1

PRODUCT OVERVIEW

OVERVIEW

The KS57C2916 single-chip CMOS microcontroller has been designed for high performance using Samsung's newest 4-bit CPU core, SAM47 (Samsung Arrangeable Microcontrollers).

With an up-to-704-dot LCD direct drive capability, and flexible 8-bit timer/counter, the KS57C2916 offers an excellent design solution for a mid-end LCD game.

Up to 8 pins of the 80-pin QFP package can be dedicated to I/O. Six vectored interrupts provide fast response to internal and external events. In addition, the KS57C2916's advanced CMOS technology provides for low power consumption.

OTP

The KS57C2916 microcontroller is also available in OTP (One Time Programmable) version, KS57P2916. KS57P2916 microcontroller has an on-chip 16K-byte one-time-programable EPROM instead of masked ROM. The KS57P2916 is comparable to KS57C2916, both in function and in pin configuration.

FEATURES

Memory

- 256 × 4-bit RAM (excluding LCD display RAM)
- 16,384 × 8-bit ROM

8 I/O Pins

I/O: 8 pins

LCD Controller/Driver

- 44 segments and 16 common terminals
 (8, 12 and 16 common selectable)
- Internal resistor circuit for LCD bias
- Voltage doubler
- All dot can be switched on/off

8-bit Basic Timer

- 4 interval timer functions
- Watch-dog timer

8-bit Timer/Counter

- Programmable 8-bit timer
- Arbitrary clock output (TCLO0)
- Inverted clock output (TCLO0)

Watch Timer

- Time interval generation: 0.5 s, 3.9 ms at 32768 Hz
- Four frequency outputs to BUZ pin and BUZ pin
- Clock source generation for LCD

Interrupts

- Two internal vectored interrupts
- Four external vectored interrupts
- Two quasi-interrupts

Memory-Mapped I/O Structure

Data memory bank 15

Power-Down Modes

- Idle mode (only CPU clock stops)
- Stop mode (main system oscillation stops)
- Sub system clock stop mode

Oscillation Sources

- Crystal, ceramic, or RC for main system clock
- Crystal oscillator for subsystem clock
- Main system clock frequency: 4.19 MHz (typical)
- Subsystem clock frequency: 32.768 kHz
- CPU clock divider circuit (by 4, 8, or 64)

Instruction Execution Times

- 0.95, 1.91, 15.3 µs at 4.19 MHz (main)
- 122 μs at 32.768 kHz (subsystem)

Operating Temperature

• -40 °C to 85 °C

Operating Voltage Range

• 2.2 V to 3.4 V (0.4 MHz to 4.19 MHz)

