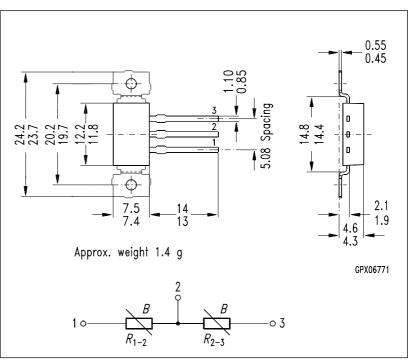
SIEMENS


Differential Magnetoresistive Sensor

Features

- Extremely high output voltage
- 2 independently biased magnetic circuits
- Robust housing
- Signal amplitude independent of operating speed
- Screw mounting possible

Typical applications

- Detection of speed
- Detection of position
- Detection of sense of rotation

Туре	Ordering Code	
FP 201 L 100	Q65210-L101	

The differential magnetoresistive sensor FP 201 L 100 consists of two magnetically biased magneto resistors made from L-type InSb/NiSb, which in their unbiased state each have a basic resistance of about 125 Ω . They are series coupled as a voltage divider and are encapsuled in plastic as protection against mechanical stresses. This magnetically actuated sensor can be implemented as a direction dependent contactless switch where it shows a voltage change of about 1.3 V/mm in its linear region.

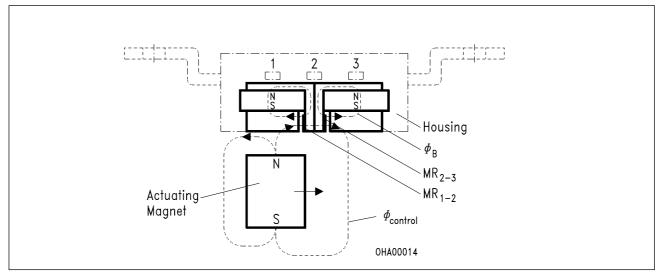
Maximum ratings

Parameter	Symbol	Value	Unit
Operating temperature	T _A	- 25 / + 100	°C
Storage temperature	T _{stg}	- 25 / + 110	°C
Power dissipation ¹⁾	P _{tot}	600	mW
Supply voltage ²⁾	V _{IN}	10	V
Insulation voltage between terminals and casing	V	> 100	V
Thermal conductivity	$G_{ ext{thcase}} \ G_{ ext{thA}}$	≥ 10 ≥ 5	mW/K mW/K

Characteristics ($T_A = 25 \ ^{\circ}C$)

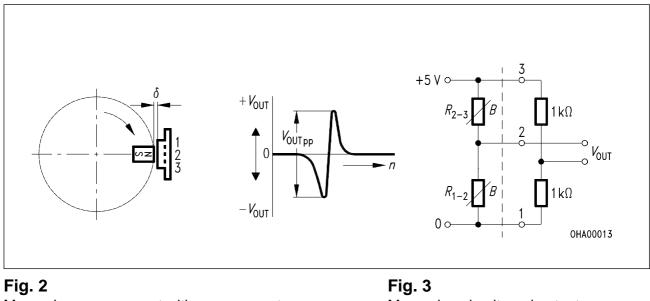
Nominal supply voltage	V _{IN N}	5	V
Total resistance, ($\delta = \infty$, $I \le 1$ mA)	<i>R</i> ₁₋₃	7001400	Ω
Center symmetry ³⁾ ($\delta = \infty$)	М	≤ 10	%
Offset voltage ⁴⁾ (at $V_{\text{IN N}}$ and $\delta = \infty$)	V ₀	≤ 130	mV
Open circuit output voltage ⁵⁾ ($V_{\text{IN N}}$ and δ = 0.5 mm)	$V_{ m outpp}$	> 2.2	V
Cut-off frequency	fc	> 7	kHz

This sensor is operated by a permanent magnet. Using the arrangement as shown in Fig. 1, the permanent magnet increases the internal biasing field through the righthand side magneto resistor (connections 2-3), and reduces the field through the left side magneto resistor (connections 1-2). As a result the resistance value of MR₂₋₃ increases while that of MR₁₋₂ decreases. When the permanent magnet is moved from left to right the above-mentioned process operates in reverse.


