## Preliminary

- Designed for 915 MHz FCC Part 15 Transmitters
- Quartz Stability
- Surface-mount, Solder Seal Package with $5.2 \times 4.8$ mm Footprint

The RP1094B is a surface mount, solder sealed resonator. It provides reliable, fundamental-mode, quartz frequency stabilization of fixed-frequency oscillators operating at or near 915 MHz with a $180^{\circ}$ nominal phase at resonance. This resonator is designed specifically for use in low-power transmitters operating in the USA under FCC Part 15.249 regulations. It is also suitable for a variety of other oscillator applications.

RP1094B

### 915.0 MHz SAW

 Resonator

## Absolute Maximum Ratings

| Rating | Value | Units |
| :--- | :---: | :---: |
| CW RF Power Dissipation (See: Typical Test Circuit) | +13 | dBm |
| DC Voltage Between Any Two Pins (Observe ESD Precautions) | $\pm 30$ | VDC |
| Case Temperature | -40 to +85 | ${ }^{\circ} \mathrm{C}$ |

## Electrical Characteristics

| Characteristic | Sym | Notes | Minimum | Typical | Maximum | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Absolute Frequency <br> Tolerance from 915.000 MHz | ${ }_{\text {f }}$ | 2, 3, 4, 5, | 914.850 |  | 915.150 | MHz |
|  | ${ }^{\text {d }}{ }_{\mathrm{C}}$ |  |  |  | $\pm 150$ | kHz |
| Insertion Loss | IL | 2, 5, 6 |  | 8 | 9 | dB |
| Unloaded Q $50 \Omega$ Loaded Q | $Q_{U}$ | 5, 6, 7 |  | 6000 |  |  |
|  | $\mathrm{Q}_{\mathrm{L}}$ |  |  | 3500 |  |  |
| Turnover Temperature <br> Turnover Frequency <br> Frequency Temp. Coefficient | To | 6, 7, 8 | 10 | 25 | +85 | ${ }^{\circ} \mathrm{C}$ |
|  | $\mathrm{f}_{0}$ |  |  | 915 |  | kHz |
|  | FTC |  |  | 0.032 |  | $\mathrm{ppm} /{ }^{\circ} \mathrm{C}^{2}$ |
| Frequency Aging Absolute Value during First Year | $\left\|\mathrm{f}_{\mathrm{A}}\right\|$ | 6 |  | 10 |  | ppm/yr |
| DC Insulation Resistance between Any Two Pins |  | 5 | 1.0 |  |  | M $\Omega$ |
| RF Equivalent RLC Motional Resistance | $\mathrm{R}_{\mathrm{M}}$ | 5, 7, 9 |  | 125 |  | $\Omega$ |
| Motional Inductance | $\mathrm{L}_{\mathrm{M}}$ |  |  | 130 |  | $\mu \mathrm{H}$ |
| Motional Capacitance | $\mathrm{C}_{\mathrm{M}}$ |  |  | 0.2 |  | fF |
| Shunt Static Capacitance | $\mathrm{C}_{0}$ | 5, 6, 9 |  | 1.2 |  | pF |
| Lid Symbolization (in addition to Lot and/or Date Codes) | 396 |  |  |  |  |  |

CAUTION: Electrostatic Sensitive Device. Observe precautions for handling.

## Notes:

1. Frequency aging is the change in $\mathrm{f}_{\mathrm{C}}$ with time and is specified at $+65^{\circ} \mathrm{C}$ or less. Aging may exceed the specification for prolonged temperatures above $+65^{\circ} \mathrm{C}$. Typically, aging is greatest the first year after manufacture, decreasing in subsequent years.
2. The frequency $\mathrm{f}_{\mathrm{C}}$ is the frequency of minimum IL with the resonator in the specified test fixture in a $50 \Omega$ test system with VSWR $\leq 1.2: 1$.
3. One or more of the following United States patents apply: 4,454,488; 4,616,197.
4. Typically, equipment utilizing this device requires emissions testing and government approval, which is the responsibility of the equipment manufacturer.
5. Unless noted otherwise, case temperature $\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$
6. The design, manufacturing process, and specifications of this device are subject to change without notice.
7. Derived mathematically from one or more of the following directly measured parameters: $\mathrm{f}_{\mathrm{C}}, \mathrm{IL}, 3 \mathrm{~dB}$ bandwidth, $\mathrm{f}_{\mathrm{C}}$ versus $\mathrm{T}_{\mathrm{C}}$, and $\mathrm{C}_{\mathrm{O}}$.
8. Turnover tempearture, $T_{0}$, is the temperature of maximum (or turnover) frequency, $f_{0}$. The nominal frequency at any case temperature, $T_{C}$, may be calculated from: $f=f_{0}\left[1-F T C\left(T_{O}-T_{C}\right)^{2}\right]$.
9. This equivalent RLC model approximates resonator performance near the resonant frequency and is provided for reference only. The capacitance $\mathrm{C}_{\mathrm{O}}$ is the measured static (nonmotional) capacitance between either pin 1 and ground or pin 2 and ground. The measurement includes case parasitic capacitance.

## Electrical Connections

This two-port, eight-terminal solder seal resonator is bidirectional. However, impedances and circuit board parasitics may not be symmetrical, requiring slightly different oscillator component-matching values.

| Pin | Connection |
| :---: | :---: |
| 1 | Ground |
| 2 | Output Return |
| 3 | Input Return |
| 4 | Ground |
| 5 | Ground |
| 6 | Input |
| 7 | Output |
| 8 | Ground |

## Typical Circuit



## Case Design



| Dimensions | Millimeters |  |  | Inches |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Min | Nom | Max | Min | Nom | Max |
| A | 5.21 | 5.33 | 5.46 | 0.205 | 0.210 | 0.215 |
| B | 4.83 | 4.95 | 5.08 | 0.190 | 0.195 | 0.200 |
| C | 0.38 | 0.51 | 0.64 | 0.015 | 0.020 | 0.025 |
| D | 1.07 | 1.19 | 1.32 | 0.042 | 0.047 | 0.052 |
| E | 1.14 | 1.27 | 1.40 | 0.045 | 0.050 | 0.055 |
| F | 0.58 | 0.71 | 0.84 | 0.023 | 0.028 | 0.033 |
| G | 1.07 | 1.19 | 1.32 | 0.042 | 0.047 | 0.052 |
| H | 1.32 | 1.45 | 1.57 | 0.052 | 0.057 | 0.062 |
| I | 2.54 | 2.67 | 2.79 | 0.100 | 0.105 | 0.110 |
| J | 1.52 | 1.78 | 2.03 | 0.060 | 0.070 | 0.080 |

