -COMSEG999 • Corresponding directly to each bit of the data latch, one level (Vo, V2,V3,Vss) is selected and output • Table of truth values is shown in "TRUTH TABLE" in Functional Operations. CAP1- DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2- terminal. CAP1+ DC/DC voltage converter. Connect a capacitor between this terminal and the CAP1- terminal. CAP2- DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2- terminal. CAP2+ DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2- terminal. CAP3+ DC/DC voltage converter. Connect a capacitor between this terminal and the CAP1- terminal. CAP4+ DC/DC voltage converter. Connect a capacitor between this terminal and the CAP1- terminal. CAP4+ DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2- terminal. VOUT DC/DC voltage converter. Connect a capacitor between this terminal and VSS. This is the command mode select pin. When XCS="L" then write command to the LCD, when no used the command mode then must fixed to Vdd . See Figure1		to "L" for one cycle (from falling edge to failing edge of XCK), after which it returns to "H".
COMSEG1 COMSEG96 Corresponding directly to each bit of the data latch, one level (Vo, V2, V3, Vss) is selected and output Table of truth values is shown in "TRUTH TABLE" in Functional Operations. CAP1- DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2- terminal. CAP1- DC/DC voltage converter. Connect a capacitor between this terminal and the CAP1- terminal. CAP2- DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2- terminal. CAP2+ DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2- terminal. CAP3+ DC/DC voltage converter. Connect a capacitor between this terminal and the CAP1- terminal. CAP3+ DC/DC voltage converter. Connect a capacitor between this terminal and the CAP1- terminal. CAP4+ DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2- terminal. VOUT DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2- terminal. This is the command mode select pin. When XCS="L" then write command to the LCD, when no used the command mode then must fixed to Vdd . See Figure1		During input, the chip is selected while El is set to "L" after the LP signal is input. The chip is
 COMSEG1 Corresponding directly to each bit of the data latch, one level (V0, V2, V3, Vss) is selected and output Table of truth values is shown in "TRUTH TABLE" in Functional Operations. CAP1- DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2- terminal. CAP1+ DC/DC voltage converter. Connect a capacitor between this terminal and the CAP1- terminal. CAP2- DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2- terminal. CAP3+ DC/DC voltage converter. Connect a capacitor between this terminal and the CAP1- terminal. CAP3+ DC/DC voltage converter. Connect a capacitor between this terminal and the CAP1- terminal. CAP4+ DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2- terminal. VOUT DC/DC voltage converter. Connect a capacitor between this terminal and VSS. This is the command mode select pin. When XCS="L" then write command to the LCD, when no used the command mode then must fixed to Vdd . See Figure1 		non-selected after 96 bits of data have been read.
-COMSEG96 -COMSEG96 -Corresponding directly to each bit of the data latch, one level (Vo, V2, V3, Vss) is selected and output Table of truth values is shown in "TRUTH TABLE" in Functional Operations. CAP1- DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2- terminal. CAP1+ DC/DC voltage converter. Connect a capacitor between this terminal and the CAP1- terminal. CAP2- DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2- terminal. CAP2+ DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2- terminal. CAP3+ DC/DC voltage converter. Connect a capacitor between this terminal and the CAP1- terminal. CAP4+ DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2- terminal. VOUT DC/DC voltage converter. Connect a capacitor between this terminal and VSS. This is the command mode select pin. When XCS="L" then write command to the LCD, when no used the command mode then must fixed to Vdd . See Figure1	COMSEC	LCD drive output pins
• Table of truth values is shown in "TRUTH TABLE" in Functional Operations. CAP1- DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2- terminal. CAP1+ DC/DC voltage converter. Connect a capacitor between this terminal and the CAP1- terminal. CAP2- DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2- terminal. CAP2+ DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2- terminal. CAP3+ DC/DC voltage converter. Connect a capacitor between this terminal and the CAP1- terminal. CAP4+ DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2- terminal. VOUT DC/DC voltage converter. Connect a capacitor between this terminal and VSS. This is the command mode select pin. When XCS="L" then write command to the LCD, when no used the command mode then must fixed to Vdd . See Figure1		• Corresponding directly to each bit of the data latch, one level (V ₀ , V ₂ ,V ₃ ,V _{ss}) is selected and output.
CAP1+ DC/DC voltage converter. Connect a capacitor between this terminal and the CAP1- terminal. CAP2- DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2- terminal. CAP2+ DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2- terminal. CAP3+ DC/DC voltage converter. Connect a capacitor between this terminal and the CAP1- terminal. CAP4+ DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2- terminal. VOUT DC/DC voltage converter. Connect a capacitor between this terminal and VSS. This is the command mode select pin. When XCS="L" then write command to the LCD, when no used the command mode then must fixed to Vdd . See Figure1	-COMSEG96	• Table of truth values is shown in "TRUTH TABLE" in Functional Operations.
CAP2- DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2- terminal. CAP2+ DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2- terminal. CAP3+ DC/DC voltage converter. Connect a capacitor between this terminal and the CAP1- terminal. CAP4+ DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2- terminal. VOUT DC/DC voltage converter. Connect a capacitor between this terminal and VSS. This is the command mode select pin. When XCS="L" then write command to the LCD, when no used the command mode then must fixed to Vdd . See Figure1	CAP1-	DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2- terminal.
CAP2+ DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2- terminal. CAP3+ DC/DC voltage converter. Connect a capacitor between this terminal and the CAP1- terminal. CAP4+ DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2- terminal. VOUT DC/DC voltage converter. Connect a capacitor between this terminal and VSS. This is the command mode select pin. When XCS="L" then write command to the LCD, when no used the command mode then must fixed to Vdd . See Figure1	CAP1+	DC/DC voltage converter. Connect a capacitor between this terminal and the CAP1- terminal.
CAP3+ DC/DC voltage converter. Connect a capacitor between this terminal and the CAP1- terminal. CAP4+ DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2- terminal. VOUT DC/DC voltage converter. Connect a capacitor between this terminal and VSS. This is the command mode select pin. When XCS="L" then write command to the LCD, when no used the command mode then must fixed to Vdd . See Figure1	CAP2-	DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2- terminal.
CAP4+ DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2- terminal. VOUT DC/DC voltage converter. Connect a capacitor between this terminal and VSS. This is the command mode select pin. When XCS="L" then write command to the LCD, when no used the command mode then must fixed to Vdd . See Figure1	CAP2+	DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2- terminal.
VOUT DC/DC voltage converter. Connect a capacitor between this terminal and VSS. This is the command mode select pin. When XCS="L" then write command to the LCD, when no used the command mode then must fixed to Vdd . See Figure1	CAP3+	DC/DC voltage converter. Connect a capacitor between this terminal and the CAP1- terminal.
This is the command mode select pin. When XCS="L" then write command to the LCD, when no used the command mode then must fixed to Vdd . See Figure1	CAP4+	DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2- terminal.
XCS used the command mode then must fixed to Vdd . See Figure1	VOUT	DC/DC voltage converter. Connect a capacitor between this terminal and VSS.
used the command mode then must fixed to Vdd . See Figure1	xcs	This is the command mode select pin. When XCS="L" then write command to the LCD, when not
SID The command data. See Figure1		used the command mode then must fixed to Vdd . See Figure1
	SID	The command data. See Figure1
SCLK The serial clock input. See Figure1	SCLK	The serial clock input. See Figure1

Functional Operations

TRUTH TABLE

(Segment Mode)

FR	LATCH DATA /DISPOFF		LCD DRIVE OUTPUT VOLTAGE LEVEL
			(COMSEG0-COMSEG95)
L	L	Н	V ₃
L	Н	Н	Vss
Н	L	Н	V ₂
Н	Н	Н	Vo
Х	Х	L	Vss

(Common Mode)

FR	LATCH DATA	/DISPOFF	LCD DRIVE OUTPUT VOLTAGE LEVEL
			(COMSEG0-COMSEG95)
L	L H		V ₄
L	Н	Н	V ₀
Н	L	Н	V ₁
Н	Н	Н	Vss
Х	Х	L	Vss

NOTES:

- \bullet L : Vss (0 V), H : VDD (+2.5 to +5.5 V), X : Don't care
- "Don't care" should be fixed to "H" or "L", avoiding floating.

