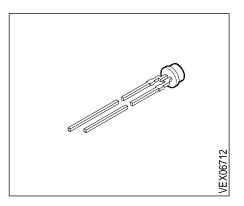
SIEMENS

Multi ARGUS[®] LED 3 mm (T1) LED, Non Diffused


LSG K370, LSP K370, LOP K370, LOG K370

Features

- farbloses, klares Gehäuse
- Kunststoffgehäuse mit spezieller Formgebung
- antiparallel geschaltete Leuchtdiodenchips
- hohe Signalwirkung durch Farbwechsel der LED möglich
- bei Einsatz eines äußeren Reflektors zur Hintergrundbeleuchtung von Leuchtfeldern und LCD-Anzeigen geeignet
- zur Direkteinkopplung in Lichtleiter geeignet
- gleichmäßige Ausleuchtung einer Streuscheibe (Weißdruck) vor dem äußeren Reflektor
- beide Farben getrennt ansteuerbar
- Lötspieße mit Aufsetzebene
- gegurtet lieferbar
- Störimpulsfest nach DIN 40839

Features

- colorless, clear package
- plastic package with a special design
- antiparallel chip
- high signal effiency possible by color change of the LED
- in connection with an additional, custom built reflector suitable for backlighting of display panels
- for optical coupling into light pipes
- uniform illumination of a diffuser screen in front of the custom built reflector
- both colors can be controlled separately
- solder leads with stand-off
- available taped on reel
- load dump resistant acc. to DIN 40839

Тур Туре	Emissionsfarbe Color of emission	Gehäusefarbe Color of package	Lichtstrom Luminous Flux $I_{\rm F}$ = 15 mA $\Phi_{\rm V}$ (mlm)	Bestellnummer Ordering Code
LSG K370-LP LSG K370-N LSG K370-P LSG K370-NR	super-red / green	colorless clear	10.0 80 25.0 50 40.0 80 25.0 200	Q62703-Q2298 Q62703-Q2495 Q62703-Q2496 Q62703-Q2664
LSP K370-KN LSP K370-M LSP K370-N LSP K370-P LSP K370-MQ	super-red / pure green	colorless clear	6.3 50 16.0 32 25.0 50 40.0 80 16.0 125	Q62703-Q2379 Q62703-Q2665 Q62703-Q2666 Q62703-Q3230 Q62703-Q3231
LOP K370-KN LOP K370-M LOP K370-N LOP K370-MQ	orange / pure green	colorless clear	6.3 50 16.0 32 25.0 50 16.0 125	Q62703-Q2529 Q62703-Q2668 Q62703-Q2669 Q62703-Q2670
LOG K370-LP LOG K370-N LOG K370-P LOG K370-NR	orange / green	colorless clear	10.0 80 25.0 50 40.0 80 25.0 200	Q62703-Q2769 Q62703-Q2770 Q62703-Q2772 Q62703-Q2771

Streuung des Lichtstroms in einer Verpackungseinheit $\Phi_{V\,\text{max}}$ / $\Phi_{V\,\text{min}}$ \leq 2.0.1 $^{1)}$

Streuung des Lichtstroms in einer LED $\Phi_{V max}$ / $\Phi_{V min} \leq 3.0$ (L*G K370), ≤ 4.0 (L*P K370).

¹⁾ Bei MULTILED[®] bestimmt die Helligkeit des jeweils dunkleren Chips in einem Gehäuse die Helligkeitsgruppe der LED.

Luminous flux ratio in one packaging unit $\Phi_{\rm V\,max}$ / $\Phi_{\rm V\,min}$ \leq 2.0.1)

Luminous flux ratio in one LED $\Phi_{V max}$ / $\Phi_{V min} \leq 3.0$ (L*G K370), ≤ 4.0 (L*P K370).

 In case of MULTILED[®], the brightness of the darker chip in one package determines the brightness group of the LED.

