Document Title

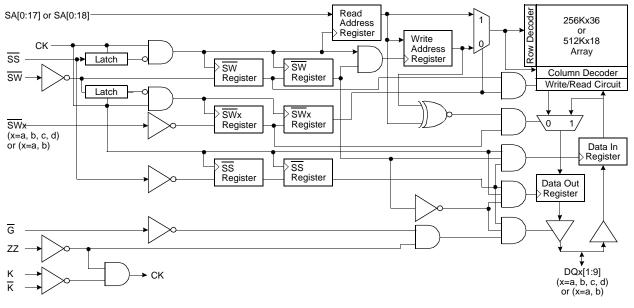
256Kx36 & 512Kx18 Synchronous Pipelined SRAM

Revision History

<u>Rev. No.</u>	<u>History</u>	Draft Date	<u>Remark</u>
Rev. 0.0	 Preliminary specification release Final specification release 	Mar. 1999	Preliminary
Rev. 1.0		Nov. 1999	Final

The attached data sheets are prepared and approved by SAMSUNG Electronics. SAMSUNG Electronics CO., LTD. reserve the right to change the specifications. SAMSUNG Electronics will evaluate and reply to your requests and questions on the parameters of this device. If you have any questions, please contact the SAMSUNG branch office near your office, call or cortact Headquarters.

1


256Kx36 & 512Kx18 Synchronous Pipelined SRAM

FEATURES

- 256Kx36 or 512Kx18 Organizations.
- 2.5V Core/1.5V Output Power Supply.
- HSTL Input and Output Levels.
- Differential, HSTL Clock Inputs K, \overline{K} .
- Synchronous Read and Write Operation
- Registered Input and Registered Output
- Internal Pipeline Latches to Support Late Write.
- Byte Write Capability(four byte write selects, one for each 9bits)
- Synchronous or Asynchronous Output Enable.
- Power Down Mode via ZZ Signal.
- Programmable Impedance Output Drivers.
- JTAG 1149.1 Compatible Test Access port.
- 119(7x17)Pin Ball Grid Array Package(14mmx22mm).

Organization	Part Number	Cycle Time	Access Time
	KM736S8011H-4	4.0	2.0
256Kx36	KM736S8011H-5A	5.0	2.0
	KM736S8011H-5	5.0	2.5
	KM718S8011H-4	4.0	2.0
512Kx18	KM718S8011H-5A	5.0	2.0
	KM718S8011H-5	5.0	2.5

FUNCTIONAL BLOCK DIAGRAM

PIN DESCRIPTION

Pin Name	Pin Description	Pin Name	Pin Description
К, К	Differential Clocks	Vref	HSTL Input Reference Voltage
SAn	Synchronous Address Input	M1, M2	Read Protocol Mode Pins (M1=Vss, M2=VDD)
DQn	Bi-directional Data Bus	G	Asynchronous Output Enable
SW	Synchronous Global Write Enable	SS	Synchronous Select
SWa	Synchronous Byte a Write Enable	ТСК	JTAG Test Clock
SWb	Synchronous Byte b Write Enable	TMS	JTAG Test Mode Select
SWc	Synchronous Byte c Write Enable	TDI	JTAG Test Data Input
SWd	Synchronous Byte d Write Enable	TDO	JTAG Test Data Output
ZZ	Asynchronous Power Down	ZQ	Output Driver Impedance Control
Vdd	Core Power Supply	Vss	GND
Vddq	Output Power Supply	NC	No Connection

PACKAGE PIN CONFIGURATIONS(TOP VIEW)

KM736S8011(256Kx36)