There are two kinds of power supply (logic level voltage and LCD drive voltage) for the LCD driver.

Supply regular voltage that is assigned by specification for each power pin.

RELATIONSHIP BETWEEN THE DISPLAY DATA AND LCD DRIVE OUTPUT PINS

(Segment Mode)

(A) 4-bit Parallel Input Mode

L/R	EIO ₁	EIO ₂	DATA			NUMBER	OF	CLOCKS		
L/K	EIO1		INPUT	24 CLOCK	23 CLOCK	22 CLOCK		3 CLOCK	2 CLOCK	1 CLOCK
			DIo	COMSEG ₀	COMSEG4	COMSEG8		COMSEG84	COMSEG88	COMSEG92
,	Output	Input	DI1	COMSEG1	COMSEG5	COMSEG9		COMSEG85	COMSEG89	COMSEG93
<u> </u>	Output		Dl2	COMSEG2	COMSEG6	COMSEG ₁₀		COMSEG86	COMSEG90	COMSEG94
			DI3	COMSEG3	COMSEG7	COMSEG11		COMSEG87	COMSEG91	COMSEG95
			DIo	COMSEG95	COMSEG91	COMSEG87		COMSEG11	COMSEG7	COMSEG3
Н	Innut	Outout		COMSEG94	COMSEG90	COMSEG86		COMSEG ₁₀	COMSEG6	COMSEG2
П	Input	Output		COMSEG93	COMSEG89	COMSEG85		COMSEG9	COMSEG5	COMSEG1
			DI3	COMSEG92	COMSEG88	COMSEG84		COMSEG8	COMSEG4	COMSEG ₀

(B) Serial Input Mode

L/R	EIO ₁	EIO ₂	DATA		NUMBER OF CLOCKS							
L/K			INPUT	120 CLOCK	119 CLOCK	118 CLOCK		3 CLOCK	2 CLOCK	1 CLOCK		
		Input	DIo	COMSEG ₀	COMSEG1	COMSEG2		COMSEG93	COMSEG94	COMSEG95		
	Output		DI1	X	X	X	Χ	X	X	Х		
-	Output		Dl2	Х	Х	Х	Х	Х	Х	Х		
			DIз	Х	Х	Х	Х	Х	Х	Х		
		Output	DIo	COMSEG95	COMSEG94	COMSEG93		COMSEG2	COMSEG1	COMSEG ₀		
Н	Input		DI1	Х	Х	Х	Х	Х	Х	Х		
	Input		Dl2	Х	Х	Х	Х	Х	X	Х		
			DIз	Х	Х	Х	Х	Х	Х	Х		

(Common Mode)

L/R	DATA TRANSF	ER DIRECTION	EIO ₁	EIO ₂
L	COMSEG ₉₅	COMSEG ₀	Output	Input
Н	COMSEG ₀	COMSEG ₉₅	Input	Output

MIX MODE(SEGMENT/ COMMON MODE)

When (SEL2,SEL1,SEL0)=(0,1,0)→ SELECT THE 32 COM / 64 SEGMENT MODE

THEN SEGMENT SIDE OF MIX MODE

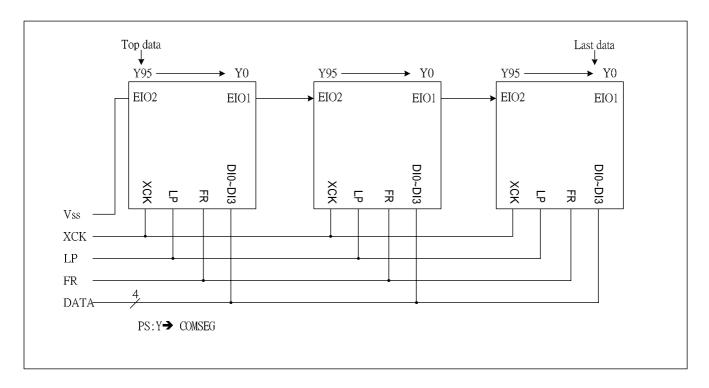
(A) 4-bit Parallel Input Mode

L/R	EIO ₁	EIO ₁ EIO ₂			NUMBER OF CLOCKS						
L/K	EIO1	EIO2	INPUT	16 CLOCK	15 CLOCK	14 CLOCK		3 CLOCK	2 CLOCK	1 CLOCK	
			DIo	COMSEG ₀	COMSEG4	COMSEG8		COMSEG52	COMSEG56	COMSEG60	
	Seg_end	Com_FLM	DI1	COMSEG1	COMSEG5	COMSEG9		COMSEG53	COMSEG57	COMSEG61	
	Output	Input	Dl2	COMSEG2	COMSEG6	COMSEG ₁₀		COMSEG54	COMSEG58	COMSEG62	
			DI3	COMSEG3	COMSEG7	COMSEG11		COMSEG55	COMSEG59	COMSEG63	
			DIo	COMSEG95	COMSEG91	COMSEG87		COMSEG43	COMSEG39	COMSEG35	
Н	Com_FLM	Seg_end	DI1	COMSEG94	COMSEG90	COMSEG86		COMSEG42	COMSEG38	COMSEG34	
"	Input	Output	Dl2	COMSEG93	COMSEG89	COMSEG85		COMSEG41	COMSEG37	COMSEG33	
			DI3	COMSEG92	COMSEG88	COMSEG84		COMSEG40	COMSEG36	COMSEG32	

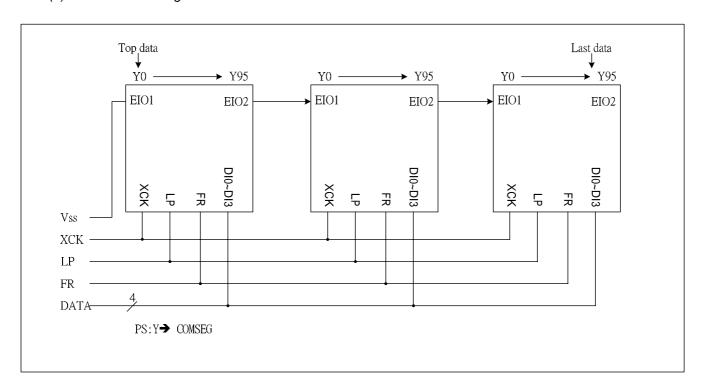
(B) Serial Input Mode

L/R	EIO ₁	EIO ₂	DATA			NUMBER C)F	CLOCKS		
L/K			INPUT	64 CLOCK	63 CLOCK	62CLOCK		3 CLOCK	2 CLOCK	1 CLOCK
			DIo	COMSEG ₀	COMSEG1	COMSEG2		COMSEG61	COMSEG62	COMSEG63
	Seg_end	Com_FLM	DI1	Х	Х	X	Х	X	X	Х
L	Output	Input	DI2	Х	Χ	X	Х	Х	Х	Х
			DI3	Х	Х	Х	Х	Х	Х	Х
			DIo	COMSEG ₉₅	COMSEG94	COMSEG93		COMSEG34	COMSEG33	COMSEG32
Н	Com_FLM	Seg_end	DI1	Х	Х	Х	Х	Х	Х	Х
' '	Input	Output	DI2	Х	Х	X	Х	X	X	Х
			DI3	Χ	Х	X	Χ	X	X	Х