Package Type

80-pin QFP or pellet

BLOCK DIAGRAM

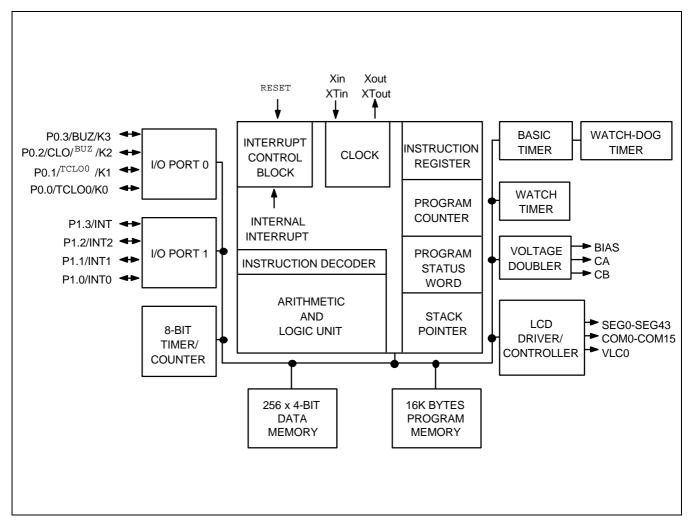


Figure 1-1. KS57C2916 Simplified Block Diagram

PIN ASSIGNMENTS

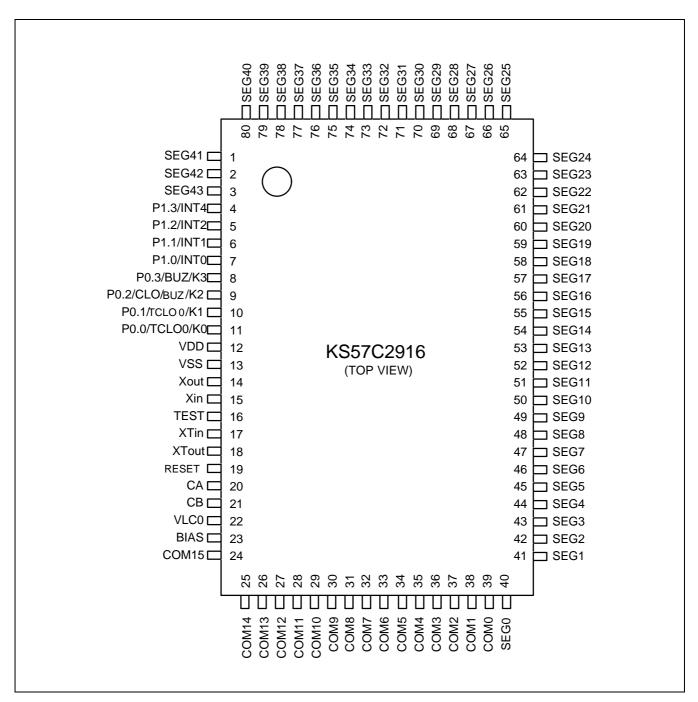


Figure 1-2. KS57C2916 80-QFP Pin Assignment Diagram

PIN DESCRIPTIONS

Table 1-1. KS57C2916 Pin Descriptions

Pin Name	Pin Type	Description	Circuit Type	Number	Share Pin
P0.0 P0.1 P0.2 P0.3	I/O	4-bit I/O port. 1-bit and 4-bit read/write and test are possible. Individual pins are software configurable as input or output. Individual pins are software configurable as opendrain or push-pull output. Individual pull-up resistors are software assignable; pull-up resistors are automatically disabled for output pins.	E-1	11 10 9 8	TCLO0/K0 TCLO0/K1 CLO/BUZ/K2 BUZ/K3
P1.0 P1.1 P1.2 P1.3	I/O	Same as port 0.	E-1	7 6 5 4	INTO INT1 INT2 INT4
INTO, INT1	I/O	External interrupts. The triggering edge for INT0 and INT1 is selectable.		7, 6	P1.0, P1.1
INT2	I/O	Quasi-interrupt with detection of rising or falling edges		5	P1.2
INT4	I/O	External interrupt with detection of rising or falling edges.		4	P1.3
BUZ	I/O	2 kHz, 4 kHz, 8 kHz or 16 kHz frequency output for buzzer sound.		8	P0.3/K3
BUZ	I/O	Inverted BUZ signal		9	P0.2/CLO/K2
CLO	I/O	Clock output		9	P0.2/BUZ/K2
TCLO0	I/O	Inverted Timer/counter 0 clock output		10	P0.1/K1
TCLO0	I/O	Timer/counter 0 clock output		11	P0.0/K0
COM0-COM15	0	LCD common signal output	H-6	39–24	_
SEG0-SEG43	0	LCD segment signal output	H-6	40–80, 1–3	_

Table 1-1. KS57C2916 Pin Descriptions (Continued)

Pin Name	Pin Type	Description	Circuit Type	Number	Share Pin
K0-K3	I/O	External interrupt (triggering edge is selectable)	E-1	11–8	P0.0-P0.3
V_{DD}	_	Power supply	_	12	_
V _{SS}	_	Ground	_	13	-
RESET	I	Reset input (active low)	В	19	-
CA, CB	_	Capacitor terminal for voltage doubling	_	20, 21	-
VCL0	_	LCD power supply input	_	22	_
BIAS	0	Doubling voltage level output	_	23	_
X _{in} , X _{out}	_	Crystal, ceramic or RC oscillator pins for system clock	_	15, 14	_
XT _{in,} XT _{out}	_	Crystal oscillator pins for subsystem clock	_	17, 18	_
TEST	I	Test input (must be connected to V _{SS})	_	16	-

NOTE: Pull-up resistors for all I/O ports are automatically disabled if they are configured to output mode.

PIN CIRCUIT DIAGRAMS

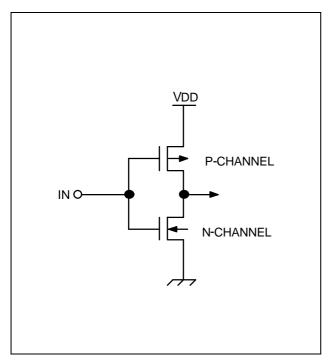


Figure 1-3. Pin Circuit Type A

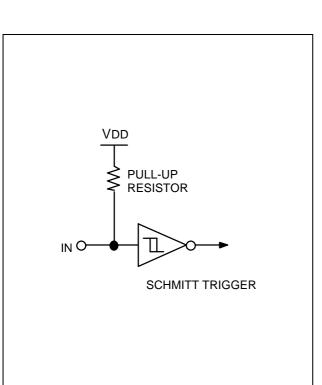


Figure 1-4. Pin Circuit Type B

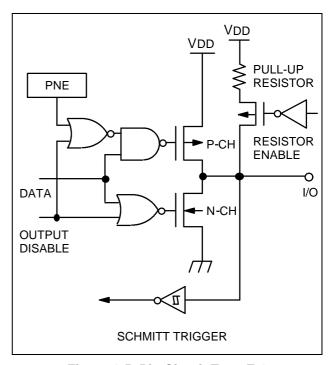


Figure 1-5. Pin Circuit Type E-1

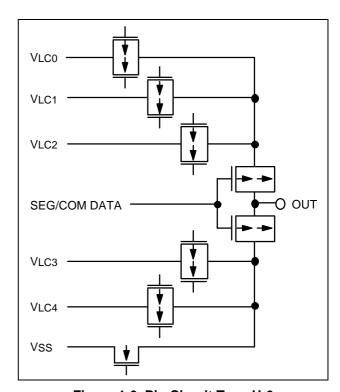


Figure 1-6. Pin Circuit Type H-6

13 ELECTRICAL DATA

OVERVIEW

In this section, information on KS57C2916 electrical characteristics is presented as tables and graphics. The information is arranged in the following order:

Standard Electrical Characteristics

- Absolute maximum ratings
- D.C. electrical characteristics
- Main system clock oscillator characteristics
- Subsystem clock oscillator characteristics
- I/O capacitance
- A.C. electrical characteristics
- Operating voltage range

Miscellaneous Timing Waveforms

- A.C timing measurement point
- Clock timing measurement at X_{in}
- Clock timing measurement at XT_{in}
- TCL timing
- Input timing for RESET
- Input timing for external interrupts
- Serial data transfer timing

Stop Mode Characteristics and Timing Waveforms

- RAM data retention supply voltage in stop mode
- Stop mode release timing when initiated by RESET
- Stop mode release timing when initiated by an interrupt request

Table 13-1. Absolute Maximum Ratings

 $(T_A = 25 \,^{\circ}C)$

Parameter	Symbol	Conditions	Rating	Units
Supply Voltage	V_{DD}	_	- 0.3 to + 4.5	V
Input Voltage	VI	Ports 0, 1	- 0.3 to VDD + 0.3	V
Output Voltage	Vo	-	- 0.3 to VDD + 0.3	V
Output Current High	Гон	One I/O pin active	– 15	mA
		All I/O pins active	- 30	
Output Current Low	loL	One I/O pin active	+ 30 (Peak value)	mA
			+ 15 ^(note)	
		Total for pins 0, 1	+ 100 (Peak value)	
			+ 60 ^(note)	
Operating Temperature	T _A	-	- 40 to +85	°C
Storage Temperature	T _{stg}	_	- 65 to + 150	°C

NOTE: The values for Output Current Low (I_{OL}) are calculated as Peak Value $\,\times\,\,\sqrt{\text{Duty}}\,$.