1) Corresponding to diagram $P_{\text{tot}} = f(T_{\text{case}})$ 2) Corresponding to diagram $V_{\text{IN}} = f(T)$

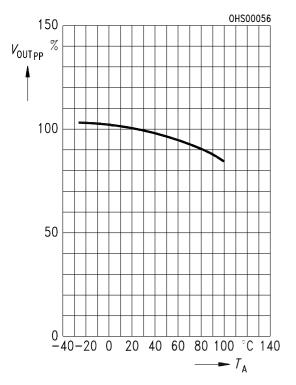
3)

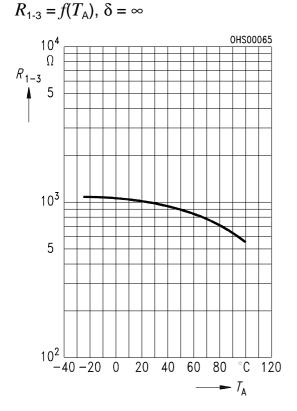
$$M = \frac{R_{1-2} - R_{2-3}}{R_{1-2}} \times 100\% \text{ for } R_{1-2} > R_{2-3}$$


4) Corresponding to measuring circuit in Fig. 3

5) Corresponding to measuring circuit in Fig. 3 and arrangement as shown in Fig. 2

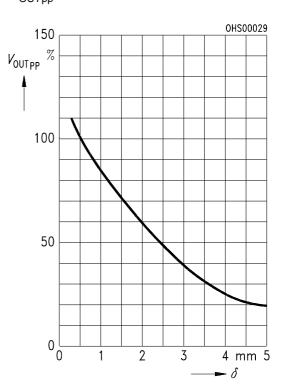
Fig. 1


Sensor operating by external permanent magnet

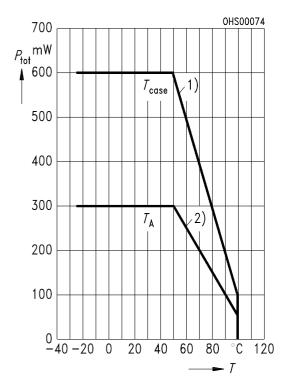

Measuring arrangement with a permanent magnet Alnico 450 $\emptyset = 4$ mm, 6 mm long Fig. 3 Measuring circuit and output waveform

A steeper gradient is achieved when using a horseshoe magnet.

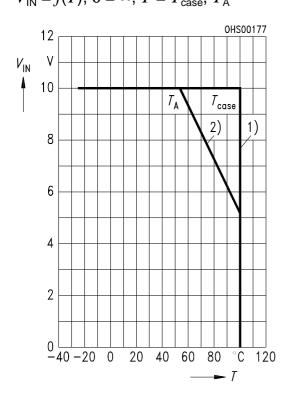
Output voltage (typical) versus temperature $V_{\text{OUTpp}} = f(T_{\text{A}}), \delta = 0.5 \text{ mm}$ V_{OUTpp} at $T_{\text{A}} = 25 \text{ °C} \triangleq 100\%$



Total resistance (typical) versus temperature


Output voltage (typical) versus

airgap $V_{\text{OUTpp}} = f(\delta), T_{\text{A}} = 25 \text{ °C}$ $V_{\text{OUTpp}} \text{ at } \delta = 0.5 \text{ mm} \triangleq 100\%$


Max. power dissipation versus temperature

$$P_{\text{tot}} = f(T), \ \delta = \infty, \ T = T_{\text{case}}, \ T_{\text{A}}$$

Semiconductor Group

Maximum supply voltage versus temperature $V_{\text{IN}} = f(T), \ \delta = \infty, \ T = T_{\text{case}}, \ T_{\text{A}}$

1) Sensor mounted with good thermal contact to a heat sink

2) Operation in still air