RP1236 *312.0 MHz*

SAW Resonator

- Designed for 312 MHz Low-Power Superhet Transmitters
- Nominal Insertion Phase Shift of 180° at Resonance
- Quartz Stability
- Rugged, Hermetic, Low-Profile TO39 Case

The RP1236 is a two-port, 180° surface-acoustic-wave (SAW) resonator in a low-profile TO39 case. It provides reliable, fundamental-mode, quartz frequency stabilization of fixed-frequency transmitters operating at 312 MHz. Typical applications include wireless security and remote-control receivers operating in the USA under FCC Part 15 and in Canada under DoC RSS-210.

Electrical Characteristics

Characteristic		Sym	Notes	Minimum	Typical	Maximum	Units
Center Frequency (+25°C)	Absolute Frequency	f _C	2 2 4 5	311.750		312.250	MHz
	Tolerance from 312.000 MHz	Δf_{C}	2, 3, 4, 5,			±250	kHz
Insertion Loss	Insertion Loss		2, 5, 6		8.1	13.0	dB
Quality Factor	Unloaded Q	Q _U	F 6 7		14,000		
	50 Ω Loaded Q	Q_L	5, 6, 7		8,500		
Temperature Stability	Turnover Temperature	T _O		24	39	54	°C
	Turnover Frequency	f _O	6, 7, 8		f _C +2.3		kHz
	Frequency Temp. Coefficient	FTC			0.037		ppm/°C ²
Frequency Aging	Absolute Value during First Year	f _A	6		≤ 10		ppm/yr
DC Insulation Resistance between Any Two Pins			5	1.0			MΩ
RF Equivalent RLC Model	Motional Resistance	R _M			154	347	Ω
	Motional Inductance	L _M	5, 7, 9		1.09824		μH
	Motional Capacitance	C _M			0.236938		fF
	Shunt Static Capacitance	Co	5, 6, 9	1.3	1.6	1.9	pF
Lid Symbolization (in addition to Lot and/or Date Codes)		RFM P1236					

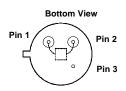
CAUTION: Electrostatic Sensitive Device. Observe precautions for handling.

Notes

- 1. Frequency aging is the change in f_C with time and is specified at +65°C or less. Aging may exceed the specification for prolonged temperatures above +65°C. Typically, aging is greatest the first year after manufacture, decreasing in subsequent years.
- 2. The frequency f_C is the frequency of minimum IL with the resonator in the specified test fixture in a 50 Ω test system with VSWR \leq 1.2:1. Typically, $f_{OSCILLATOR}$ or $f_{TRANSMITTER}$ is less than the resonator f_C .
- 3. One or more of the following United States patents apply: 4,454,488; 4,616,197.
- 4. Typically, equipment utilizing this device requires emissions testing and government approval, which is the responsibility of the equipment manufacturer.
- 5. Unless noted otherwise, case temperature T_C = +25°C± 2°C
- 6. The design, manufacturing process, and specifications of this device are subject to change without notice.
- 7. Derived mathematically from one or more of the following directly measured parameters: f_C, IL, 3 dB bandwidth, f_C versus T_C, and C_O.
- 8. Turnover temperature, T_O , is the temperature of maximum (or turnover) frequency, f_O . The nominal frequency at any case temperature, T_C , may be calculated from: $f = f_O [1 FTC (T_O T_C)^2]$. Typically, oscillator T_O is 20° less than the specified resonator T_O .
- This equivalent RLC model approximates resonator performance near the resonant frequency and is provided for reference only. The capacitance C_O is the measured static (nonmotional) capacitance between either pin 1 and ground or pin 2 and ground. The measurement includes case parasitic capacitance.

RF Monolithics, Inc. Phone: (972) 233-2903 Fax: (972) 387-9148 E-mail: info@rfm.com Page 1 of 2

RP1236-120298

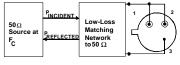

Absolute Maximum Ratings

Rating	Value	Units
CW RF Power Dissipation (See: Typical Test Circuit)	+0	dBm
DC Voltage Between Any Two Pins (Observe ESD Precautions)	±30	VDC
Case Temperature	-40 to +85	°C

Electrical Connections

This two-port, three-terminal SAW resonator is bidirectional. However, impedances and circuit board parasitics may not be symmetrical, requiring slightly different oscillator component-matching values.

Pin	Connection		
1	Input or Output		
2	Output or Input		
3	Case Ground		

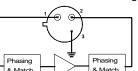


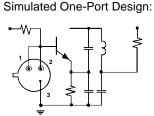
Electrical Test

To 50Ω Network

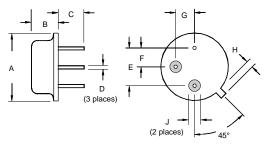
Typical Test Circuit

Power Test



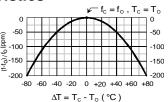


Typical Application Circuits

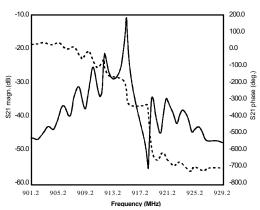

This SAW resonator can be used in oscillator or transmitter designs that require 180° phase shift at resonance in a two-port configuration. One-port resonators can be simulated, as shown, by connecting pins 1 and 2 together. However, for most low-cost consumer products, this is only recommended for retrofit applications and not for new designs.

Conventional Two-Port Design:

Case Design


Equivalent LC Model

The following equivalent LC model is valid near resonance:


Temperature Characteristics

The curve shown on the right accounts for resonator contribution only and does not include LC component temperature contributions.

Typical Frequency Response

The plot shown below is a typical frequency response for the RP series of two-port resonators. The plot is for RP1094.

Dimensions	Millim	neters	Inches		
Difficusions	Min	Max	Min	Max	
A		9.30		0.366	
В		3.18		0.125	
С	2.50	3.50	0.098	0.138	
D	0.46 Nominal		0.018 Nominal		
Е	5.08 Nominal		0.200 Nominal		
F	2.54 Nominal		0.100 Nominal		
G	2.54 Nominal		0.100 Nominal		
Н		1.02		0.040	
J	1.40		0.055		