Table 13-2. D.C. Electrical Characteristics

 $(T_A = -40 \,^{\circ}C \text{ to } + 85 \,^{\circ}C, V_{DD} = 2.2 \,\text{V} \text{ to } 3.4 \,\text{V})$

Parameter	Symbol	Conditions	Min	Тур	Max	Units
Input High Voltage	V _{IH1}	Ports 0, 1, and RESET	0.8V _{DD}	-	V_{DD}	V
	V _{IH2}	X _{in} , X _{out} , and XT _{in}	V _{DD} – 0.1		V_{DD}	
Input Low Voltage	V _{IL1}	Ports 0, 1, and RESET	-	-	0.2V _{DD}	V
	V _{IL2}	X _{in} , X _{out} , and XT _{in}			0.1	
Output High Voltage	Voн	$V_{DD} = 2.2 \text{ V}$ to 3.4 V $I_{OH} = -1 \text{ mA}$ Ports 0, 1	V _{DD} – 1.0	-	-	V
Output Low Voltage	V _{OL}	V _{DD} = 2.2 V to 3.4 V I _{OL} = 5 mA Ports 0, 1	_	-	1.0	V

Table 13-2. D.C. Electrical Characteristics (Continued)

 $(T_A = -40 \,^{\circ}C \text{ to } + 85 \,^{\circ}C, V_{DD} = 2.2 \,^{\circ}V \text{ to } 3.4 \,^{\circ}V)$

Parameter	Symbol	Conditions	Min	Тур	Max	Units
Input High Leakage Current	I _{LIH1}	V _I = V _{DD} All input pins except those specified below for I _{LIH2}	_	_	3	μA
	I _{LIH2}	V _I = V _{DD} X _{in} , X _{out} and XT _{in}			20	
Input Low Leakage Current	I _{LIL1}	V _I = 0 V All input pins except RESET X _{in} , X _{out} and XT _{in}	_	_	-3	μΑ
	I _{LIL2}	$V_I = 0 V$ RESET, X_{in} , X_{out} and XT_{in}			- 20	
Output High Leakage Current	ILOH	V _O = V _{DD} All output pins	_	-	3	μА
Output Low Leakage Current	I _{LOL}	V _O = 0 V All output pins	-	_	-3	μА
Pull-Up Resistor	R _{L1}	V _I = 0 V; V _{DD} = 3V Ports 0, 1	50	100	200	kΩ
	R _{L2}	$V_I = 0 V$; $V_{DD} = 3V$; RESET	200	450	800	
LCD Voltage Dividing Resistor ⁽¹⁾	R _{LCD1}	Ta = + 25 °C	50	100	150	kΩ
	R _{LCD2}	Ta = + 25 °C	25	50	75	
VDD-COMi Voltage Drop (i = 0–15)	V _{DC}	V _{LCD} = 3.0 V – 15 μA per common pin	_	-	120	mV
V _{LCD} - SEGx Voltage Drop (x = 0-43)	V _{DS}	V _{LCD} = 3.0 V – 15 μA per common pin	_	_	120	
Middle Output	V _{LC0}	$V_{LC0} = 5.0 \text{ V}$	V _{LC0} -0.2	V _{LC0}	V _{LC0} +0.2	V
Voltage (2)	V _{LC1}		0.8V _{LC0} -0.2	0.8V _{LC0}	0.8V _{LC0} +0.2	
	V_{LC2}		0.6V _{LC0} -0.2	0.6V _{LC0}	0.6V _{LC0} +0.2	
	V _{LC3}		0.4V _{LC0} -0.2	0.4V _{LC0}	0.4V _{LC0} +0.2	
	V_{LC4}		0.2V _{LC0} -0.2	0.2V _{LC0}	0.2V _{LC0} +0.2	

- 1. RLCD1 is LCD voltage dividing resistor when LCON.2 = "0", and RLCD2 when LCON.2 = "1".
- 2. It is middle output voltage when 1/16 duty and 1/5 bias.

Table 13-2. D.C. Electrical Characteristics (Concluded)

 $(T_A = -40 \,^{\circ}C \text{ to } + 85 \,^{\circ}C, V_{DD} = 2.2 \,\text{V} \text{ to } 3.4 \,\text{V})$

Parameter	Symbol	Conditions	Conditions				Units
Supply Current ⁽¹⁾	I _{DD1}	V _{DD} = 3V ± 10% 4.19 MHz (PCON=3H) crystal oso C1 = C2 = 22 pF	_	1.3	3.0	mA	
	I _{DD2}	Idle mode; $V_{DD} = 3 \text{ V} \pm 10\%$ 4.19 MHz (PCON=3H) crystal osc C1 = C2 = 22 pF	MHz (PCON=3H) crystal oscillator				
	I _{DD3} (2)	V _{DD} = 3 V ± 10% 32 kHz crystal oscillator					μΑ
	I _{DD4} (2)	Idle mode; V _{DD} = 3 V ± 10% 32 kHz crystal oscillator		5	15		
	I _{DD5}	Stop mode; $V_{DD} = 3 \text{ V} \pm 10\%$	SCMOD=0000B, XTin=0V		0.5	3	
		Stop mode; $V_{DD} = 3 V \pm 10\%$	SCMOD=0100B		0.2	2	

- 1. Current in the following circuits are not included; on-chip pull-up resistors, internal LCD voltage dividing resistors, voltage doubler, and output port drive currents.
- 2. Data includes power consumption for subsystem clock oscillation.
- 3. When the system clock control register, SCMOD, is set to 1001B, main system clock oscillation stops and the subsystem clock is used.

