SIEMENS

FEATURES

- Current Transfer Ratio at I_F=10 mA IL1, 20% Min. IL2, 100% Min. IL5, 50% Min.
- High Collector-Emitter Voltage
 IL1 BV_{CEO}=50 V
 - IL2, IL5 BV_{CEO}=70 V
- Field-Effect Stable by TRansparent IOn Shield (TRIOS)
- Double Molded Package Offers Isolation Test Voltage 5300 VAC_{RMS}
- Underwriters Lab File #E52744
- VDE Approval #0884 (Available with Option 1)

DESCRIPTION

The IL1/2/5 are optically coupled isolated pairs employing GaAs infrared LEDs and silicon NPN phototransistor. Signal information, including a DC level, can be transmitted by the drive while maintaining a high degree of electrical isolation between input and output. The IL1/2/5 are especially designed for driving medium-speed logic and can be used to eliminate troublesome ground loop and noise problems. These couplers can be used also to replace relays and transformers in many digital interface applications such as CRT modulation.

See Appnote 45, "How to Use Optocoupler Normalized Curves."

Dimensions in inches (mm) Pin One ID [2] [3] [1] Anode 1 6 Base 248 (6.30) 256 (6.50) Cathode 2 Collector 5 NC 3 4 5 6 4 Emitter .335 (8.50) .343 (8.70) .300 (7.62) .039 typ. (1.00)Min .130 (3.30) .150 (3.81) 4° ł 18° typ. .110 (2.79) .150 (3.81) 4 typ. .020 (.051) min. .010 (.25) .031 (0.80) .014 (.35) .018 (0.45) .035 (0.90) .300 (7.62) .022 (0.55) -.100 (2.54) typ. .347 (8.82)

IL1/2/5

PHOTOTRANSISTOR

OPTOCOUPLER

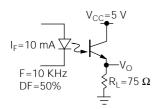
Maximum Ratings

Emitter

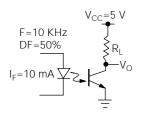
Reverse Voltage	
Forward Current	60 mA
Surge Current	2.5 A
Power Dissipation	100 mW
Derate Linearly from 25°C	1.33 mW/°C

Detector

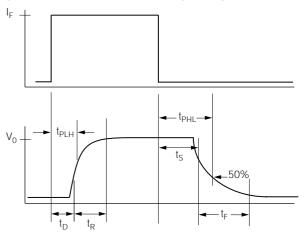
Collector-Emitter Reverse Voltage


Collector-Emitter Reverse Voltage	
IL1	50 V
IL2, IL5	
Emitter-Base Reverse Voltage	
Collector-Base Reverse Voltage	
Collector Current	
Collector Current (t<1 ms)	400 mA
Power Dissipation	
Derate Linearly from 25°C	
Package	
Package Power Dissipation	250 mW
Derate Linearly from 25°C	3.3 mW/°C
Isolation Test Voltage (between emitter and detector	
Isolation lest voltage (between enlitter and delector	
referred to standard climate 23°C/50%RH, DIN 500	14)5300 VAC _{RMS}
referred to standard climate 23°C/50%RH, DIN 500	min. 7 mm
referred to standard climate 23°C/50%RH, DIN 500 Creepage Clearance Comparative Tracking Index per	min. 7 mm min. 7 mm
referred to standard climate 23°C/50%RH, DIN 500 Creepage Clearance	min. 7 mm min. 7 mm
referred to standard climate 23°C/50%RH, DIN 500 Creepage Clearance Comparative Tracking Index per DIN IEC 112/VDE 0303, part 1 Isolation Resistance	min. 7 mm min. 7 mm
referred to standard climate 23°C/50%RH, DIN 500 Creepage Clearance Comparative Tracking Index per DIN IEC 112/VDE 0303, part 1 Isolation Resistance V _{IO} =500 V, T _A =25°C	min. 7 mm min. 7 mm
referred to standard climate 23°C/50%RH, DIN 500 Creepage Clearance Comparative Tracking Index per DIN IEC 112/VDE 0303, part 1 Isolation Resistance V_{IO} =500 V, T _A =25°C V_{IO} =500 V, T _A =100°C	min. 7 mm min. 7 mm
referred to standard climate 23°C/50%RH, DIN 500 Creepage Clearance Comparative Tracking Index per DIN IEC 112/VDE 0303, part 1 Isolation Resistance V_{IO} =500 V, T_A =25°C V_{IO} =500 V, T_A =100°C Storage Temperature	min. 7 mm min. 7 mm
referred to standard climate 23°C/50%RH, DIN 500 Creepage Clearance Comparative Tracking Index per DIN IEC 112/VDE 0303, part 1 Isolation Resistance V_{IO} =500 V, T_A =25°C V_{IO} =500 V, T_A =100°C Storage Temperature Operating Temperature	min. 7 mm min. 7 mm
referred to standard climate 23°C/50%RH, DIN 500 Creepage Clearance Comparative Tracking Index per DIN IEC 112/VDE 0303, part 1 Isolation Resistance V_{IO} =500 V, T_A =25°C V_{IO} =500 V, T_A =100°C Storage Temperature Operating Temperature Junction Temperature	min. 7 mm min. 7 mm
referred to standard climate 23°C/50%RH, DIN 500 Creepage Clearance Comparative Tracking Index per DIN IEC 112/VDE 0303, part 1 Isolation Resistance V_{IO} =500 V, T_A =25°C V_{IO} =500 V, T_A =100°C Storage Temperature Operating Temperature	min. 7 mm min. 7 mm

