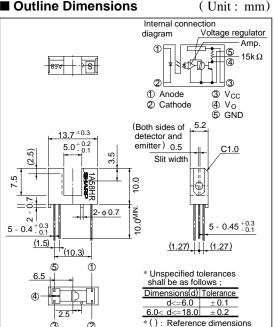
SHARP GP1A58HR

GP1A58HR

OPIC Photointerrupter

■ Features

1. High sensing accuracy (Slit width: 0.5mm)


2. PWB mounting type

■ Applications

1. OA equipment such as printers, facsimiles, etc.

2. VCRs

■ Outline Dimensions

*"OPIC" (Optical IC) is a trademark of the SHARP Corporation. An OPIC consists of a light-detecting element and signalprocessing circuit integrated onto a single chip.

■ Absolute Maximum Ratings

 $(Ta = 25^{\circ}C)$

	·ge			
	Paramerter	Symbol	Rating	Unit
	Forward currnt	I_F	50	mA
T	*1Peak forward current	I_{FM}	1	A
Input	Reverse voltage	V _R	6	V
	Power dissipation	P	75	mW
	Supply voltage	V _{CC}	- 0.5 to + 17	mA
Output	Output current	Io	50	mA
	Power dissipation	Po	250	mW
•	Operating temperature	T opr	- 25 to + 85	°C
	Storage temperature	T stg	- 40 to + 100	°C
	*2Soldering temperature	T _{sol}	260	°C

^{*1} Pulse width<= 100\mu s, Duty ratio=0.01

^{*2} For 5 seconds

■ Electro-optical Characteristics

 $(Ta = 25^{\circ}C)$

Parameter		Symbol	Conditions	MIN.	TYP.	MAX.	Unit	
Input	Forward voltage		VF	$I_F = 8mA$	-	1.14	1.4	V
	Reverse current		I_R	$V_R = 3V$	-	-	10.0	μΑ
Output	Operating supply voltage		Vcc	-	4.5	-	17.0	V
	Low level output voltage		Vol	$V_{CC} = 5V, I_F = 0mA, I_{OL} = 16mA$	-	0.15	0.4	V
	High level output voltage		VoH	$V_{CC} = 5V$, $I_F = 8mA$	4.9	-	-	V
	Low level supply current		Iccl	$V_{CC} = 5V$, $I_F = 0mA$	-	1.7	3.8	mA
	High level supply current		$I_{\rm CCH}$	$V_{CC} = 5V$, $I_F = 8mA$	-	0.7	2.2	mA
Transfer charac- terisitics	*1 "Low→High" threshold input current		I _{FLH}	$V_{CC} = 5V$	-	1.5	8.0	mA
	*2 Hysteresis		I FHL /I FLH	$V_{CC} = 5V$	0.55	0.75	0.95	-
	Response time	"Low→High"propagation delay time	t PLH		-	3.0	9.0	μs
		"High→Low"propagation delay time	t PHL	$V_{CE} = 5V$, $I_{F} = 8mA$	-	5.0	15.0	μs
		Rise time	t _r	$R_L = 280\Omega$	-	0.1	0.5	μs
		Fall time	t_{f}		-	0.05	0.5	μs

^{*1} I FLH represents forward current when output changes from low to high.

■ Recommended Operating Conditions

Parameter	Symbol	Operating temperature range	MIN.	MAX.	Unit
Output current	Io	T- 04- 70°C	-	16.0	mA
Forward current	I_{F}	$Ta = 0 \text{ to} + 70^{\circ}\text{C}$	10.0	20.0	mA

Fig. 1 Forward Current vs. Ambient Temperature

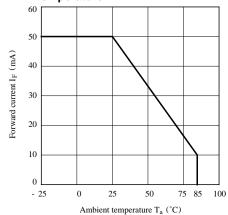
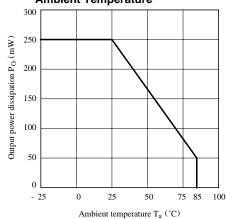



Fig. 2 Output Power Dissipation vs.
Ambient Temperature

 $^{*2~}I_{FHL}$ represents forward current when output changes from high to low.

Fig. 3 Low Level Output Current vs.
Ambient Temperature

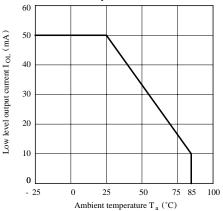


Fig. 5 Relative Threshold Input Current vs. Supply Voltage

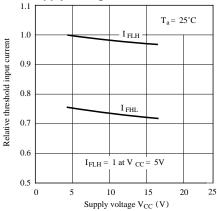


Fig. 7 Low Level Output Voltage vs. Low Level Output Current

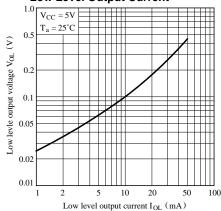


Fig. 4 Forward Current vs. Forward Voltage

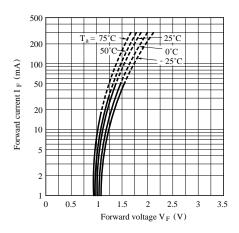


Fig. 6 Relative Threshold Input Current vs. Ambient Temperature

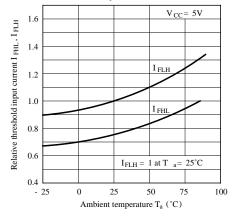


Fig. 8 Low Level Output Voltage vs.
Ambient Temperature

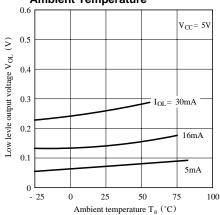


Fig. 9 Supply Current vs. Ambient Temperature

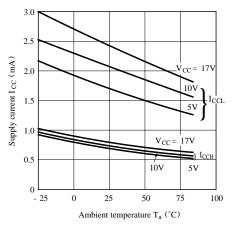


Fig.11 Rise Time, Fall Time vs. Load Resistance

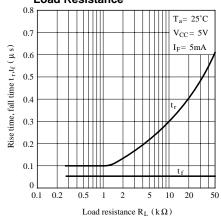
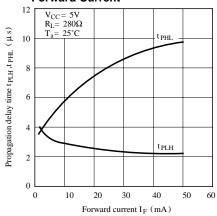
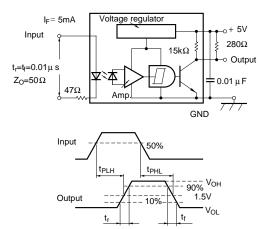




Fig.10 Propagation Delay Time vs. Forward Current

Test Circuit for Response Time

■ Precautions for Use

- (1) In order to stabilize power supply line, connect a by-pass capacitor of more than $0.01 \,\mu\,F$ between Vcc and GND near the device.
- (2) In case of cleaning, use only the following type of cleaning solvent. Ethyl alcohol, Methyl alcohol, Isopropyl alcohol
- (3) As for other general cautions, refer to the chapter "Precautions for Use".