SIEMENS

Silicon N Channel MOSFET Triode

BF 999

- For high-frequency stages up to 300 MHz , preferably in FM applications

Type	Marking	Ordering Code			Pin Configuration			Package ${ }^{\text {1 }}$
		(tape and reel)	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$			
BF 999	LB	Q62702-F1132	G	D	S	SOT-23		

Maximum Ratings

Parameter	Symbol	Values	Unit
Drain-source voltage	V_{DS}	20	V
Drain current	ID	30	mA
Gate-source peak current	\pm IGsM	10	
Total power dissipation, $T_{\mathrm{A}} \leq 60^{\circ} \mathrm{C}$	$P_{\text {tot }}$	200	mW
Storage temperature range	$T_{\text {stg }}$	$-55 \ldots+150$	${ }^{\circ} \mathrm{C}$
Channel temperature	T_{ch}	150	

Thermal Resistance

Junction - ambient ${ }^{2)}$	$R_{\text {th JA }}$	≤ 450	K/W

[^0]
Electrical Characteristics

at $T_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified.

Parameter	Symbol	Values			Unit
		min.	typ.	max.	

DC Characteristics

Drain-source breakdown voltage $I \mathrm{D}=10 \mu \mathrm{~A},-V \mathrm{GS}=4 \mathrm{~V}$	$V_{(\mathrm{BR}) \mathrm{DS}}$	20	-	-	V
Gate-source breakdown voltage $\pm I \mathrm{GS}=10 \mathrm{~mA}, V \mathrm{DS}=0$	$\pm V_{(\mathrm{BR}) \mathrm{GSS}}$	6.5	-	12	
Gate-source leakage current $\pm V \mathrm{GS}=5 \mathrm{~V}, V \mathrm{DS}=0$	$\pm I \mathrm{ISS}$	-	-	50	nA
Drain current $V_{\mathrm{DS}}=10 \mathrm{~V}, V \mathrm{GS}=0$	IDSs	5	-	18	mA
Gate-source pinch-off voltage $V \mathrm{DS}=10 \mathrm{~V}, I \mathrm{D}=20 \mu \mathrm{~A}$	$-V_{\mathrm{GS}}(\mathrm{p})$	-	-	2.5	V

AC Characteristics

Forward transconductance $V_{\mathrm{DS}}=10 \mathrm{~V}, I \mathrm{D}=10 \mathrm{~mA}, f=1 \mathrm{kHz}$	g_{fs}	14	16	-	mS
Gate input capacitance $V \mathrm{DS}=10 \mathrm{~V}, I \mathrm{D}=10 \mathrm{~mA}, f=1 \mathrm{MHz}$	C_{gss}	-	2.5	-	pF
Reverse transfer capacitance $V \mathrm{DS}=10 \mathrm{~V}, I \mathrm{D}=10 \mathrm{~mA}, f=1 \mathrm{MHz}$	C_{dg}	-	25	-	fF
Output capacitance $V_{\mathrm{Ds}}=10 \mathrm{~V}, I \mathrm{D}=10 \mathrm{~mA}, f=1 \mathrm{MHz}$	C_{dss}	-	1	-	pF
Power gain (test circuit)					
$V \mathrm{Ds}=10 \mathrm{~V}, I \mathrm{D}=10 \mathrm{~mA}, f=200 \mathrm{MHz}$, $G \mathrm{G}=2 \mathrm{mS}, G \mathrm{~L}=0.5 \mathrm{mS}$	G_{p}	-	25	-	dB
Noise figure (test circuit) $V \mathrm{DS}=10 \mathrm{~V}, I \mathrm{D}=10 \mathrm{~mA}, f=200 \mathrm{MHz}$, $G \mathrm{G}=2 \mathrm{mS}, G \mathrm{~L}=0.5 \mathrm{mS}$	F	-	1	-	

Total power dissipation $P_{\text {tot }}=f\left(T_{\mathrm{A}}\right)$

Gate transconductance $g_{\text {fs }}=f(V \mathrm{GG})$
$V_{\mathrm{Ds}}=10 \mathrm{~V}, I \mathrm{dss}=10 \mathrm{~mA}, f=1 \mathrm{kHz}$

Output characteristics $I_{\mathrm{D}}=f\left(V_{\mathrm{DS}}\right)$

Drain current $I_{\mathrm{D}}=f\left(V_{\mathrm{GS}}\right)$
$V \mathrm{DS}=10 \mathrm{~V}$

Gate input capacitance $C_{\text {gss }}=f(V \mathrm{Gs})$ $V \mathrm{Ds}=10 \mathrm{~V}, I \mathrm{css}=10 \mathrm{~mA}, f=1 \mathrm{MHz}$

Reverse transfer capacitance
$C_{\text {dg }}=f\left(V_{\mathrm{DS}}\right)$
$I \mathrm{dss}=10 \mathrm{~mA}, f=1 \mathrm{MHz}, V \mathrm{Gs}=0$

Output capacitance $C_{\text {dss }}=f\left(V_{\mathrm{Ds}}\right)$ $V \mathrm{GS}=0$, Idss $=10 \mathrm{~mA}, f=1 \mathrm{MHz}$

Gate input admittance $y_{11 \mathrm{~s}}$

$V_{\mathrm{Ds}}=10 \mathrm{~V}, V_{\mathrm{Gs}}=0$,
Idss $=10 \mathrm{~mA}$, (common-source)

Gate forward transfer admittance $y_{21 s}$
$V_{\mathrm{DS}}=10 \mathrm{~V}, V_{\mathrm{GS}}=0$,
$I \mathrm{dss}=10 \mathrm{~mA}$, (common-source)

Output admittance $y^{22 \mathrm{~s}}$

$V_{\mathrm{DS}}=10 \mathrm{~V}, V_{\mathrm{GS}}=0$,
$I_{\mathrm{sss}}=10 \mathrm{~mA}$, (common-source)

Test circuit for power gain and noise figure
$f=200 \mathrm{MHz}$

[^0]: 1) For detailed information see chapter Package Outlines.
 2) Package mounted on alumina $15 \mathrm{~mm} \times 16.7 \mathrm{~mm} \times 0.7 \mathrm{~mm}$.