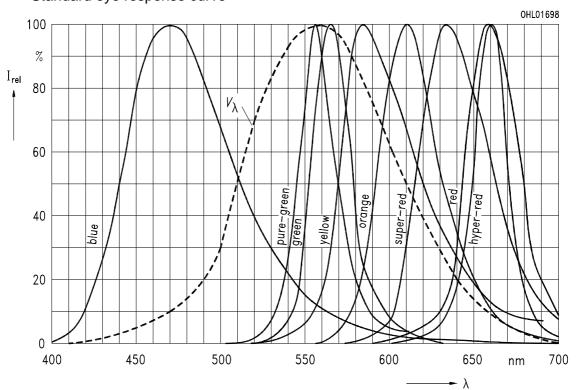
Grenzwerte²⁾ Maximum Ratings²⁾

Bezeichnung Parameter	Symbol Symbol	We Val	Einheit Unit		
		LS, LO, LG LP			
Betriebstemperatur Operating temperature range	T _{op}	- 55 + 100	- 55 + 100	°C	
Lagertemperatur Storage temperature range	$T_{ m stg}$	- 55 + 100	- 55 + 100	°C	
Sperrschichttemperatur Junction temperature	T _j	+ 100	+ 100	°C	
Durchlaßstrom Forward current	I _F	40	30	mA	
Stoßstrom Surge current $t \le 10 \ \mu$ s, D = 0.005	I _{FM}	0.5	0.5	A	
Verlustleistung Power dissipation $T_A \le 25 \text{ °C}$	P _{tot}	140	100	mW	
Wärmewiderstand Thermal resistance Sperrschicht / Luft Junction / air	$R_{ m th~JA}$	400	400	K/W	

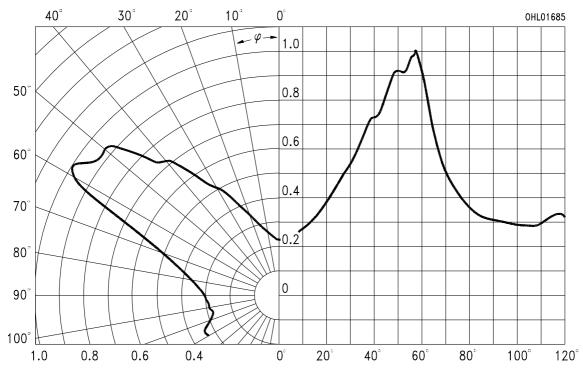
²⁾ Die angegebenen Grenzdaten gelten für den Chip, für den sie angegeben sind, unabhängig vom Betriebszustand des anderen.

²⁾ The stated maximum ratings refer to the specified chip regardless of the other one's operating status.

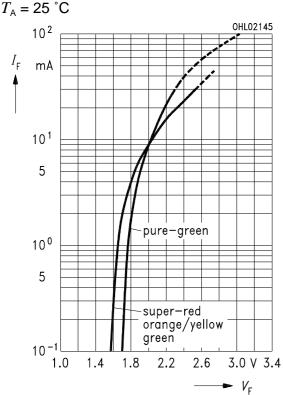
Kennwerte ($T_A = 25$ °C) Characteristics

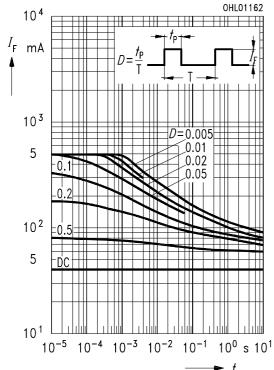

Bezeichnung Parameter		Symbol Symbol		Werte Values			Einheit Unit
			LS	LO	LG	LP	
Wellenlänge des emittierten Lichtes Wavelength at peak emission $I_{\rm F}$ = 20 mA	(typ.) (typ.)	λ_{peak}	635	610	565	557	nm
Dominantwellenlänge Dominant wavelength $I_{\rm F}$ = 20 mA	(typ.) (typ.)	λ_{dom}	628	605	570	560	nm
Spektrale Bandbreite bei 50 % $\Phi_{\text{rel max}}$ Spectral bandwidth at 50 % $\Phi_{\text{rel max}}$ $I_{\text{F}} = 20 \text{ mA}$	(typ.) (typ.)	Δλ	45	40	25	25	nm
Durchlaßspannung Forward voltage $I_{\rm F}$ = 15 mA	(typ.) (max.)	V _F V _F	2.1 2.6	2.1 2.6	2.1 2.6	2.1 2.6	VVV
Kapazität 3)Capacitance 3) $V_{\rm R}$ = 0 V, f = 1 MHz	(typ.)	Co	12	8	8	15	pF
Schaltzeiten: Switching times: I_v from 10 % to 90 %	(typ.)	t _r	300	300	300	450	ns
I_V from 90 % to 10 % I_F = 100 mA, t_p = 10 μs, R_L = 50 Ω	(typ.)	t _f	150	150	150	200	ns

³⁾ Die Gesamtkapazität ergibt sich aus der Summe der Einzelkapazitäten.

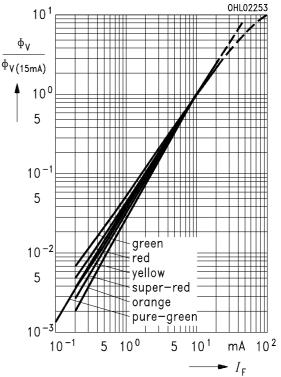

³⁾ The total capacitance results from the sum of the single capacitances.