	1	2	3	4	5	6	7
А	Vddq	SA13	SA10	NC	SA7	SA4	Vddq
В	NC	NC	SA9	NC	SA8	SA17	NC
С	NC	SA12	SA11	Vdd	SA6	SA5	NC
D	DQc8	DQc9	Vss	ZQ	Vss	DQb9	DQb8
E	DQc6	DQc7	Vss	SS	Vss	DQb7	DQb6
F	Vddq	DQc5	Vss	G	Vss	DQb5	Vddq
G	DQc3	DQc4	SWc	NC	SWb	DQb4	DQb3
н	DQc1	DQc2	Vss	NC	Vss	DQb2	DQb1
J	Vddq	Vdd	Vref	Vdd	Vref	Vdd	Vddq
к	DQd1	DQd2	Vss	к	Vss	DQa2	DQa1
L	DQd3	DQd4	SWd	ĸ	SWa	DQa4	DQa3
м	Vddq	DQd₅	Vss	SW	Vss	DQa5	Vddq
Ν	DQd6	DQd7	Vss	SAo	Vss	DQa7	DQa6
Р	DQd8	DQd9	Vss	SA1	Vss	DQa9	DQa8
R	NC	SA15	M1	Vdd	M2	SA2	NC
т	NC	NC	SA14	SA16	SA3	NC	ZZ
U	Vddq	TMS	TDI	ТСК	TDO	NC	Vddq

KM718S8011(512Kx18)

	1	2	3	4	5	6	7
А	Vddq	SA13	SA10	NC	SA7	SA4	Vddq
В	NC	NC	SA9	NC	SA8	SA17	NC
С	NC	SA12	SA11	Vdd	SA6	SA5	NC
D	DQb1	NC	Vss	ZQ	Vss	DQa9	NC
E	NC	DQb2	Vss	SS	Vss	NC	DQa8
F	Vddq	NC	Vss	G	Vss	DQa7	Vddq
G	NC	DQb3	SWb	NC	NC	NC	DQa6
н	DQb4	NC	Vss	NC	Vss	DQa5	NC
J	Vddq	Vdd	Vref	Vdd	Vref	Vdd	Vddq
к	NC	DQb5	Vss	К	Vss	NC	DQa4
L	DQb6	NC	NC	ĸ	SWa	DQa3	NC
м	Vddq	DQb7	Vss	SW	Vss	NC	Vddq
N	DQb8	NC	Vss	SA ₀	Vss	DQa2	NC
Р	NC	DQb9	Vss	SA1	Vss	NC	DQa1
R	NC	SA15	M1	Vdd	M2	SA2	NC
т	NC	SA18	SA14	NC	SA3	SA16	ZZ
U	Vddq	TMS	TDI	ТСК	TDO	NC	Vddq

FUNCTION DESCRIPTION

The KM736S8011 and KM718S8011 are 9,437,184 bit Synchronous Pipeline Mode SRAM. It is organized as 262,144 words of 36 bits(or 524,288 words of 18 bits)and is implemented in SAMSUNG's advanced CMOS technology.

Single differential HSTL level K clocks are used to initiate the read/write operation and all internal operations are self-timed. At the rising edge of K clock, All addresses, Write Enables, Synchronous Select and Data Ins are registered internally. Data outs are updated from output registers edge of the next rising edge of the K clock. An internal write data buffer allows write data to follow one cycle after addresses and controls. The package is 119(7x17) Ball Grid Array with balls on a 1.27mm pitch.

Read Operation

During reads, the address is registered during the frist clock edge, the internal array is read between this first edge and the second edge, and data is captured in the output register and driven to the CPU during the second clock edge. SS is driven low during this cycle, signaling that the SRAM should drive out the data.

During consecutive read cycles where the address is the same, the data output must be held constant without any glitches. This characteristic is because the SRAM will be read by devices that will operate slower than the SRAM frequency and will require multiple SRAM cycles to perform a single read operation.

Write(Store) Operation

All addresses and \overline{SW} are sampled on the clock rising edge. \overline{SW} is low on the rising clock. Write data is sampled on the rising clock, one cycle after write address and \overline{SW} have been sampled by the SRAM. \overline{SS} will be driven low during the same cycle that the Address, \overline{SW} and \overline{SW} [a:d] are valid to signal that a valid operation is on the Address and Control Input.

Pipelined write are supported. This is done by using write data buffers on the SRAM that capture the write addresses on one write cycle, and write the array on the next write cycle. The "next write cycle" can actually be many cycles away, broken by a series of read cycles. Byte writes are supported. The byte write signals $\overline{SW}[a:d]$ signal which 9-bit bytes will be writen. Timing of $\overline{SW}[a:d]$ is the same as the \overline{SW} signal.