Characteristics


	Symbol	Min	Тур	Max	Unit	Condition
Emitter						1
Forward Voltage	V _F		1.25	1.65	V	I _F =60 mA
Breakdown Voltage	V _{BR}	6	30		V	I _R =10 μA
Reverse Current	I _R		0.01	10	μA	V _R =6 V
Capacitance	Co		40		pF	V _R =0 V, f=1 MHz
Thermal Resistance Junction to Lead	R _{THJL}		750		°C/W	
Detector						
Capacitance	C _{CE} C _{CB} C _{EB}		6.8 8.5 11		pF pF pF	V _{CE} =5 V, f=1 MHz V _{CB} =5 V, f=1 MHz V _{EB} =5 V, f=1 MHz
Collector-Emitter Leakage Current	I _{CEO}		5	50	nA	V _{CE} =10 V
Collector-Emitter Saturation Voltage	V _{CESAT}		0.25			I _{CE} =1 mA, I _B =20 μA
Base-Emitter Voltage	V _{BE}		0.65		V	V _{CE} =10 V, I _B =20 μA
DC Forward Current Gain	HFE	200	650	1800		V _{CE} =10 V, I _B =20 μA
Saturated DC Forward Current Gain	HFE _{SAT}	120	400	600		V _{CE} =0.4 V, I _B =20 μA
Thermal Resistance Junction to Lead	R _{THJL}		500		°C/W	
Package Transfer Characteristics						
IL1						
Saturated Current Transfer Ratio (Collector-Emitter)	CTR _{CESAT}		75		%	I _F =10 mA, V _{CE} =0.4 V
Current Transfer Ratio (Collector-Emitter)	CTR _{CE}	20	80	300	%	I _F =10 mA, V _{CE} =10 V
Current Transfer Ratio (Collector-Base)	CTR _{CB}		0.25		%	I _F =10 mA, V _{CB} =9.3 V
IL2		_				
Saturated Current Transfer Ratio (Collector-Emitter)	CTR _{CESAT}		170		%	I _F =10 mA, V _{CE} =0.4 V
Current Transfer Ratio (Collector-Emitter)	CTR _{CE}	100	200	500	%	I _F =10 mA, V _{CE} =10 V
Current Transfer Ratio	CTR _{CB}		0.25		%	I_{F} =10 mA, V_{CB} =9.3 V
IL5						
Saturated Current Transfer Ratio (Collector-Emitter)	CTR _{CESAT}		100		%	I _F =10 mA, V _{CE} =0.4 V
Current Transfer Ratio (Collector-Emitter)	CTR _{CE}	50	130	400	%	I _F =10 mA, V _{CE} =10 V
Current Transfer Ratio	CTR _{CB}		0.25		%	I _F =10 mA, V _{CB} =9.3 V
Isolation and Insulation						
Common Mode Rejection Output High	СМН		5000		V/µs	V_{CM} =50 V_{P-P} , R_L =1 k Ω , I_F =0 m.
Common Mode Rejection Output Low	CML		5000		V/µs	$\begin{array}{c} V_{CM}{=}50 \; V_{P{-}P}, \; R_L{=}1 \; k\Omega, \; I_F{=}10 \\ mA \end{array}$
Common Mode Coupling Capacitance	C _{CM}		0.01		pF	
Package Capacitance	C _{I-O}		0.6		pF	V _{I-O} =0 V, f=1 MHz
Insulation Resistance	R _S		10+14		Ω	V _{I-O} =500 V

SWITCHING TIMES


Figure 1. Non-saturated switching timing

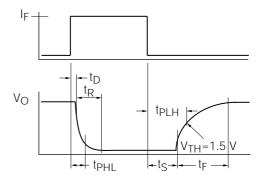

Figure 2. Saturated switching timing

Figure 3. Non-saturated switching timing

Figure 4. Saturated switching timing

Characteristic	Sym	IL1 I _F =20 mA	IL2 I _F =5 mA	IL5 I _F =10 mA	Unit	Test Condition
Delay	TD	0.8	1.7	1.7	μs	
Rise Time	t _R	1.9	2.6	2.6	μs	V _{CC} =5 V
Storage	t _S	0.2	0.4	0.4	μs	$R_L=75 \Omega$
Fall Time	t _F	1.4	2.2	2.2	μs	
Propagation H-L	t _{PHL}	0.7	1.2	1.1	μs	t _p measured at 50% of output
PropagationL-H	t _{PLH}	1.4	2.3	2.5	μs	