Table 13-3. Main System Clock Oscillator Characteristics

 $(T_A = -40 \,^{\circ}C \text{ to} + 85 \,^{\circ}C, V_{DD} = 2.2 \,^{\circ}V \text{ to} 3.4 \,^{\circ}V)$

Oscillator	Clock Configuration	Parameter	Test Condition	Min	Тур	Max	Units
Ceramic Oscillator	Xin Xout C1 C2	Oscillation frequency (1)	_	0.4	-	4.19	MHz
		Stabilization time (2)	Stabilization occurs when V _{DD} is equal to the minimum oscillator voltage range; V _{DD} = 3.0 V	I	_	4	ms
Crystal Oscillator	Xin Xout C1 C2	Oscillation frequency (1)		0.4	1	4.19	MHz
		Stabilization time (2)	V _{DD} = 3.0 V	_	_	10	ms
External Clock	Xin Xout	X _{in} input frequency ⁽¹⁾	_	0.4	-	4.19	MHz
		X _{in} input high and low level width (t _{XH} , t _{XL})	-	83.3	_	1250	ns
RC Oscillator	Xin Xout	Frequency	V _{DD} = 3 V	0.4	_	1.5	MHz

- 1. Oscillation frequency and X_{IN} input frequency data are for oscillator characteristics only.
- 2. Stabilization time is the interval required for oscillator stabilization after a power-on occurs, or when stop mode is terminated.

Table 13-4. Recommended Oscillator Constants

 $(T_A = -40 \,^{\circ}C \text{ to} + 85 \,^{\circ}C, V_{DD} = 2.2 \,\text{V} \text{ to } 3.4 \,\text{V})$

Manufacturer	Series Number ⁽¹⁾	Frequency Range	Load Cap (pF)		Oscillator Voltage Range (V)		Remarks
			C1	C2	MIN	MAX	
TDK	FCR ðÿM5	3.58 MHz-4.2 MHz	33	33	2.2	3.4	Leaded Type
	FCR ðÿMC5	3.58 MHz-4.2 MHz	(2)	(2)	2.2	3.4	On-chip C Leaded Type
	CCR ðÿMC3	3.58 MHz-4.2 MHz	(3)	(3)	2.2	3.4	On-chip C SMD Type

NOTES:

- 1. Please specify normal oscillator frequency.
- 2. On-chip C: 30pF built in.
- 3. On-chip C: 38pF built in.

Table 13-5. Subsystem Clock Oscillator Characteristics

 $(T_A = -40 \,^{\circ}C \text{ to} + 85 \,^{\circ}C, V_{DD} = 2.2 \,\text{V} \text{ to} 3.4 \,\text{V})$

				T		T	
Oscillator	Clock Configuration	Parameter	Test Condition	Min	Тур	Max	Units
Crystal Oscillator	XTin XTout C1 C2	Oscillation frequency (1)	_	32	32.768	35	kHz
		Stabilization time (2)	V _{DD} = 2.2 V to 3.4 V	_	1.0	3	S
External Clock	XTin XTout	XT _{in} input frequency ⁽¹⁾	-	32	-	100	kHz
		XT _{in} input high and low level width (t _{XTL} , t _{XTH})	_	5	_	15	μs

- 1. Oscillation frequency and $XT_{\mbox{in}}$ input frequency data are for oscillator characteristics only.
- 2. Stabilization time is the interval required for oscillating stabilization after a power-on occurs.

Table 13-6. Input/Output Capacitance

 $(T_A = 25 \,^{\circ}C, V_{DD} = 0 \, V)$

Parameter	Symbol	Condition	Min	Тур	Max	Units
Input Capacitance	C _{IN}	f = 1 MHz; Unmeasured pins are returned to V _{SS}	-	_	15	pF
Output Capacitance	C _{OUT}		_	_	15	pF
I/O Capacitance	C _{IO}		_	-	15	pF

Table 13-7. Voltage Doubler Output

 $(T_A = -40 \, ^{\circ}\text{C to} + 85 \, ^{\circ}\text{C}, \, V_{DD} = 2.2 \, \text{V to} \, 3.4 \, \text{V})$

Parameter	Symbol	Condition	Min	Тур	Max	Units
Voltage Doubler Output	Vbias	$V_{DD} = 2.2 \text{ V to } 3.4 \text{ V}$	_	2 V _{DD}	_	V

Table 13-8. A.C. Electrical Characteristics

 $(T_A = -40 \,^{\circ}\text{C} \text{ to } + 85 \,^{\circ}\text{C}, V_{DD} = 2.2 \,^{\circ}\text{V} \text{ to } 3.4 \,^{\circ}\text{V})$

Parameter	Symbol	Conditions	Min	Тур	Max	Units
Instruction Cycle Time ^(note)	t _{CY}	V _{DD} = 2.2 V to 3.4 V	0.95	-	64	μs
		With subsystem clock (fxt)	114	122	125	
Interrupt Input High, Low Width	fINTH, fINTL	INT0-INT2, INT4 K0-K3	10	-	-	
RESET Input Low Width	tRSL	Input	10	_	_	

NOTE: Unless otherwise specified, Instruction Cycle Time condition values assume a main system clock (fx) source.