Bypass Read Operation

Since write data is not fully written into the array on first write cycle, there is a need to sense the address in case a future read is to be done from the location that has not been written yet. For this case, the address comparator check to see if the new read address is the same as the contents of the stored write address Latch. If the contents match, the read data must be supplied from the stored write data latch with standard read timing. If there is no match, the read data comes from the SRAM array. The bypassing of the SRAM array occurs on a byte by byte basis. If one byte is written and the other bytes are not, read data from the last written will have new byte data from the write data buffer and the other bytes from the SRAM array.

Programmable Impedance Output Buffer Operation

This HSTL Late Write SRAM has been designed with programmable impedance output buffers. The SRAMs output buffer impedance can be adjusted to match the system data bus impedance, by connecting a external resistor (RQ) between the ZQ pin of the SRAM and Vss. The value of RQ must be five times the value of the intended line impedance driven by the SRAM. For example, a 250Ω resistor will give an output buffer impedance of 50Ω . The allowable range of RQ is from 175Ω to 350Ω . Internal circuits evaluate and periodically adjust the output buffer impedance, as the impedance is affected by drifts in supply voltage and temperature. One evaluation occurs every 32 clock cycles, with each evaluation moving the output buffer impedance level only one step at a time toward the optimum level. Impedance updates occur when the SRAM is in High-Z state, and thus are triggered by write and deselect operations. Updates will also be triggered with G HIGH initiated High-Z state, providing the specified G setup and hold times are met. Impedance match is not instantaneous upon power-up. In order to guarantee optimum output driver impedance, the SRAM requires a minimum number of non-read cycles (1,024) after power-up. The output buffers can also be programmed in a minimum impedance configuration by connecting ZQ to Vss or Vdd.

Mode Control

There are two mode control select pins (M1 and M2) used to set the proper read protocol. This SRAM supports single clock pipelined operating mode. For proper specified device operation, M1 must be connected to Vss and M2 must be connected to Vbb. These mode pins must be set at power-up and must not change during device operation.

Power-Up/Power-Down Supply Voltage Sequencing

The following power-up supply voltage application is recommended: VSS, VDD, VDDQ, VREF, then VIN. VDD and VDDQ can be applied simultaneously, as long as VDDQ does not exceed VDD by more than 0.5V during power-up. The following power-down supply voltage removal sequence is recommended: VIN, VREF, VDDQ, VDD, VSS. VDD and VDDQ can be removed simultaneously, as long as VDDQ does not exceed VDD by more than 0.5V during power-down.

Sleep Mode

Sleep mode is a low power mode initiated by bringing the asynchronous ZZ pin high. During sleep mode, all other inputs are ignored and outputs are brought to a High-Impedance state. Sleep mode current and output High-Z are guaranteed after the specified sleep mode enable time. During sleep mode the memory array data content is preserved. Sleep mode must not be initiated until after all pending operations have completed, as any pending operation is not guaranteed to properly complete after sleep mode is initiated. Normal operations can be resumed by bringing the ZZ pin low, but only after the specified sleep mode recovery time.

KM736S8011 KM718S8011

TRUTH TABLE

к	ZZ	G	SS	SW	SWa	SWb	SWc	SWd	DQa	DQb	DQc	DQd	Operation
Х	Н	Х	Х	Х	Х	Х	Х	Х	Hi-Z	Hi-Z	Hi-Z	Hi-Z	Power Down Mode. No Operation
Х	L	Н	Х	Х	Х	Х	Х	Х	Hi-Z	Hi-Z	Hi-Z	Hi-Z	Output Disabled.
\uparrow	L	L	Н	Х	Х	Х	Х	Х	Hi-Z	Hi-Z	Hi-Z	Hi-Z	Output Disabled. No Operation
\uparrow	L	L	L	Н	Х	Х	Х	Х	Dout	Dout	Dout	Dout	Read Cycle
\uparrow	L	Х	L	L	Н	Н	Н	Н	Hi-Z	Hi-Z	Hi-Z	Hi-Z	No Bytes Written
\uparrow	L	Х	L	L	L	н	н	н	DIN	Hi-Z	Hi-Z	Hi-Z	Write first byte
\uparrow	L	Х	L	L	Н	L	н	Н	Hi-Z	DIN	Hi-Z	Hi-Z	Write second byte
\uparrow	L	Х	L	L	Н	н	L	Н	Hi-Z	Hi-Z	Din	Hi-Z	Write third byte
\uparrow	L	Х	L	L	Н	Н	Н	L	Hi-Z	Hi-Z	Hi-Z	DIN	Write fourth byte
\uparrow	L	Х	L	L	L	L	L	L	DIN	DIN	DIN	Din	Write all bytes