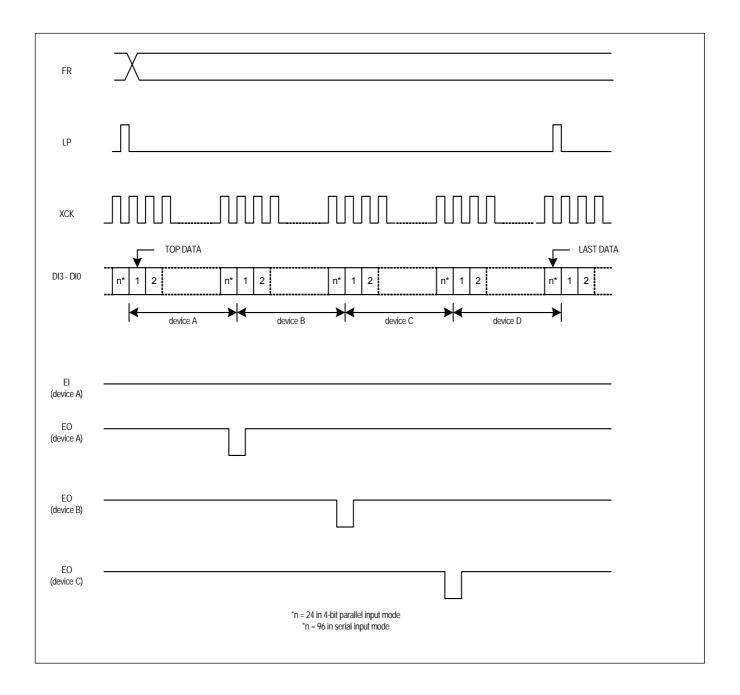
COMMON SIDE OF MIX MODE


L/R	DATA TRANSF	ER DIRECTION	EIO ₁	EIO ₂
L	COMSEG ₉₅	COMSEG62	Seg_end output	Input
Н	COMSEG ₀	COMSEG31	Input	Seg_end output

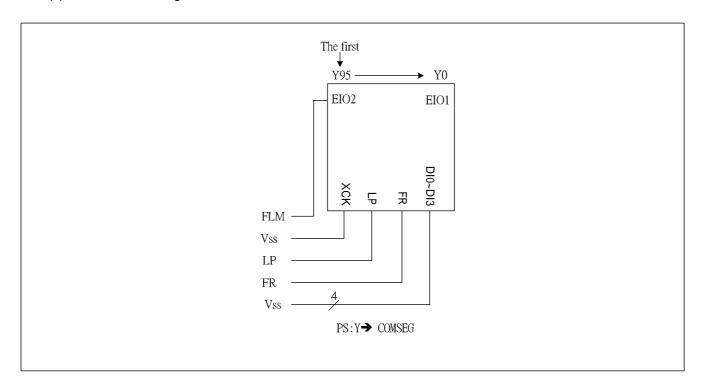
NOTES:


- L: Vss (0 V), H: VDD (+2.5 to +5.5 V), X: Don't care
- "Don't care" should be fixed to "H" or "L", avoiding floating.

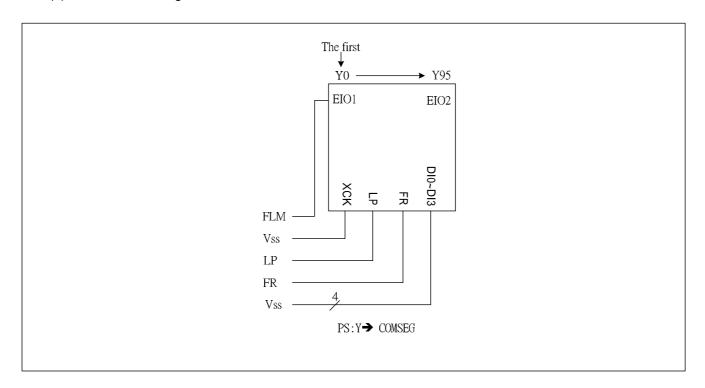
Connection examples of plural segment drivers in 4-bits interface(288 segment)


(a) When the L/R register set "L" level

(b) When the L/R register set "H" level

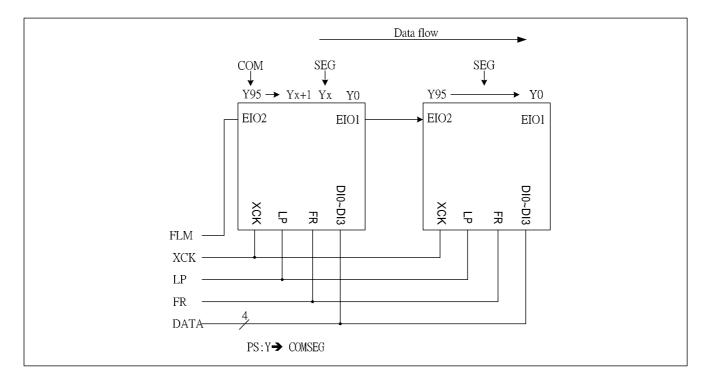


Timing chart of 4-device cascade connection of segment drivers

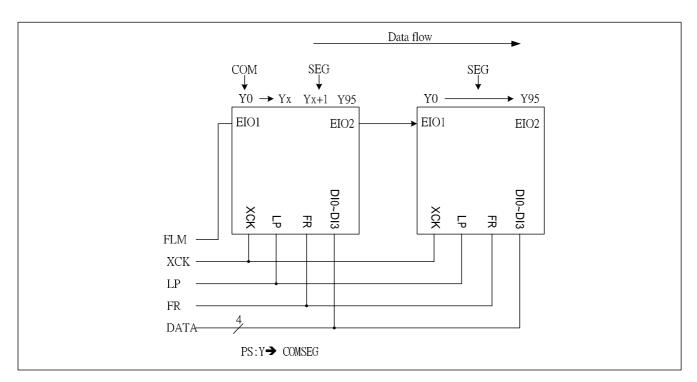


Connection examples for signal common drivers (96 common)

(c) When the L/R register set "L" level



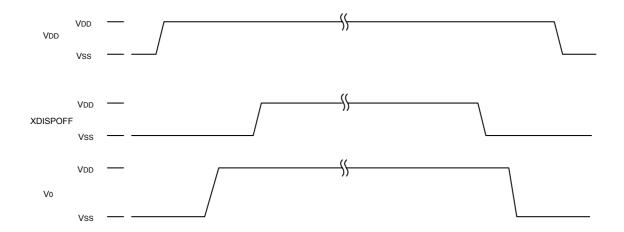
(d) When the L/R register set "H" level



Connection examples for plural common/segment (mix mode) drivers The mix mode is 1/16, 1/32, 1/48, 1/64, 1/80, 1/96 duty mode

(e) When the L/R register set "L" level

(f) When the L/R register set "H" level


PRECAUTIONS

Precautions when connecting or disconnecting the power supply

This IC has a high-voltage LCD driver, so a high current that may flow if voltage is supplied to the LCD drive power supply while the logic system power supply is floating may permanently damage it. The details are as follows, When connecting the power supply, connect the LCD drive power after connecting the logic system power. Furthermore, when disconnecting the power, disconnect the logic system power after disconnecting the LCD drive power

And when connecting the logic power supply, the logic condition of this IC inside is insecure. Therefore connect the LCD drive power supply after resetting logic condition of this IC inside on XDISPOFF function. After that, cancel the XDISPOFF function after the LCD drive power supply has become stable. Furthermore, when disconnecting the power, set the LCD drive output pins to level Vss on XDISPOFF function. Then disconnect the logic system power after disconnecting the LCD drive power.

When connecting the power supply, follow the recommended sequence shown here

DESCRIPTION FUNCTIONS

The MPU Interface

Selecting the Interface Type

With the ST8012 chips, data transfers are done through an 4-bit parallel data bus (D3 to D0) or through a serial data input (SI). Through selecting the P/S regoster to the "H" or "L" it is possible to select either parallel data input or serial data input as shown in Table 1.