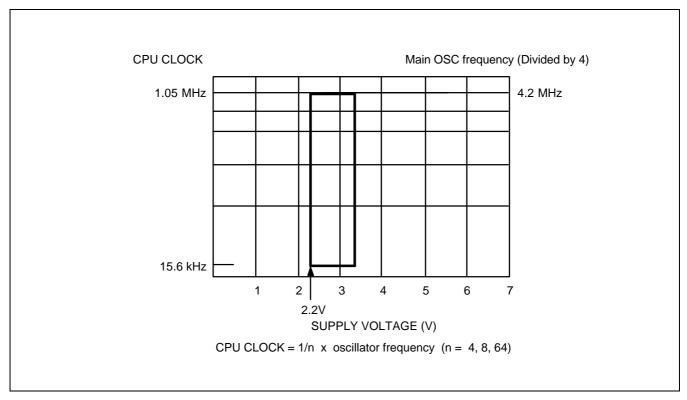


Figure 13-1. Standard Operating Voltage Range

Table 13-9. RAM Data Retention Supply Voltage in Stop Mode

 $(T_A = -40 \, ^{\circ}C \text{ to } + 85 \, ^{\circ}C)$

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Data retention supply voltage	V _{DDDR}	-	2.2	_	3.4	V
Data retention supply current	I _{DDDR}	V _{DDDR} = 2.2 V	_	0.1	10	μΑ
Release signal set time	tSREL	_	0	-	_	μs
Oscillator stabilization wait time ⁽¹⁾	t _{WAIT}	Released by RESET	_	2 ¹⁷ / fx	_	ms
		Released by interrupt	-	(2)	-	

- 1. During oscillator stabilization wait time, all CPU operations must be stopped to avoid instability during oscillator start-up.
- 2. Use the basic timer mode register (BMOD) interval timer to delay execution of CPU instructions during the wait time.

TIMING WAVEFORMS

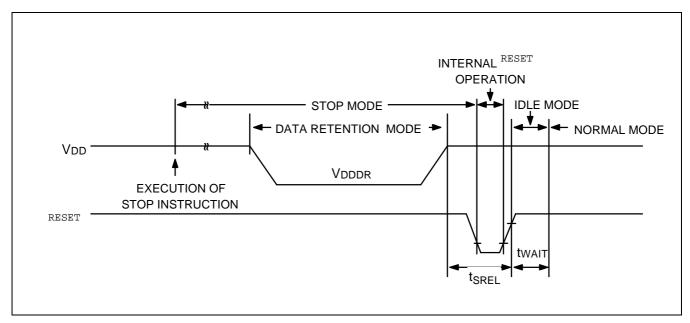


Figure 13-2. Stop Mode Release Timing When Initiated by RESET

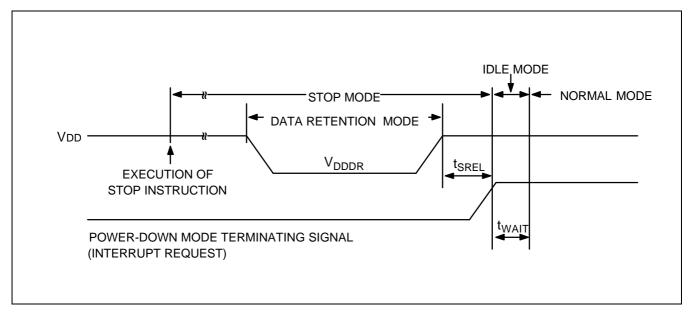


Figure 13-3. Stop Mode Release Timing When Initiated by Interrupt Request

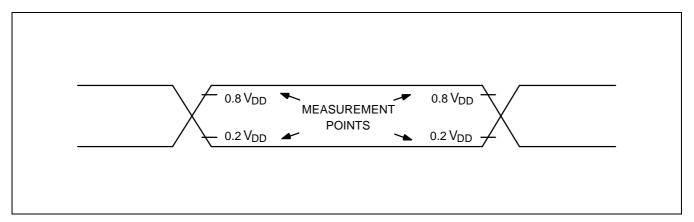


Figure 13-4. A.C. Timing Measurement Points (Except for X_{in} and XT_{in})

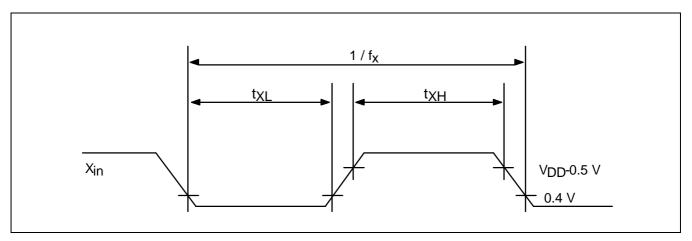


Figure 13-5. Clock Timing Measurement at Xin

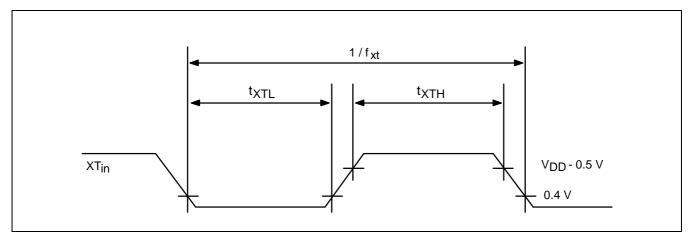


Figure 13-6. Clock Timing Measurement at XT_{in}

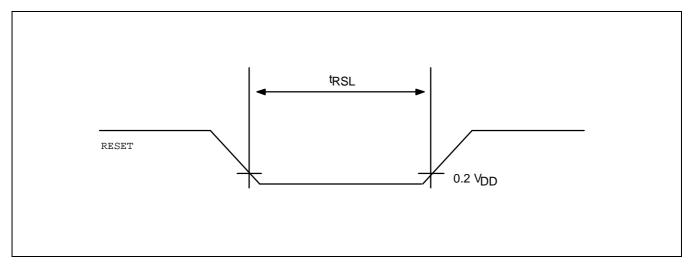


Figure 13-7. Input Timing for RESET Signal

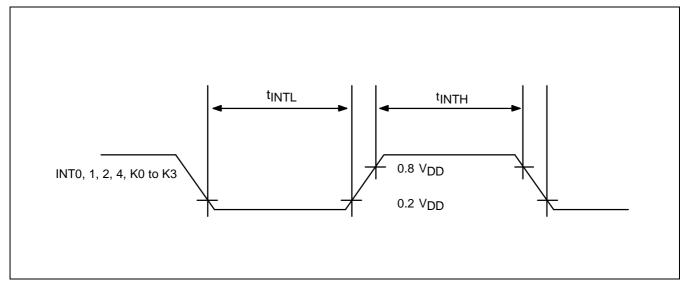


Figure 13-8. Input Timing for External Interrupts

CHARACTERISTIC CURVES

NOTE

The characteristic values shown in the following graphs are based on actual test measurements.