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit	Note
Core Supply Voltage Relative to Vss	Vdd	-0.5 to 3.0	V	
Output Supply Voltage Relative to Vss	Vddq	-0.5 to 3.0	V	
Voltage on any I/O pin Relative to Vss	Vterm	-0.5 to VDD+0.5	V	
Output Short-Circuit Current	Ιουτ	25	mA	
Operating Temperature	TOPR	0 to 70	°C	
Storage Temperature	Тѕтс	-55 to 125	°C	

Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

RECOMMENDED DC OPERATING CONDITIONS

Parameter	Symbol	Min	Тур	Max	Unit	Note
Core Power Supply Voltage	Vdd	2.35	2.5	2.65	V	
Output Power Supply Voltage	Vddq	1.4	1.5	1.6	V	
Input High Level	Vін	VREF+0.1	-	Vddq+0.3	V	
Input Low Level	VIL	-0.3	-	Vref-0.1	V	
Input Reference Voltage	Vref	0.6	Vddq/2	2Vddq/3	V	
Clock Input Signal Voltage	VIN-CLK	-0.3	-	Vddq+0.3	V	
Clock Input Differential Voltage	VDIF-CLK	0.1	-	Vddq+0.6	V	
Clock Input Common Mode Voltage	Vсм-CLK	0.6	Vddq/2	2Vddq/3	V	

KM736S8011 KM718S8011

PIN CAPACITANCE

Parameter	Symbol	Тур	Max	Unit
Input Capacitance	CIN	-	4	pF
Output Capacitance	Соит	-	6	pF

NOTE : Periodically sampled and not 100% tested.(dV=0V, f=1MHz)

DC CHARACTERISTICS

Parameter	Symbol	Min	Max	Unit	Note
Average Power Suppl <u>y</u> Operating Current-x36 (VIN=VIH or VIL, ZZ & SS=VIL)	IDD4 IDD5	-	600 550	mA	1, 2
Average Power Suppl <u>y</u> Operating Current-x18 (VIN=VIH or VIL, ZZ & SS=VIL)	IDD4 IDD5	-	550 500	mA	1, 2
Power Supply Standby Current (VIN=VIн or VIL, ZZ=VIн)	Isbzz	-	60	mA	1
Active Standby Power Supply Current (VIN=VIн or VIL, SS=VIн, ZZ=VIL)	ISBSS	-	200	mA	1
Input Leakage Current (VIN=Vss or VDDQ)	Iц	-1	1	μA	
Output Leakage Current (Vou⊤=Vss or Vobo, DQ in High-Z)	Ilo	-1	1	μA	
Output High Voltage(Programmable Impedance Mode)	VOH1	Vddq/2	Vddq	V	3, 5
Output Low Voltage(Programmable Impedance Mode)	VOL1	Vss	VDDQ/2	V	4, 5
Output High Voltage(IOH=-0.1mA)	Voh2	VDDQ-0.2	Vddq	V	6
Output Low Voltage(IoL=0.1mA)	Vol2	Vss	0.2	V	6
Output High Voltage(IOH=-6mA)	Vонз	Vddq-0.4	Vddq	V	6
Output Low Voltage(IoL=6mA)	Vol3	Vss	0.4	V	6

NOTE :1. Minimum cycle. Iout=0mA.