Relative spektrale Emission $\Phi_{\rm rel} = f(\lambda)$, $T_{\rm A} = 25$ °C, $I_{\rm F} = 20$ mA Relative spectral emission

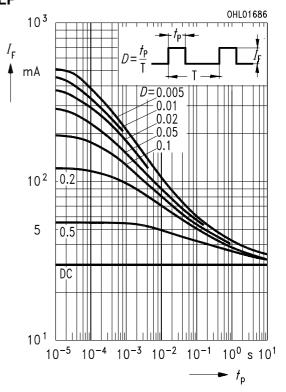

 $V(\lambda)$ = spektrale Augenempfindlichkeit Standard eye response curve

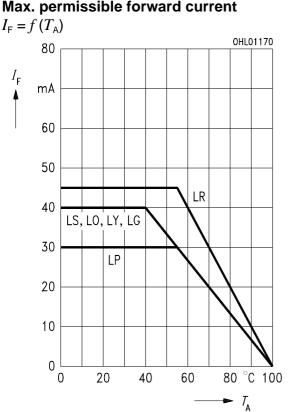

Abstrahlcharakteristik $\Phi_{\rm rel} = f(\phi)$ Radiation characteristic

Durchlaßstrom $I_{\rm F} = f(V_{\rm F})$ **Forward current**

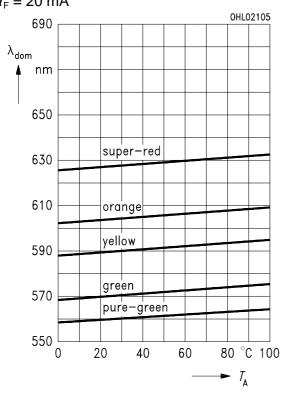


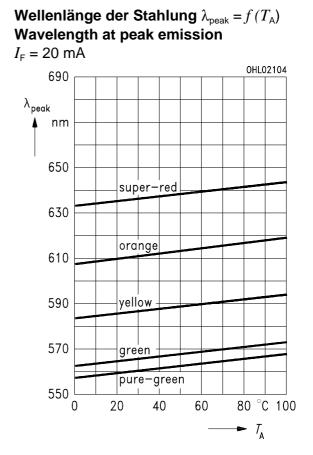
Zulässige Impulsbelastbarkeit $I_{\rm F} = f(t_{\rm p})$ Permissible pulse handling capability Duty cycle D = parameter, $T_{\rm A} = 25$ °C LS, LO, LG

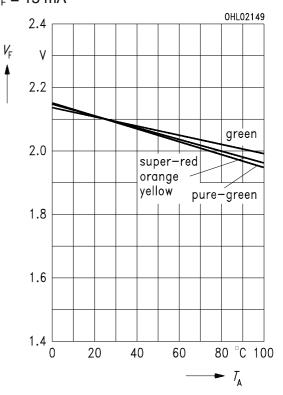


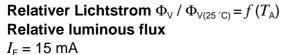

Relativer Lichtstrom $\Phi_V / \Phi_{V(15 \text{ mA})} = f(I_F)$ Relative luminous flux

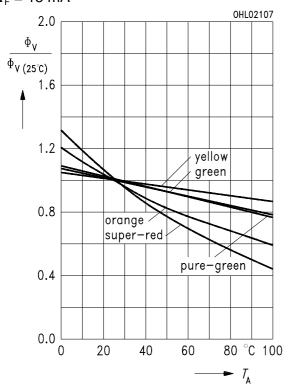
*T*_A = 25 °C

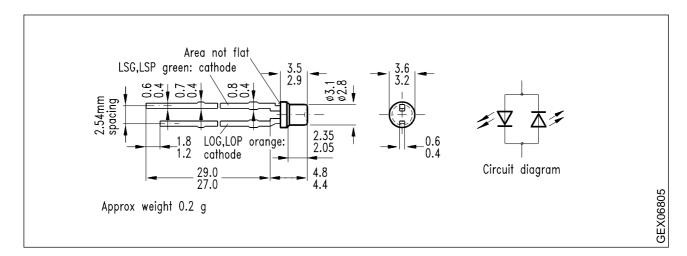

Zulässige Impulsbelastbarkeit $I_{\rm F} = f(t_{\rm p})$ Permissible pulse handling capability Duty cycle D = parameter, $T_{\rm A} = 25$ °C LP




Maximal zulässiger Durchlaßstrom Max. permissible forward current






Durchlaßspannung $V_{\rm F} = f(T_{\rm A})$ **Forward voltage** $I_{\rm F} = 15 \, {\rm mA}$

Maßzeichnung Package Outlines (Maße in mm, wenn nicht anders angegeben) (Dimensions in mm, unless otherwise specified)

Kathodenkennzeichnung:

nutrio donneo miero miang	•
rot bzw. orange	kürzerer Lötspieß
grün bzw. pure green	längerer Lötspieß
Cathode mark:	
red or orange	shorter solder lead
green or pure green	longer solder lead