Non-Saturated Switching Time Table-Typical

Saturated Switching Time Table-Typical

Characteristic	Sym	IL1 I _F =20 mA	IL2 I _F =5 mA	IL5 I _F =10 mA	Unit	Test Condition
Delay	TD	0.8	1	1.7	μs	
Rise Time	t _R	1.2	2	7	μs	V _{CL} =5.0 V
Storage	t _S	7.4	5.4	4.6	μs	V _{CE} =0.4
Fall Time	t _F	7.6	13.5	20	μs	R _L =1 K
Propagation H-L	t _{PHL}	1.6	5.4	2.6	μs	V _{TH} =1.5 V
Propagation L-H	t _{PLH}	8.6	7.4	7.2	μs	

Figure 5. Forward voltage versus forward current

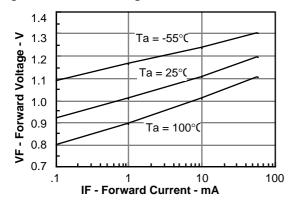


Figure 6. Normalized non-saturated and saturated CTR at $T_A=25^{\circ}C$ versus LED current

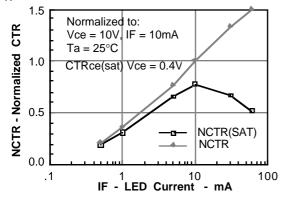


Figure 7. Normalized non-saturated and saturated CTR at $T_{A}{=}50^{\circ}\text{C}$ versus LED current

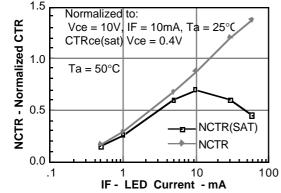


Figure 8. Normalized non-saturated and saturated CTR at $T_{A}\mbox{=}70^{\circ}\mbox{C}$ versus LED current

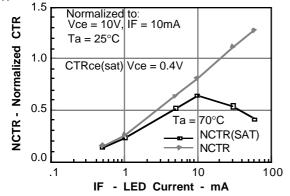


Figure 9. Normalized non-saturated and saturated CTR at $T_A{=}100^\circ\text{C}$ versus LED current

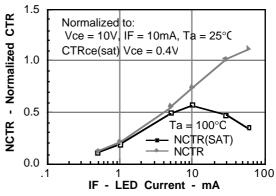


Figure 10. Collector-emitter current versus temperature and LED current

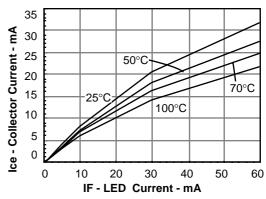


Figure 11. Collector-emitter leakage current versus temperature

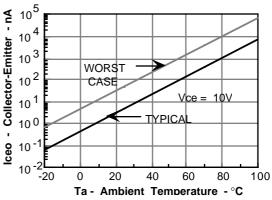


Figure 12. Normalized CTRcb versus LED current and temperature

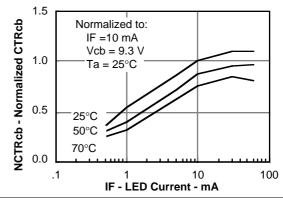


Figure 13. Collector base photocurrent versus LED current $Ta = 25^{\circ}C$

Figure 14. Normalized photocurrent versus If and temperature

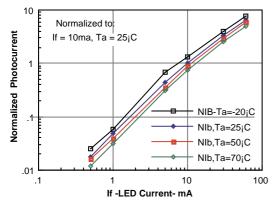


 Table 15. Normalized non-saturated HFE versus base current and temperature

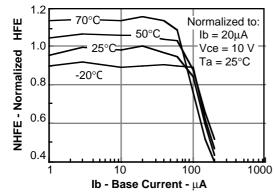


Figure 16. Normalized saturated HFE versus base current and temperature

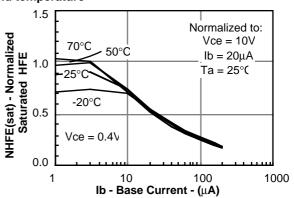
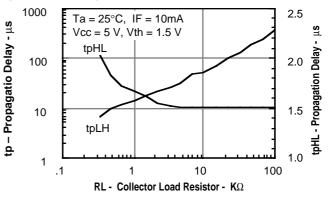



Figure 17. Propagation delay versus collector load resistor