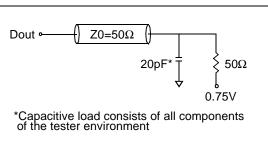
2. 50% read cycles. 3. |IoH|=(VdDa/2)/(RQ/5)±10% @VoH=VdDa/2 for 175 $\Omega \leq RQ \leq 350\Omega.$

4. $|Iou|=(Vboa/2)/(RQ/5)\pm10\% @Vou=Vboa/2 for 175\Omega \le RQ \le 350\Omega$. 5. Programmable Impedance Output Buffer Mode. The ZQ pin is connected to Vss through RQ. 6. Minimum Impedance Output Buffer Mode. The ZQ pin is connected to Vss or Vbb.

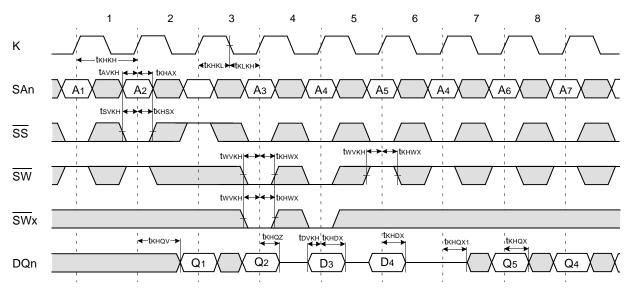
AC TEST CONDITIONS

Parameter	Symbol	Value	Unit
Core Power Supply Voltage	Vdd	2.35~2.65	V
Output Power Supply Voltage	Vddq	1.4~1.6	V
Input High/Low Level	VIH/VIL	1.25/0.25	V
Input Reference Level	Vref	0.75	V
Input Rise/Fall Time	Tr/Tf	1.0/1.0	ns
Input and Out Timing Reference Level		0.75	V
Clock Input Timing Reference Level		Cross Point	V

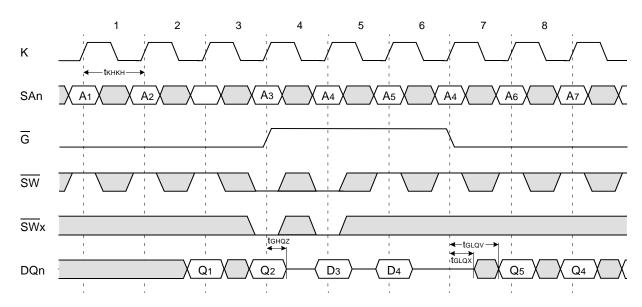
NOTE : Parameters are tested with RQ=250 Ω and VDDQ=1.5V.


AC CHARACTERISTICS

-4 -5A 5 Parameter Symbol Unit Max Min Max Min Min Max **Clock Cycle Time** 4.0 -5.0 -5.0 tкнкн ns Clock High Pulse Width **t**KHKL 1.2 -1.2 -1.2 ns


Clock Low Pulse Width	t KLKH	1.2	-	1.2	-	1.2	-	ns	
Clock High to Output Valid	t KHQV	-	2.0	-	2.0	-	2.5	ns	
Clock High to Output Hold	tкнqx	0.5	-	0.5	-	0.5	-	ns	
Address Setup Time	t avkh	0.5	-	0.5	-	0.5	-	ns	
Address Hold Time	t KHAX	0.75	-	0.75	-	0.75	-	ns	
Write Data Setup Time	tdvkh	0.5	-	0.5	-	0.5	-	ns	
Write Data Hold Time	t KHDX	0.75	-	0.75	-	0.75	-	ns	
SW, SW[a:d] Setup Time	twvкн	0.5	-	0.5	-	0.5	-	ns	
SW, SW[a:d] Hold Time	tкнwx	0.75	-	0.75	-	0.75	-	ns	
SS Setup Time	tsvкн	0.5	-	0.5	-	0.5	-	ns	
SS Hold Time	tĸнsx	0.75	-	0.75	-	0.75	-	ns	
Clock High to Output Hi-Z	t KHQZ	-	2.0	-	2.0	-	2.5	ns	
Clock High to Output Low-Z	tKHQX1	0.5	-	0.5	-	0.5	-	ns	
G High to Output High-Z	t GHQZ	-	2.0	-	2.0	-	2.5	ns	
G Low to Output Low-Z	tGLQX	0.5	-	0.5	-	0.5	-	ns	
G Low to Output Valid	tGLQV	-	2.0	-	2.0	-	2.0	ns	
ZZ High to Power Down(Sleep Time)	tzze	-	8.0	-	10.0	-	10.0	ns	
ZZ Low to Recovery(Wake-up Time)	tzzr	-	8.0	-	10.0	-	10.0	ns	