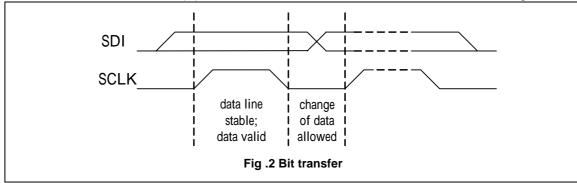
Table 1

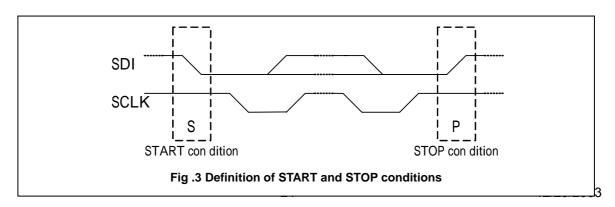
P/S register	D 0	D 3~ D 1
H: Parallel Input	Do	D3~D1
L: Serial Input	SI	VDD

Command Serial Interface

With the ST8009 chips, command data transfers are done through a serial data input. And it's timing show in Figure 1.

Serial Interface


The serial interface send the commands sent via the serial Interface. It could send command it to the register. The two lines are a Serial Data line (SDI) and a Serial Clock line (SCLK). Both lines must be connected to a positive supply via a pull-up resistor. Data transfer may be initiated only when the bus is not busy.


BIT TRANSFER

One data bit is transferred during each clock pulse. The data on the SDI line must remain stable during the HIGH period of the clock pulse because changes in the data line at this time will be interpreted as a control signal. Bit transfer is illustrated in Fig.2.

START AND STOP CONDITIONS

Both data and clock lines remain HIGH when the bus is not busy. A HIGH-to-LOW transition of the data line, while the clock is HIGH is defined as the START condition (S). A LOW-to-HIGH transition of the data line while the clock is HIGH is defined as the STOP condition (P). The START and STOP conditions are illustrated in Fig.3.

The Power Supply Circuits

The power supply circuits are low-power consumption power supply circuits that generate the voltage levels required for the LCD drivers. They are Booster circuits, voltage regulator circuits, and voltage follower circuits. They are only enabled in master operation, when the mode is in common mode or common/segment mode. The power supply circuits can turn the Booster circuits, the voltage regulator circuits, and the voltage follower circuits ON or OFF independently through the use of the Power Control Set command. Consequently, it is possible to make an external power supply and the internal power supply function somewhat in parallel. Table 2 shows the Power Control Set Command 3-bit data control function, and Table 3 shows reference combinations.

Table2

h.i4			Function	Status		
	bit		Function	"1"	"0"	
D2	D1	D0	Booster circuit control bit	ON	OFF	
D2	D1	D0	Voltage regulator circuit control bit (V/R circuit)	ON	OFF	
D2	D1	D0	Voltage follower circuit control bit (V/F circuit)	ON	OFF	

The Control Details of Each Bit of the Power Control Set Command

Table3

Use Settings	Com / Seg	D2	Voltage booster	Voltage regulator	Voltage follower	External voltage input	Step-up voltage
Only the internal power supply is used	Com mode	1	ON	ON	ON	VDD	Used
Only the voltage regulator circuit and the voltage follower circuit are used	/ Com/Seg mode	0	OFF	ON	ON	VOUT, VDD	Open
Only the internal power supply is used		1	ON	ON	ON	VDD	Used
Only the voltage regulator circuit and the voltage follower circuit are used	Seg mode	0	OFF	ON	ON	VOUT, VDD	Open

The Step-up Voltage Circuits

Using the step-up voltage circuits equipped within the ST8009 chips it is possible to product a 2X, 3X, 4X, 5X or 6X step-up of the VDD – VSS voltage levels.

6X step-up:

Connect capacitor C1 between CAP1+ and CAP1-, between CAP2+ and CAP2-, between CAP1+ and CAP3-, between CAP2+ and CAP4-, between CAP1+ and CAP5-, and between VDD and VOUT, to produce a voltage level in the negative direction at the VOUT terminal that is 6 times the voltage level between VDD and VSS.

5X step-up:

Connect capacitor C1 between CAP1+ and CAP1-, between CAP2+ and CAP2-, between CAP1+ and CAP3-, between CAP2+ and CAP4-, and between VDD and VOUT, to produce a voltage level in the negative direction at the VOUT terminal that is 5 times the voltage level between VDD and VSS.

4X

step-up:

Connect capacitor C1 between CAP1+ and CAP1-, between CAP2+ and CAP2-, between CAP1+ and CAP3-, and between VDD and VOUT, to produce a voltage level in the negative direction at the VOUT terminal that is 4 times the voltage level between VDD and VSS.

3X step-up:

Connect capacitor C1 between CAP1+ and CAP1-, between CAP2+ and CAP2- and between VDD and VOUT, and short between CAP3- and VOUT to produce a voltage level in the negative direction at the VOUT terminal that is 3 times the voltage difference between VDD and Vss. The step-up voltage relationships are shown in Figure 4. 2X step-up:

Connect capacitor C1 between CAP1+ and CAP1-, and between VDD and VOUT, leave CAP2+ open, and short between CAP2-, CAP3- and VOUT to produce a voltage in the negative direction at the VOUT terminal that Is twice the voltage between VDD and Vss.

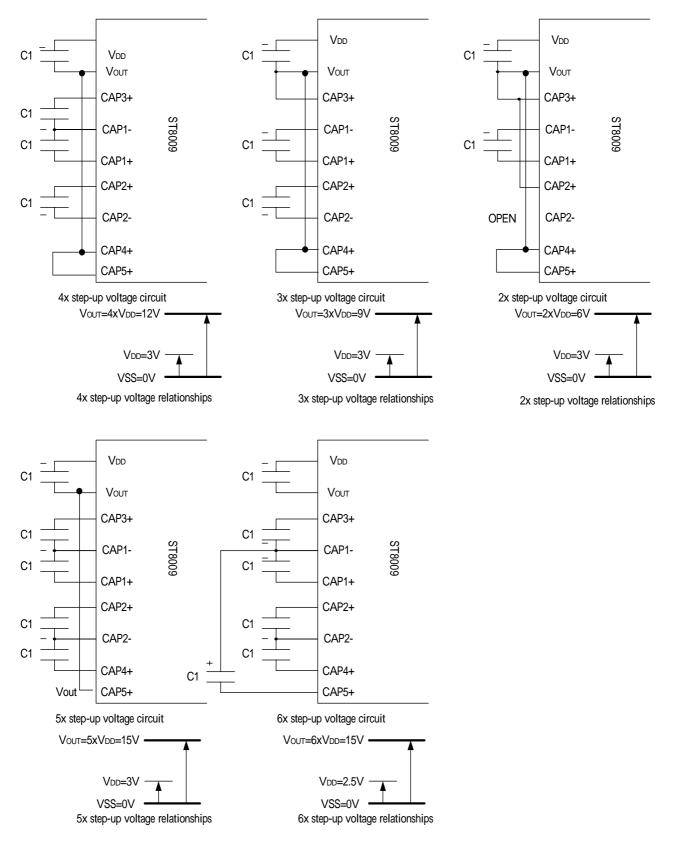


Figure4

 $^{^{\}star}$ The V_{SS} voltage range must be set so that the V_{OUT} terminal voltage does not exceed the absolute maximum rated value.