They do not, however, represent guaranteed operating values.

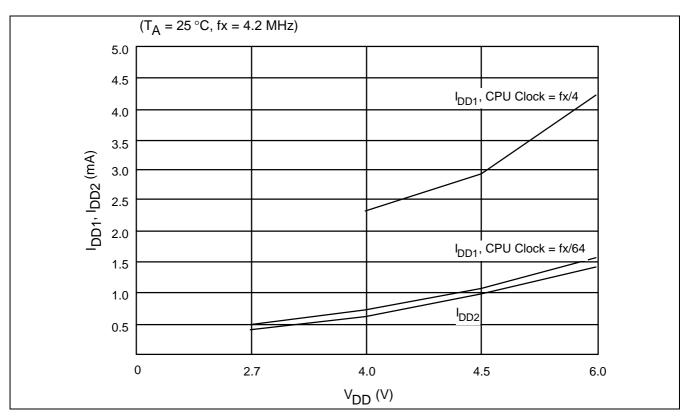


Figure 13-11. I_{DD1} , I_{DD2} VS. V_{DD}

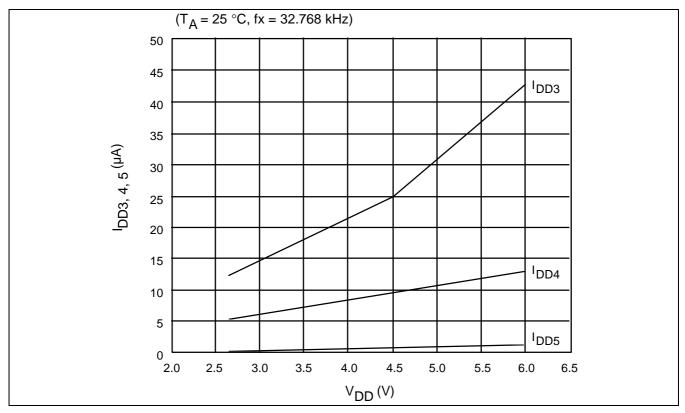


Figure 13-12. I_{DD3} , I_{DD4} , I_{DD5} VS. V_{DD}

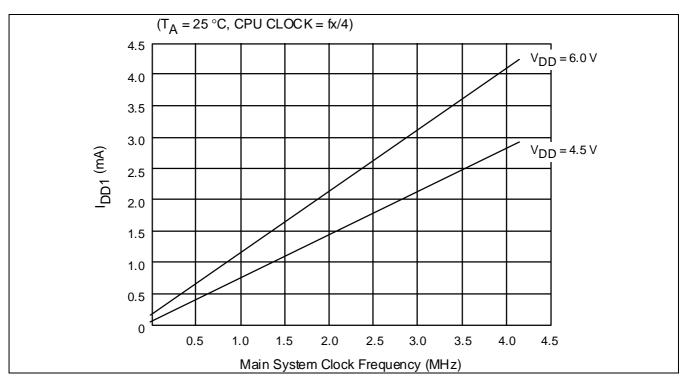


Figure 13-13. I_{DD1} VS. Main System Clock Frequency

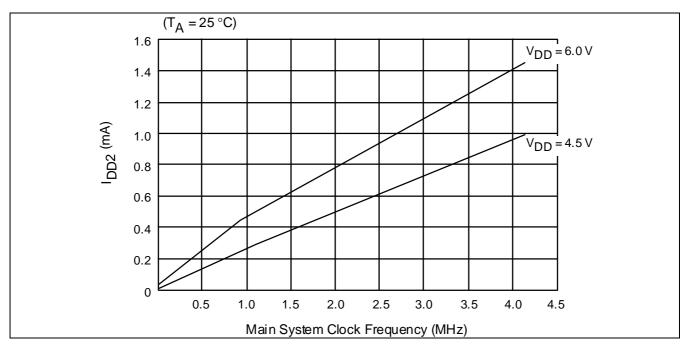


Figure 13-13. I_{DD2} VS. Main System Clock Frequency

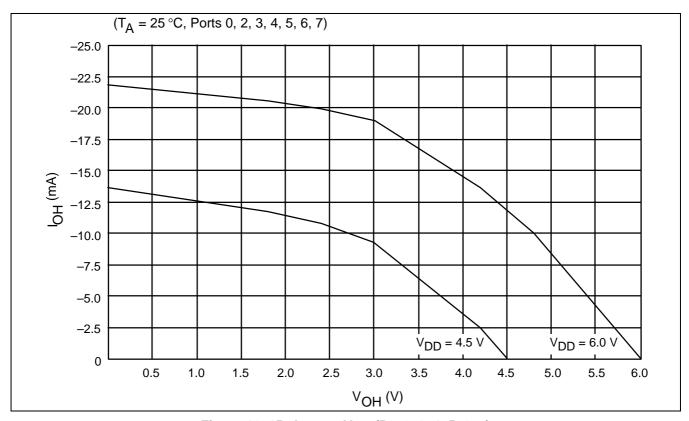


Figure 13-15. I_{OH} VS. V_{OH} (P0, 2, 3, 4, 5, 6, 7)