Note

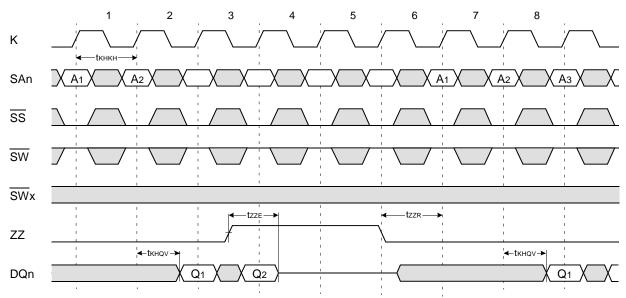

TIMING WAVEFORMS OF NORMAL ACTIVE CYCLES (SS Controlled, G=Low)

NOTE

1. D₃ is the input data written in memory location A₃.

2. Q4 is the output data read from the write data buffer(not from the cell array), as a result of address A4 being a match from the last write cycle address.

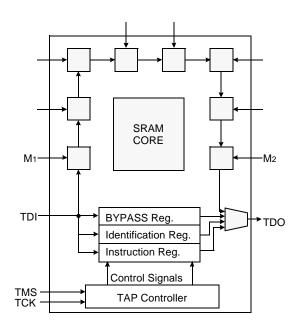
TIMING WAVEFORMS OF NORMAL ACTIVE CYCLES (G Controlled, SS=Low)


NOTE

1. D₃ is the input data written in memory location A₃.

2. Q4 is the output data read from the write data buffer(not from the cell array), as a result of address A4 being a match from the last write cycle address.

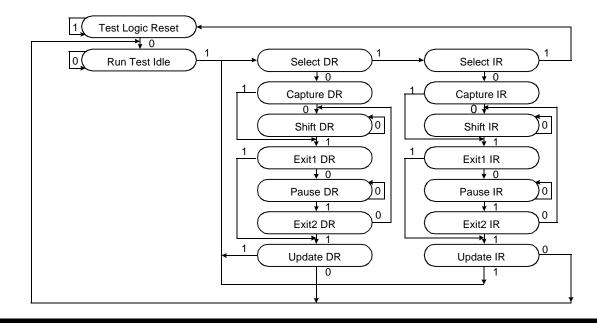
TIMING WAVEFORMS OF STANDBY CYCLES



IEEE 1149.1 TEST ACCESS PORT AND BOUNDARY SCAN-JTAG

This part contains an IEEE standard 1149.1 Compatible Teat Access Port(TAP). The package pads are monitored by the Serial Scan circuitry when in test mode. This is to support connectivity testing during manufacturing and system diagnostics. Internal data is not driven out of the SRAM under JTAG control. In conformance with IEEE 1149.1, the SRAM contains a TAP controller, Instruction Register, Bypass Register and ID register. The TAP controller has a standard 16-state machine that resets internally upon power-up, therefore, TRST signal is not required. It is possible to use this device without utilizing the TAP. To disable the TAP controller without interfacing with normal operation of the SRAM, TCK must be tied to Vss to preclude mid level input. TMS and TDI are designed so an undriven input will produce a response identical to the application of a logic 1, and may be left unconnected. But they may also be tied to VDD through a resistor. TDO should be left unconnected.