The Voltage Regulator Circuit

The step-up voltage generated at VouT outputs the LCD driver voltage Vo through the voltage regulator circuit. Because the ST8009 chips have an internal high-accuracy fixed voltage power supply with a 64-level electronic volume function and internal resistors for the Vo voltage regulator, systems can be constructed without having to include high-accuracy voltage regulator circuit components.(VREG thermal gradients approximate -0.05%/°C)

(A) When the Vo Voltage Regulator Internal Resistors Are Used

Through the use of the Vo voltage regulator internal resistors and the electronic volume function the liquid crystal power supply voltage Vo can be controlled by commands alone (without adding any external resistors), making it possible to adjust the liquid crystal display brightness. The Vo voltage can be calculated using equation A-1 over the range where

| V0 | < | VOUT|

$$V_{0} = \left(1 + \frac{Rb}{Ra}\right) \bullet V_{EV}$$

$$= \left(1 + \frac{Rb}{Ra}\right) \bullet \left(1 - \frac{1}{200}\right) \bullet V_{REG}$$

$$V_{EV} = \left(1 - \frac{1}{200}\right) \bullet V_{REG}$$

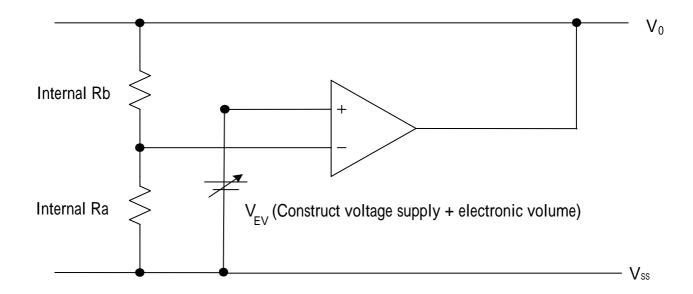


Figure5

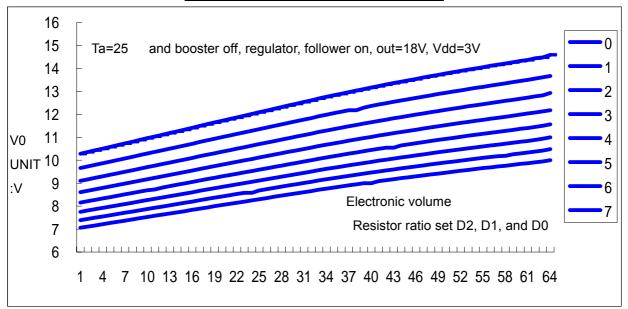
VREG is the IC-internal fixed voltage supply, and its voltage at Ta = 25°C is as shown in Table 4.

Part no.	Equipment Type	Thermal Gradient	\mathbf{V}_{REG}
ST8009	Internal Power Supply	-0.05 %/°C	2.1V

Table4

 α is set to 1 level of 64 possible levels by the electronic volume function depending on the data set in the 6-bit electronic volume register. Table 5 shows the value for α depending on the electronic volume register settings.

Rb/Ra is the V0 voltage regulator internal resistor ratio, and can be set to 8 different levels through the V0 voltage regulator internal resistor ratio set command. The Rb/Ra ratio assumes the values shown in Table 6 depending on the 3-bit data settings in the VDD voltage regulator internal resistor ratio register.


Table5

D5	D4	D3	D2	D1	D0	
0	0	0	0	0	0	63
0	0	0	0	0	1	62
0	0	0	0	1	0	61
						:
			:			:
1	1	1	1	0	1	2
1	1	1	1	1	0	1
1	1	1	1	1	1	0

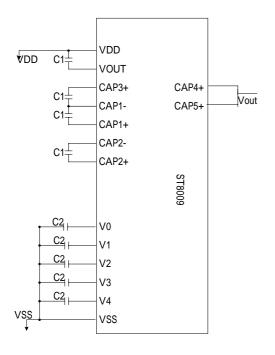
Vo voltage regulator internal resistance ratio register value and (1 + Rb/Ra) ratio (Reference value)

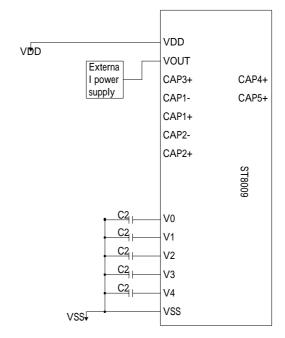
Table6

R	egiste	er	ST8009
D2	D1	D0	(1) -0.05 %/°C
0	0	0	5.0
0	0	1	5.22
0	1	0	5.48
0	1	1	5.76
1	0	0	6.07
1	0	1	6.42
1	1	0	6.81
1	1	1	7.25

The LCD Voltage Generator Circuit

The V₀ voltage is produced by a resistive voltage divider within the IC, and can be produced at the V₁, V₂, V₃, and V₄ voltage levels required for liquid crystal driving. Moreover, when the voltage follower changes the impedance, it provides V₁, V₂, V₃ and V₄ to the liquid crystal drive circuit.


Reference Circuit Examples


Figure 6 shows reference circuit examples.

- When used all of the step-up circuit, voltage regulating circuit and V/F circuit.
 - (Example with 4x setup-up)

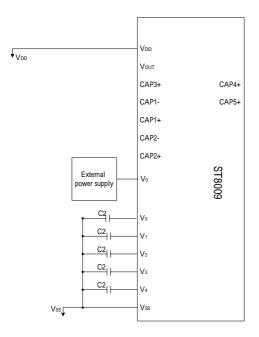
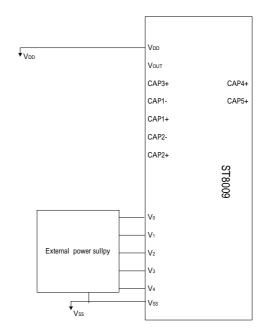

2. When the voltage regulator circuit and V/F circuit alone are used

Figure 6


3. When the V/F circuit alone is used

5. When the built-in power circuit is used to drive a liquid crystal panel heavily loaded with AC or DC, it is recommended to connect an external resistor to stabilize potentials of V₁, V₂, V₃ and V₄ which are

4. When the built-in power is not used

output from the built-in voltage follower. Examples of shared reference settings When Vo can vary between 7V and 14 V

Item	Set value	units
c1	1.0 to 4.7	uF
c2	0.1 to 4.7	uF

C1 and C2 are determined by the size of the LCD being driven

Reference set value R4:100K ~ 1M it is recommended to set an optimum resistance value R4 taking the liquid crystal display and the drive waveform

- * 1. Because the VR terminal input impedance is high, use short leads and shielded lines.
- * 2. C1 and C2 are determined by the size of the LCD being driven. Select a value that will stabilize the liquid crystal drive voltage.

Example of the Process by which to Determine the Settings:

• Turn the voltage regulator circuit and voltage follower circuit ON and supply a voltage to Vout from the outside.

• Determine C2 by displaying an LCD pattern with a heavy load (such as horizontal stripes) and selecting a C2 that stabilizes the liquid crystal drive voltages (V1 to V4). Note that all C2 capacitors must have the same capacitance value.

• Next turn all the power supplies ON and determine C1.

Instruction Table

Instruction				Instru	iction (Code			Description	
Instruction	D7	D6	D5	D4	D3	D2	D1	D0	Description	
Interface control selection	0	0	0	0	0	М	LR	PS	Interface selection	
interface control selection	U	U	U	U	U	IVI	LIX	- 5	and set	
									Software reset, when	
Software Reset	0	0	0	1	0	0	0	XRST	set the register then	
Software Neset				'	Ü		U		the ST8009 will be	
									reset	
									The register can	
LCD Duty selection	0	0	1	0	0	DU2	DU1	DU0	select the LCD duty	
									numbers	
LCD Bias Set	0	0	1	1	0	B2	B1	В0	The register can	
Lob Blas oct	0	- O		'	Ů	52	D1	В0	select the LCD bias	
				1	0	В		F	Set the power mode.	
			0				R		The register contain	
Power Controller Set	0	1							three power circuits	
									can select (booster,	
									regulator, follow)	
Booster Frequency Set	1	0	0	0	0	F2	F1	F0	Set the booster	
Booster Frequency Ser	'	- O		O .	0	12		10	frequency	
V0 Voltage Regulator Internal									Select internal	
Resistor Ratio Set	1	0	0	1	0	Rab2	Rab1	Rab0	resistor ratio(Ra/Rb)	
Resistor Natio Set									mode	
									Set the V0 output	
Electronic Volume Register Set	ster Set 1		E5	E4	E3	E2	E1	E0	voltage electronic	
									volume register	

Instruction Description

The ST8009 identify the data bus signals by a combination of SID, SCLK signals.