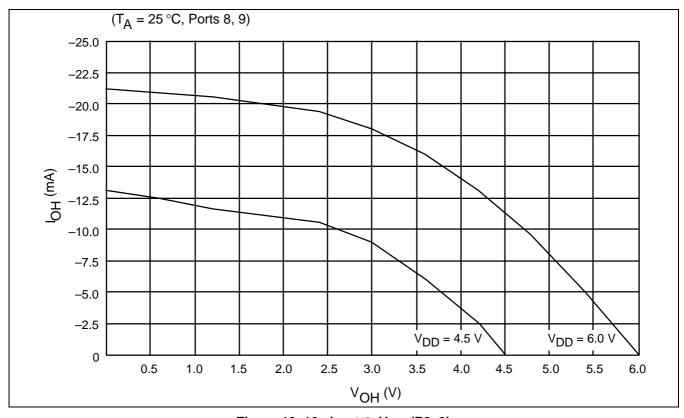


Figure 13-16. I_{OH} VS. V_{OH} (P8, 9)

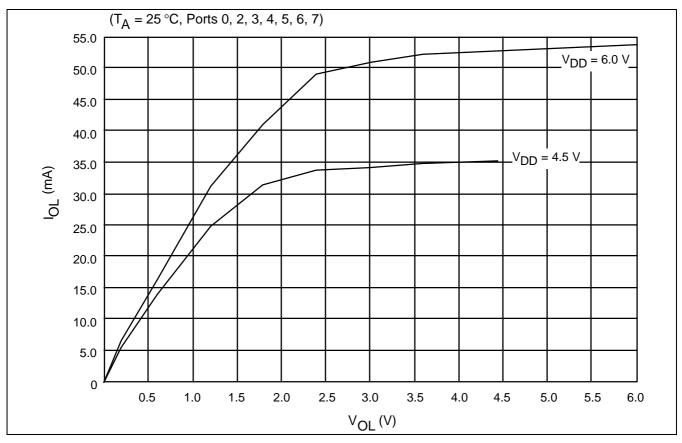


Figure 13-17. I_{OL} VS. V_{OL} (P0, 2, 3, 4, 5, 6, 7)

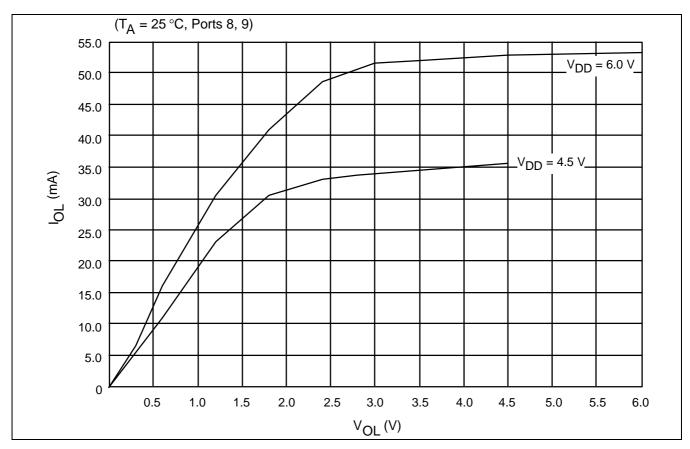


Figure 13-18. I_{OL} VS. V_{OL} (P8, 9)

14

MECHANICAL DATA

OVERVIEW

This section contains the following information about the device package:

- Package dimensions in millimetersD
- Pad diagram
- Pad/pin coordinate data table

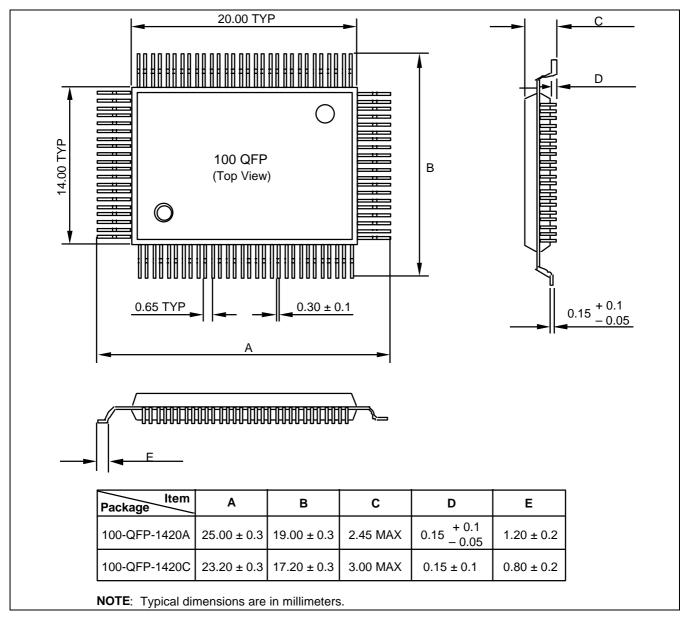


Figure 14-1. 100-QFP Package Dimensions

15

KS57P2916 OTP

OVERVIEW

The KS57P2916 single-chip CMOS microcontroller is the OTP (One Time Programmable) version of the KS57C2916 microcontroller. It has an on-chip OTP ROM instead of masked ROM. The EPROM is accessed by serial data format.

The KS57P2916 is fully compatible with the KS57C2916, both in function and in pin configuration. Because of its simple programming requirements, the KS57P2916 is ideal for use as an evaluation chip for the KS57C2916.