JTAG Block Diagram


JTAG Instruction Coding

IR2	IR1	IR0	Instruction TDO Output		Notes
0	0	0	SAMPLE-Z	Boundary Scan Register	1
0	0	1	IDCODE	Identification Register	2
0	1	0	SAMPLE-Z	Boundary Scan Register	1
0	1	1	BYPASS	Bypass Register	3
1	0	0	SAMPLE	Boundary Scan Register	4
1	0	1	BYPASS	Bypass Register	3
1	1	0	BYPASS	Bypass Register	3
1	1	1	BYPASS	Bypass Register	3

NOTE :

- 1. Places DQs in Hi-Z in order to sample all input data regardless of other SRAM inputs.
- 2. TDI is sampled as an input to the first ID register to allow for the serial shift of the external TDI data.
- Bypass register is initiated to Vss when BYPASS instruction is invoked. The Bypass Register also holds serially loaded TDI when exiting the Shift DR states.
- 4. SAMPLE instruction dose not places DQs in Hi-Z.

TAP Controller State Diagram

SCAN REGISTER DEFINITION

Part	Instruction Register	Bypass Register	ID Register	Boundary Scan
256Kx36	3 bits	1 bits	32 bits	70 bits
512Kx18	3 bits	1 bits	32 bits	51 bits

ID REGISTER DEFINITION

Part	Revision Number (31:28)	Part Configuration (27:18)	Vendor Definition (17:12)	Samsung JEDEC Code (11: 1)	Start Bit(0)
256Kx36	0000	00110 00100	XXXXXX	00001001110	1
512Kx18	0000	00111 00011	XXXXXX	00001001110	1

BOUNDARY SCAN EXIT ORDER(x36)

3B 36 SA9 SA8 5B 35 37 2B NC SA17 6B 34 38 ЗA **SA**10 SA7 5A 33 3C 39 SA11 SA6 5C 32 40 2C SA12 SA5 6C 31 41 2A **SA**13 SA4 6A 30 6D 42 2D DQc9 DQb9 29 43 1D DQc8 DQb8 7D 28 2E DQb7 44 DQc7 6E 27 45 1E DQc6 DQb6 7E 26 DQc5 DQb5 46 2F 6F 25 47 2G DQc4 DQb4 6G 24 48 1G DQc3 DQb3 7G 23 DQb2 49 2H DQc2 6H 22 DQb1 50 1H DQc1 7H 21 51 3G SWc SWb 5G 20 52 4D ZQ G 4F 19 SS Κ 4K 53 4E 18 ĸ 54 4G NC 4L 17 55 4H NC SWa 5L 16 SW 4M DQa1 7K 56 15 SWd DQa2 6K 57 3L 14 58 1K DQd1 DQa3 7L 13 59 2K DQd2 DQa4 6L 12 DQa5 60 1L DQd3 6M 11 61 2L DQd4 DQa6 7N 10 62 2M DQd5 DQa7 6N 9 63 1N DQd6 DQa8 7P 8 7 64 2N DQd7 DQa9 6P 1P DQd8 7T 6 65 ΖZ 66 2P DQd9 SA3 5T 5 67 3T SA14 SA₂ 6R 4 2R **SA**15 **SA**16 4T 3 68 4P 2 69 4N SA₀ SA1 3R 70 **M**1 M2 5R 1

BOUNDARY SCAN EXIT ORDER(x18)

26 3B SA9 SA8 5B 27 2B NC SA17 6B 28 3A SA10 SA7 5A 29 3C SA11 SA6 5C	25 24
28 3A SA10 SA7 5A	24
20 20 8044 80.0 50	23
29 3C SA11 SA6 5C	22
30 2C SA12 SA5 6C	21
31 2A SA13 SA4 6A	20
DQa9 6D	19
32 1D DQb1	
33 2E DQb2	
DQas 7E	18
DQa7 6F	17
34 2G DQb3	
DQa6 7G	16
DQas 6H	15
35 1H DQb4	
36 3G SW b	
37 4D ZQ <u>G</u> 4F	14
38 4E SS K 4K	13
39 4G NC K 4L	12
40 4H NC SWa 5L	11
41 4M SW DQa4 7K	10
42 2K DQb5 DQa3 6L	9
43 1L DQb6	
44 2M DQb7 DQa2 6N	8
45 1N DQb8 DQa1 7P	7
ZZ 7T	6
46 2P DQb9 SA3 5T	5
47 3T SA14 SA2 6R	4
48 2R SA15	
49 4N SA0 SA1 4P	3
50 2T SA18 SA16 6T	2
51 3R M1 M2 5R	1

NOTE : 1. Pin 2B is a no connection pin to internal chip. This pin is a place holder for 16M part and the scanned data is fixed to "0" for this 8M part. 2. Pins 4G and 4H are no connection pin to internal chip. The scanned data are fixed to "0" and "1" respectively.