Interface control

The register can control frame direction, com, seg, com/seg direction and serial or parallel (4-bits) input data interface.

D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	0	M	LR	PS

M: Frame direction control bit

When M=" Height", the internal frame direction and external frame direction are the same. (normally)

When M=" Low", the internal frame direction and external frame direction are adverse.

LR: COMSEG output direction control bit

When LR="Height", the direction is normal.

When LR="Low", the direction is inverse.

LR="H"	COMSEG0	\rightarrow	COMSEG95
LR="L"	COMSEG95	\rightarrow	COMSEG0

PS: Data Interface mode select control bit

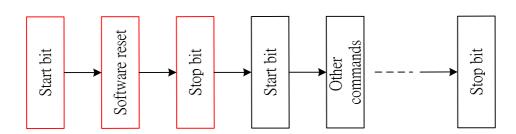
When PS="Height", the data input interface is serial

When PS="Low", the data input interface is parallel (4-bits)

Software Reset

The Software Reset will be initialized or cleared whenever the command enable signal is disabled.

On the other word, remember to release the Software reset state by disable the command enable signal once the Software Reset is written.


D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	1	0	0	0	XRST

Only this command (software reset) ,when used then must set the both start bit and stop bit to write and finished it.

Because it's independent and different to other commands so can't write continue with other data.

Note: Other commands can write continue so they can use only one start bit and stop bit to finished a serial of commands.

When use the software then please conform to the follow path:

LCD Duty selection

ST8009 can set the display duty by software from internal register. This command cans selection the liquid crystal display duty.

D7	D6	D5	D4	D3	D2	D1	D0
0	0	1	0	0	DU2	DU1	DU0

DU2	DU1	DU0	COM Numbers	SEG Numbers
0	0	0	0	96
0	0	1	16	80
0	1	0	32	64
0	1	1	48	48
1	0	0	64	32
1	0	1	80	16
1	1	0	96	0
1	1	1	96	0

LCD Bias Set

This command selects the voltage bias ratio required for the liquid crystal display. ST8009 has eight bias modes can select.

D7	D6	D5	D4	D3	D2	D1	D0
0	0	1	1	0	B2	B1	В0

B2	B1	В0	Bias select
0	0	0	1/4
0	0	1	1/5
0	1	0	1/6
0	1	1	1/7
1	0	0	1/8
1	0	1	1/9
1	1	0	1/10
1	1	1	1/11

Power Controller Set

This command sets the power supply circuit functions. See the function explanation in "The Power Supply Circuit," for details

D7	D6	D5	D4	D3	D2	D1	D0
0	1	0	1	0	В	R	F

В	R	F	Status
0			Booster circuit : on
1		-	Booster circuit : off
	0		Regulator circuit : on
	1		Regulator circuit : off
		0	Follower circuit : on
		1 Follower circuit : off	

Booster Frequency Set

By using this command to set three bits of data to the booster frequency, the liquid crystal drive Booster Frequency assumes one of the 8 frequency .When this command is input, the booster frequency register has been set.

D7	D6	D5	D4	D3	D2	D1	D0
1	0	0	0	0	F2	F1	F0

F2	F1	F0	Booster Frequency
0	0	0	1K
0	0	1	2K
0	1	0	3K
0	1	1	4K
1	0	0	5K
1	0	1	6K
1	1	0	7K
1	1	1	8K

V0 Voltage Regulator Internal Resistor Ratio Set

This command sets the Vo voltage regulator internal resistor ratio.

D7	D6	D5	D4	D3	D2	D1	D0
1	0	0	0	0	Rab2	Rab1	Rab0

Rab2	Rab1	Rab0	Ra/Rb Ratio
0	0	0	Small
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	Large

The Electronic Volume

This command makes it possible to adjust the brightness of the liquid crystal display by controlling the LCD drive voltage V0 through the output from the voltage regulator circuits of the internal liquid crystal power supply. This command is a two byte command used as a pair with the electronic volume mode set command and the electronic volume registers set command, and both commands must be issued one after the other.

Electronic Volume Register Set

By using this command to set six bits of data to the electronic volume register, the liquid crystal drive voltage V0 assumes one of the 64 voltage levels. When this command is input, the electronic volume mode is released after the electronic volume register has been set.

D7	D6	D5	D4	D3	D2	D1	D0
1	1	E5	E4	E3	E2	E1	E0

E5	E4	E3	E2	E1	E0	Ra/Rb Ratio
0	0	0	0	0	0	Small
0	0	0	0	0	1	
0	0	0	0	1	0	
1	1	1	1	0	1	
1	1	1	1	1	0	↓
1	1	1	1	1	1	Large

Reset Function

Initializing by internal Reset circuit

An internal reset circuit automatically initializes the ST8009 when software reset has active.

The following instructions are executed during the initialization.

1. Interface control selection

FR: 0 LP: 0 PS: 1

2. LCD Duty selection

Default the segment mode (96 segments) is selected.

3. LCD Bias Set

Default the 1/4 bias is selected.

4. Power Controller Set

Default all the power circuit (booster, regulator and follower) will be turned off.

5. Booster Frequency Set

Default volume is 1 0 0

6. V0 Voltage Regulator Internal Resistor Ratio Set

Default volume is 1 0 0

7. Electronic Volume Register Set

Default volume is 1 0 0 0 0 0

BSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	APPLICABLE PINS	RATING	UNIT	NOTE
Supply voltage (1)	VDD	VDD	2.5~5.5	V	
	VRS	VRS	5.0~+16	V	
	V1	V1	VDD-10~ VDD+0.3	V	
Supply voltage (2)	V2	V2	VDD-10~ VDD+0.3	V	1,2
Supply voltage (2)	V3	V3	-0.3~VSS+10	V	1,2
	V4	V4	-0.3~VSS+10	V	
Input voltage	VI	D14-DI0, XCK, FR, EIO1,		V	
Input voltage	VI	EIO2, XDISPOFF	-0.3 to VDD+0.3	V	
Storage temperature	TSTG		-45 to +125	°C	

NOTES:

- 1. TA = +25 °C
- 2. The maximum applicable voltage on any pin with respect to Vss (0 V).

RECOMMENDED OPERATING CONDITIONS

PARAMETER	SYMBOL	APPLICABLE PINS	MIN.	TYP.	MAX.	UNIT	NOTE
Supply voltage (1)	VDD	VDD	+2.5		+5.5	V	1 2
Supply voltage (2)	V0	V0	+5.0		+16.0	V	1, 2
Operating temperature	TOPR		-20		+85	°C	

- 1. The applicable voltage on any pin with respect to Vss (0 V).
- 2. Ensure that voltages are set such that V0 V1 V2 V3 V4 VSS.

ELECTRICAL CHARACTERISTICS

DC Characteristics

(Segment Mode) (Vss = 0 V, V_{DD} = +2.5 to +5.5 V, V_0 = +5.0 to +15.0 V, T_{OPR} = -20 to +85°C)

PARAMETER	SYMBOL	CONDI	TIONS	APPLICABLE PINS	MIN.	TYP.	MAX.	UNIT	NOTE
Input "Low" voltage	VIL			DI7-DI0, XCK, FR, EIO1,			0.2V _{DD}	V	
Input "High" voltage	VIH			EIO2,XDISPOFF	0.8V _{DD}			V	
Output "Low" voltage	Vol	I _{OL} = +0	.4 mA	EIO1, EIO2			+0.4	V	
Output "High" voltage	Vон	Іон = -0	.4 mA	EIO1, EIO2	V _{DD} -0.4			V	
Input lookaga aurrent	ILIL	Vı	= V _{SS}	DI7-DI0, XCK, LP, FR,			-10	μΑ	
Input leakage current	Ін	Vı	= V _{DD}	EIO1, EIO2,XDISPOFF			+10	μΑ	
Output resistance	Ron	ΔVon =0.5V	V ₀ = 30 V	COMSEG ₀ -COMSEG ₉₅		1.0	1.5	kΩ	
Standby current	Іѕтв			Vss			50	μΑ	1
Supply current (1) (Non-selection)	I _{DD1}			V _{DD}			2.0	mA	2
Supply current (2) (Selection)	I _{DD2}			V _{DD}			7.0	mA	3
Supply current (3)	lo			V ₀ , V ₀			0.9	mA	4

NOTES:

- 1. $V_{DD} = +5.0 \text{ V}$, $V_0 = +16.0 \text{ V}$, $V_i = V_{SS}$.
- 2. V_{DD} = +5.0 V, V_0 = +16.0 V, fxck = 8 MHz, no-load, EI = V_{DD} . The input data is turned over by data taking clock (4-bit parallel input mode).
- 3. V_{DD} = +5.0 V, V_0 = +16.0 V, fxck = 8MHz, f_{LP} = 19.2 kHz, f_{FR} = 80 Hz, no-load. The input data is turned over by data taking clock (4-bit parallel input mode).