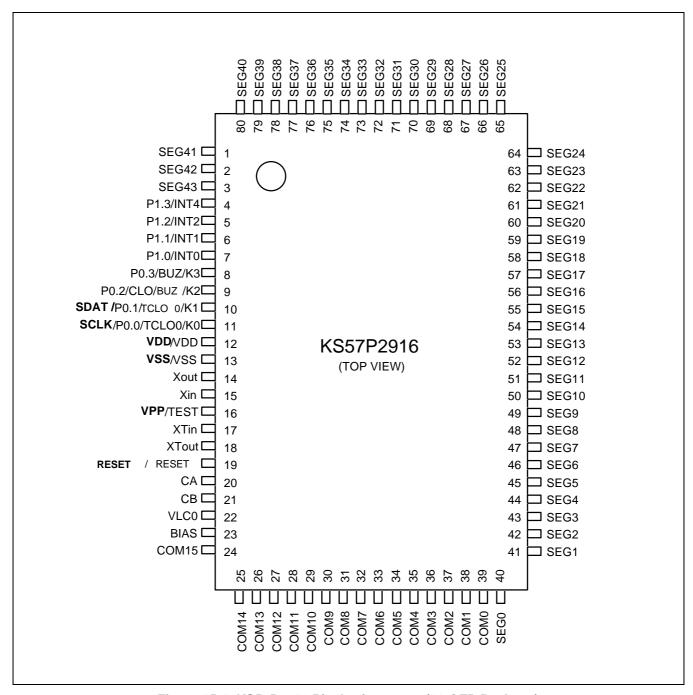


Figure 15-1. KS57P2916 Pin Assignments (80-QFP Package)

Table 15-1. Descriptions of Pins Used to Read/Write the EPROM

Main Chip	During Programming					
Pin Name	Pin Name	me Pin No. I/O		Function		
P0.1	SDAT	10	I/O	Serial data pin. Output port when reading and input port when writing. Can be assigned as a Input/push-pull output port.		
P0.0	SCLK	11	I/O	Serial clock pin. Input only pin.		
TEST	V _{PP} (TEST)	16	I	Power supply pin for EPROM cell writing (indicates that OTP enters into the writing mode). When 12.5 V is applied, OTP is in writing mode and when 5 V is applied, OTP is in reading mode. (Option)		
RESET	RESET	19	I	Chip initialization		
V _{DD} /V _{SS}	V _{DD} /V _{SS}	12/13	I	Logic power supply pin. VDD should be tied to +5 V during programming.		

Table 15-2. Comparison of KS57P2916 and KS57C2916 Features

Characteristic	KS57P2916	KS57C2916		
Program Memory	16 Kbyte EPROM	16 Kbyte mask ROM		
Operating Voltage (V _{DD})	2.2 V to 3.4 V	2.2 V to 3.4 V		
OTP Programming Mode	V _{DD} = 5 V, V _{PP} (TEST)=12.5V			
Pin Configuration	80 QFP	80 QFP		
EPROM Programmability	User Program 1 time	Programmed at the factory		

OPERATING MODE CHARACTERISTICS

When 12.5 V is supplied to the $V_{PP}(TEST)$ pin of the KS57P2916, the EPROM programming mode is entered. The operating mode (read, write, or read protection) is selected according to the input signals to the pins listed in Table 15–3 below.

Table 15-3. Operating Mode Selection Criteria

V _{DD}	V _{PP} (TEST)	REG/MEM	Address (A15–A0)	R/W	Mode
5 V	5 V	0	0000H	1	EPROM read
	12.5 V	0	0000H	0	EPROM program
	12.5 V	0	0000H	1	EPROM verify
	12.5 V	1	0E3FH	0	EPROM read protection

NOTE: "0" means Low level; "1" means High level.

Table 15-4. D.C. Electrical Characteristics

 $(T_A = -40 \,^{\circ}C \text{ to } + 85 \,^{\circ}C, V_{DD} = 2.2 \,^{\circ}V \text{ to } 3.4 \,^{\circ}V)$

Parameter	Symbol	Conditions			Тур	Max	Units
Supply Current (1)	IDD1	$V_{DD} = 3V \pm 10\%$ 4.19 MHz (PCON=3H) crystal oscillator C1 = C2 = 22 pF			1.3	3.0	mA
	IDD2	Idle mode; V _{DD} = 3 V ± 10% 4.19 MHz (PCON=3H) crystal osc C1 = C2 = 22 pF		0.4	1.0		
	IDD3 (2)	$V_{DD} = 3 \text{ V} \pm 10\%$ 32 kHz crystal oscillator Idle mode; $V_{DD} = 3 \text{ V} \pm 10\%$ 32 kHz crystal oscillator			15	30	μΑ
	IDD4 (2)				5	15	
	IDD5	Stop mode; $V_{DD} = 3 V \pm 10\%$	SCMOD=0000B, XTin=0V		0.5	3	
		Stop mode; $V_{DD} = 3 V \pm 10\%$	SCMOD=0100B		0.2	2	

- 1. Data includes power consumption for subsystem clock oscillation.
- 2. When the system clock control register, SCMOD, is set to 1001B, main system clock oscillation stops and the subsystem clock is used.
- 3. Current in the following circuits are not included; on-chip pull-up resistors, internal LCD voltage dividing resistors, voltage doubler, and output port drive currents.

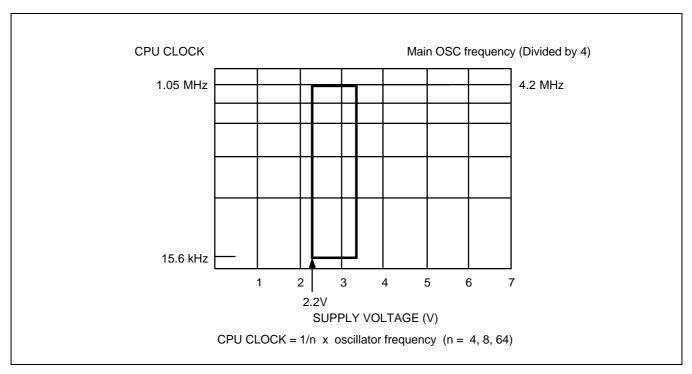


Figure 15-2. Standard Operating Voltage Range