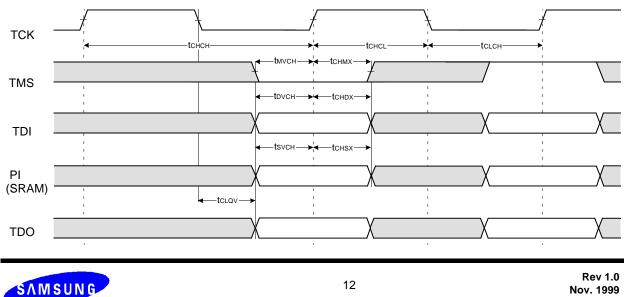
JTAG DC OPERATING CONDITIONS

Parameter	Symbol	Min	Тур	Max	Unit	Note
Power Supply Voltage	Vdd	2.35	2.5	2.65	V	
Input High Level	Vін	1.7	-	VDD+0.3	V	
Input Low Level	VIL	-0.3	-	0.7	V	
Output High Voltage(Iон=-2mA)	Vон	2.0	-	Vdd	V	
Output Low Voltage(IoL=2mA)	Vol	Vss	-	0.4	V	

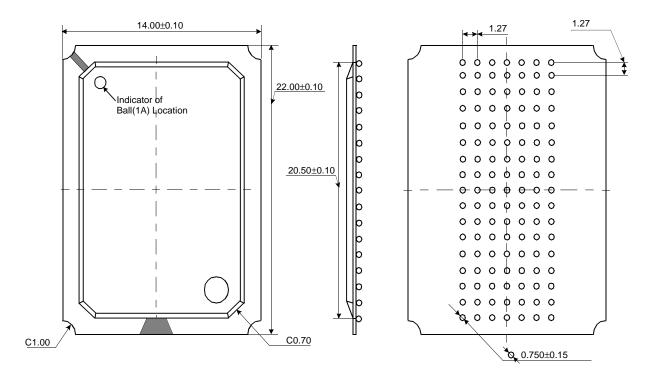
 $\ensuremath{\textbf{NOTE}}$: 1. The input level of SRAM pin is to follow the SRAM DC specification.

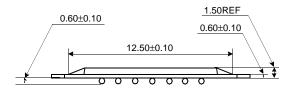
JTAG AC TEST CONDITIONS

Parameter	Symbol	Min	Unit	Note
Input High/Low Level	VIH/VIL	2.5/0.0	V	
Input Rise/Fall Time	TR/TF	1.0/1.0	ns	
Input and Output Timing Reference Level		1.25	V	1


NOTE : 1. See SRAM AC test output load on page 7.

JTAG AC Characteristics


Parameter	Symbol	Min	Max	Unit	Note
TCK Cycle Time	tснсн	50	-	ns	
TCK High Pulse Width	tCHCL	20	-	ns	
TCK Low Pulse Width	t CLCH	20	-	ns	
TMS Input Setup Time	tмvсн	5	-	ns	
TMS Input Hold Time	tснмх	5	-	ns	
TDI Input Setup Time	t DVCH	5	-	ns	
TDI Input Hold Time	t CHDX	5	-	ns	
SRAM Input Setup Time	tsvcн	5	-	ns	
SRAM Input Hold Time	tCHSX	5	-	ns	
Clock Low to Output Valid	tCLQV	0	10	ns	


JTAG TIMING DIAGRAM

ELECTRONICS

119 BGA PACKAGE DIMENSIONS

NOTE :

1. All Dimensions are in Millimeters.

2. Solder Ball to PCB Offset : 0.10 MAX.

3. PCB to Cavity Offset : 0.10 MAX.