(Common Mode)

 $(V_{SS} = 0 \text{ V}, V_{DD} = +2.5 \text{ to } +5.5 \text{ V}, V_0 = +15.0 \text{ to } +30.0 \text{ V}, T_{OPR} = -20 \text{ to } +85 ^{\circ}\text{C})$

()	,	- ,		,	,		/		
PARAMETER	SYMBOL	CONDIT	IONS	APPLICABL E PINS	MIN.	TYP.	MAX.	UNIT	NOTE
Input "Low" voltage	VIL			DI4-DI0, XCK, FR,			0.2V _{DD}	V	
Input "High" voltage	VIH			EIO1, EIO2, XDISPOFF	0.8V _{DD}			V	
Output "Low" voltage	Vol	I _{OL} = +0.4 mA		EIO1, EIO2			+0.4	V	
Output "High" voltage	Vон	Iон = -0.4 mA		EIO1, EIO2	V _{DD} -0.4			V	
	1	\\. = \\.	·	DI4-DI0, XCK, FR, P/S,			10.0	۸	
Input leakage current		$V_{I} = V_{SS}$		EIO1, EIO2, XDISPOFF			-10.0	μA	
	Ін	Vı = V	DD	DI4-DI0, FR,XDISPOFF			+10.0	μΑ	
Input pull-down current	I PD	Vı = V	, DD	XCK, EIO ₁ , EIO ₂			100	μΑ	
Output resistance	Ron	ΔV _{ON} =0.5V	V ₀ = 16V	COMSEG ₀ -COMSEG ₉₅		1.0	1.5	kΩ	
Standby current	ISPD			Vss			50	μΑ	1
Supply current (1)	IDD			V _{DD}			80	μΑ	2
Supply current (2)	lo			Vo			130	μΑ	2

- 1. V_{DD} = +5.0 V, V_0 = +30.0 V, V_1 = V_{SS}
- 2. V_{DD} = +5.0 V, V_0 = +30.0 V, f_{LP} =19.2 kHz, f_{FR} = 80 Hz, 1/96 duty operation, no-load.

AC Characteristics

(Segment Mode 1) (Vss = 0 V, V_{DD} = +2.5 to +3.0 V, V_0 = +5.0 to +16.0 V, T_{OPR} = -20 10+85 °C)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP.	MAX.	UNIT	NOTE
Shift clock period	tWCK	tR,tF ≤ 11ns	125			ns	1
Shift clock "H" pulse width	tWCKH		51			ns	
Shift clock "L" pulse width	tWCKL		51			ns	
Data setup time	tDS		30			ns	
Data hold time	tDH		40			ns	
Latch pulse "H" pulse width	tWLPH		51			ns	
Shift clock rise to latch pulse rise time	tLD		0			ns	
Shift clock fall to latch pulse fall time	tSL		51			ns	
Latch pulse rise to shift clock rise time	tLS		51			ns	
Latch pulse fall to shift clock fall time	tLH		51			ns	
Enable setup time	tS		36			ns	
Input signal rise time	tR				50	ns	2
Input signal fall time	tF				50	ns	2
DISPOFF removal time	tSD		100			ns	
DISPOFF "L" pulse width	tWDL		1.2			μs	
Output delay time (1)	tD	CL = 15 pF			78	ns	
Output delay time (2)	tPD1, t PD2	CL = 15 pF			1.2	μs	
Output delay time (3)	t PD3	CL = 15 pF			1.2	μs	

- 1. Takes the cascade connection into consideration.
- 2. (twck twckh twckl)/2 is maximum in the case of high speed operation.

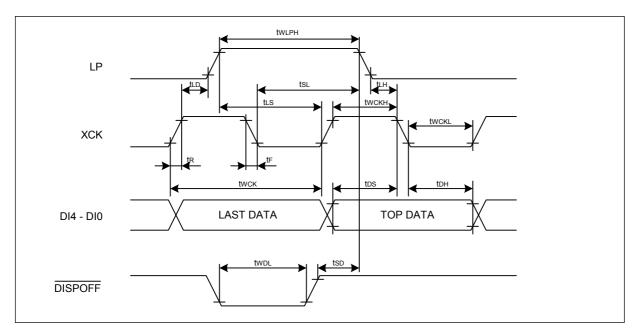
(Segment Mode 2) (Vss = 0 V, V_{DD} = +5.0±0.5 V, V_0 = + 5.0 to +16.0 V, T_{OPR} = -20 to +85 °C)

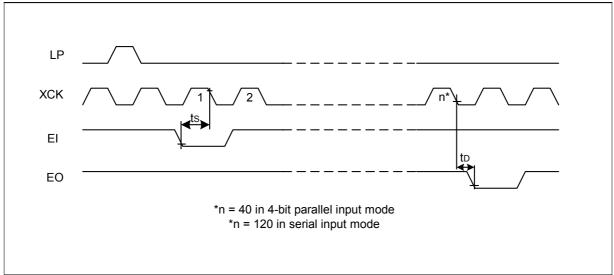
PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT	NOTE
Shift clock period	tWCK	tR,tF ≤ 10ns	66			ns	1
Shift clock "H" pulse width	tWCKH		23			ns	
Shift clock "L" pulse width	tWCKL		23			ns	
Data setup time	tDS		15			ns	
Data hold time	tDH		23			ns	
Latch pulse "H" pulse width	tWLPH		30			ns	
Shift clock rise to latch pulse rise time	tLD		0			ns	
Shift clock fall to latch pulse fall time	tSL		50			ns	
Latch pulse rise to shift clock rise time	tLS		30			ns	
Latch pulse fall to shift clock fall time	tLH		30			ns	
Enable setup time	tS		15			ns	
Input signal rise time	tR				50	ns	2
Input signal fall time	tF				50	ns	2
DISPOFF removal time	tSD		100			ns	
DISPOFF "L" pulse width	tWDL		1.2			μs	
Output delay time (1)	tD	CL = 15 pF			41	ns	
Output delay time (2)	tPD1, t PD2	CL = 15 pF			1.2	μs	
Output delay time (3)	t PD3	CL = 15 pF			1.2	μs	

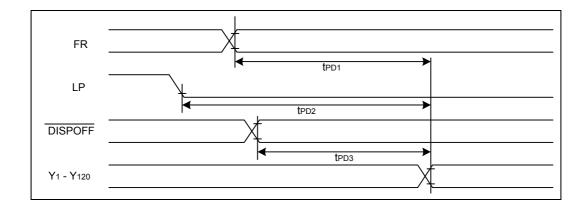
- 1. Takes the cascade connection into consideration.
- 2. (twck twckl twckl)/2 is maximum in the case of high speed operation.

(Segment Mode 3) (Vss = 0 V, V_{DD} = +3.0 to +4.5 V, V_0 = + 5.0 to +16.0 V, T_{OPR} = -20 10+85 °C)

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT	NOTE
Shift clock period	t wck	tռ,tғ ≤ 10ns	82			ns	1
Shift clock "H" pulse width	t wckh		28			ns	
Shift clock "L" pulse width	t wckL		28			ns	
Data setup time	t os		20			ns	
Data hold time	t DH		23			ns	
Latch pulse "H" pulse width	t wlph		30			ns	
Shift clock rise to latch pulse rise time	t ld		0			ns	
Shift clock fall to latch pulse fall time	t sL		51			ns	
Latch pulse rise to shift clock rise time	t LS		30			ns	
Latch pulse fall to shift clock fall time	t LH		30			ns	
Enable setup time	t s		15			ns	
Input signal rise time	t R				50	ns	2
Input signal fall time	t⊧				50	ns	2
DISPOFF removal time	t sp		100			ns	
DISPOFF "L" pulse width	t wdl		1.2			μs	
Output delay time (1)	t⊳	CL = 15 pF			57	ns	
Output delay time (2)	tPD1, t PD2	CL = 15 pF			1.2	μs	
Output delay time (3)	t PD3	CL = 15 pF			1.2	μs	

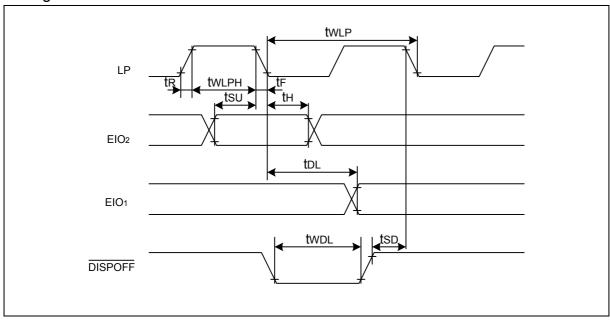

NOTES:

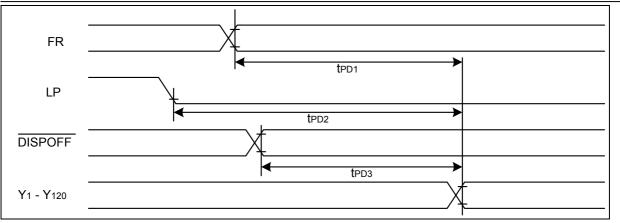

- 1. Takes the cascade connection into consideration.
- 2. (twck twckh twckl)/2 is maximum in the case of high speed operation.


(Common Mode) (Vss = 0 V, V_{DD} = +2.5 to +5.5 V, V_0 = +5.0 to +16.0 V, T_{OPR} = -20 10+85 °C)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNIT
Shift clock period	t wlp	t _R , t _F 20ns	250			ns
Shift clock "H" pulse width	t wlph	VDD=5± 0.5V	15			ns
		VDD=2.5~4.5V	30			
Data setup time	t su		30			ns
Data hold time	tн		50			ns
Input signal rise time	t _R				50	ns
Input signal fall time	t⊧				50	ns
DISPOFF removal time	t sp		100			ns
DISPOFF "L" pulse width	t wdl		1.2			us
Output delay time (1)	t DL	CL=10pF			200	ns
Output delay time (2)	t _{PD1} ,t _{PD2}	CL=10pF			1.2	us
Output delay time (3)	t PD3	CL=10pF			1.2	us

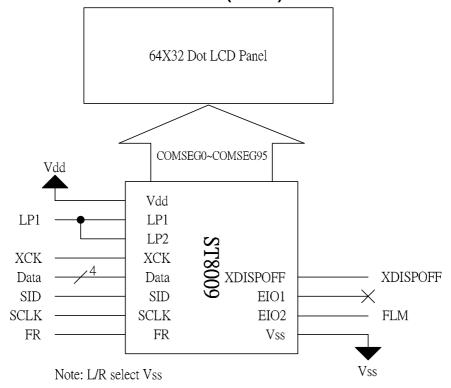
Timing Chart of Segment Mode

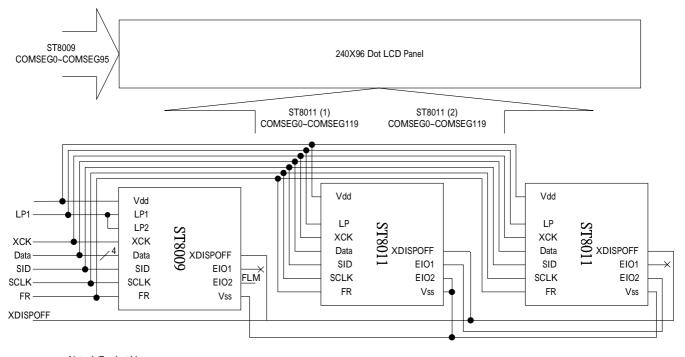



Timing Characteristics (3)

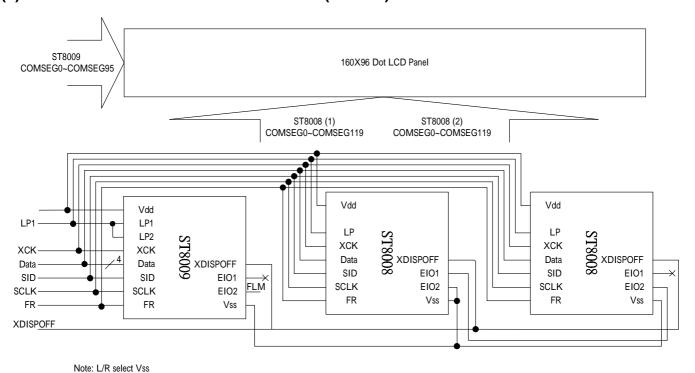
(Common Mode) (Vss = 0 V, V_{DD} = +2.5 to +5.5 V, V_0 = +5.0 to +16.0 V, T_{OPR} = -20 to +85° C)

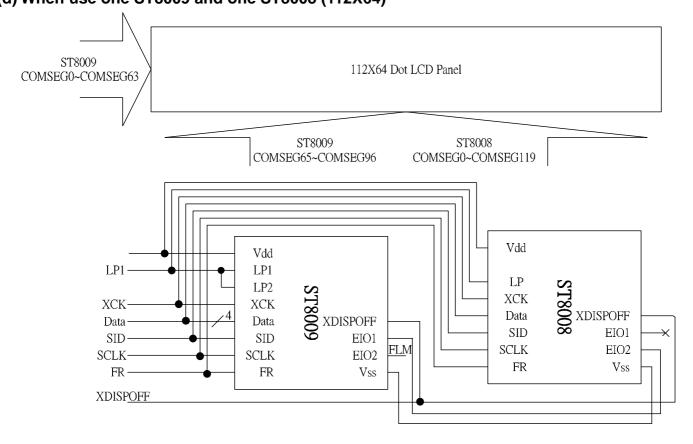
PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Shift clock period	twlp	t _R ,t _F ≤ 20ns	250			ns
Shift clock "H" pulse width	t wlph	VDD = +5.0± 0.5V	15			ns
		VDD = +2.5+ 4.5V	30			ns
Data setup time	t su		30			ns
Data hold time	tн		50			ns
Input signal rise time	t R				50	ns
Input signal fall time	t⊧				50	ns
DISPOFF removal time	tsp		100			ns
DISPOFF "L" pulse width	t wdl		1.2			μs
Output delay time (1)	t DL	CL = 15 pF			200	ns
Output delay time (2)	tPD1, t PD2	CL = 15 pF			1.2	μs
Output delay time (3)	t PD3	CL = 15 pF			1.2	μs


Timing Chart of Common Mode



Application Circuit


(a) When only use one ST8009 in mix mode (64X32)


(b) When use one ST8009 and two ST8011 (240X96)

(c) When use one ST8009 and two ST8008 (160X96)

(d) When use one ST8009 and one ST8008 (112X64)

Note: L/R select Vss

ST8009 Serial Specification Revision History

	ST8009 Serial Specification Revision History				
Version	Date Description				
0.0	2003/12/25	Preliminary version			