R8800

16-Bit RISC Microcontroller User's Manual

RDC RISC DSP Controller

 RDC Semiconductor Co., Ltd

 http:\\www.rdc.com.tw

 Tel.
 886-3-666-2866

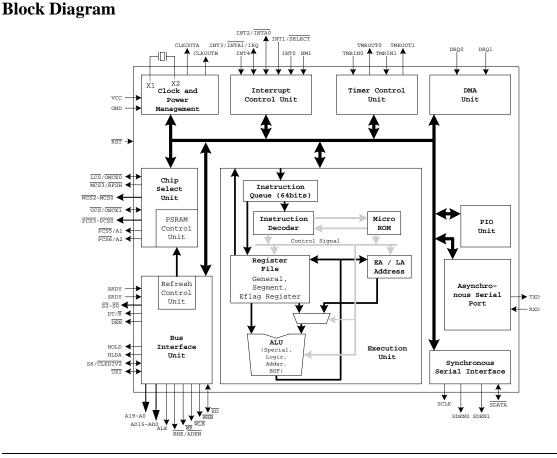
 Fax
 886-3-563-1498

Contents

pag	je
- Features	4
- Block Diagram	4
- Pin Configuration	5
- PQFP and LQFP Pin-Out Table	7
- Pin Description	8
- Basic Application System Block1	3
- Oscillator Characteristics1	4
- Read/Write timing Diagram1	6
- Execution Unit1	8
= General Register1	8
= Segment Register1	8
= Instruction Pointer and Status Flags Register1	9
= Address Generation2	0
- Peripheral Control Block Register2	1
- System Clock Block2	3
- Reset2	4
- Bus Interface Unit2	6
= Memory and I/O Interface2	6
= Data Bus2	6
= Wait States2	7
= Bus Hold 2	8
- Chip Select Unit3	0
$= \overline{\mathbf{UCS}}$ 3	0
= LCS 3	1
$= \overline{\mathrm{MCSx}}$ 3	2
$= \overline{\mathbf{PCSx}}$ 3	3
- Interrupt Controller Unit3	6
= Master Mode and Slave Mode3	6
= Interrupt Vector, Type and Priority3	7
= Interrupt Request3	8
= Interrupt Acknowledge3	8
= Programming the Registers 3	9

RDC® RISC DSP Controller

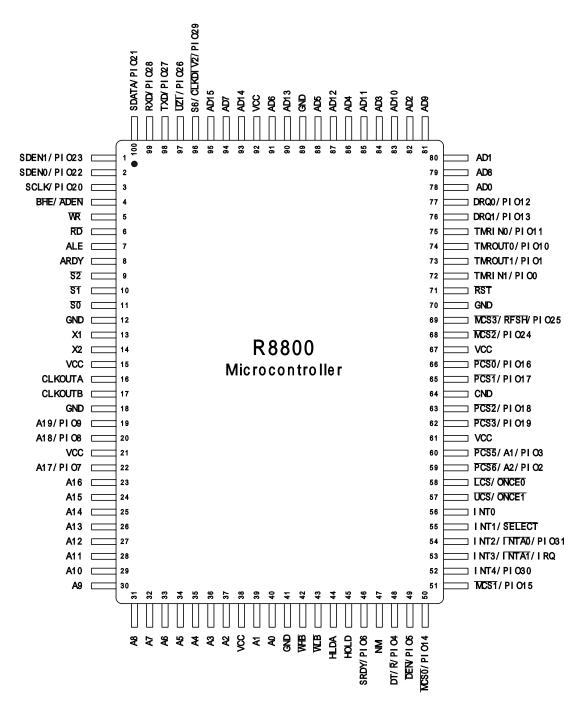
- DMA Unit52
= DMA Operation 52
= External Request57
- Timer Control Unit59
= Watchdog Timer63
= Timer/Counter Unit Output Mode64
- Asynchronous Serial Port65
- Synchronous Serial Port69
= Synchronous Serial Port Operation71
- PIO Unit73
= PIO Multi-Function Pin List Table73
- PSRAM Control Unit76
- Instruction Set Opcodes and Clock Cycle77
= R8800 Execution Timings 81
- DC Characteristics82
- AC Characteristics84
- Package Information93
- Revision History95



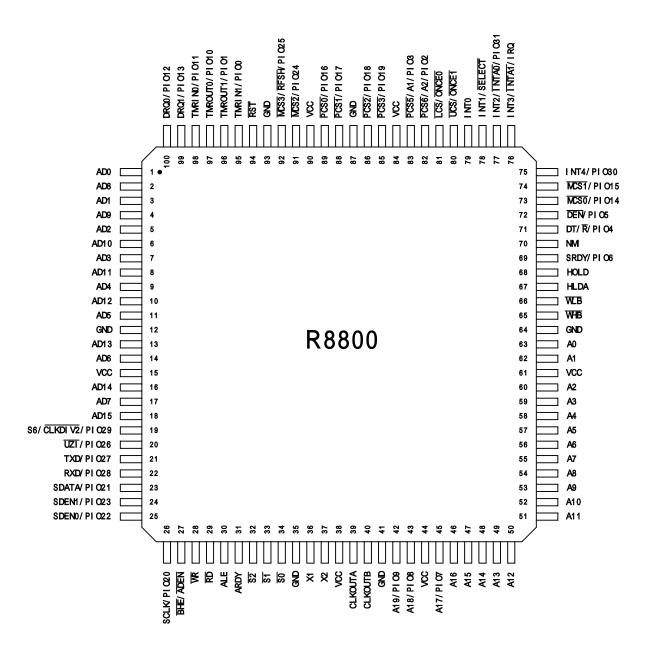
16-Bit Microcontroller with 16-bit external data bus

Features

- Five-stage pipelines
- RISC architecture
- Static design & Synthesizable design
- Bus interface
 - Multiplexed address and data bus which
 - is compatible with 80C186 microprocessor
 - Supports nonmultiplexed address bus [A19 : A0]
 - 1MByte memory address space
 - 64K byte I/O space
- Software is compatible with the 80C186 microprocessor
- Support one Asynchronous serial channel & one Synchronous serial channel


- Supports 32 PIO pins
- PSRAM (Pseudo static RAM) interface with auto-refresh control
- Three independent 16-bit timers and Timer 1 can be programmed as a watchdog timer
- The Interrupt controller with five maskable external interrupts and one nonmaskable external interrupt
- Two independent DMA channels
- Programmable chip-select logic for Memory or I/O bus cycle decoder
- Programmable wait-state generator
- Support CPU ID

RDC Semiconductor Co. Subject to change without notice


Pin Configuration

(PQFP)

R8800

(LQFP)

Pin name	LQFP Pin No.	PQFP Pin No.	Pin name	LQFP Pin No.	PQFP Pin No.
AD0	1	78	A11	51	28
AD8	2	79	A10	52	29
AD1	3	80	A9	53	30
AD9	4	81	A8	54	31
AD2	5	82	A7	55	32
AD10	6	83	A6	56	33
AD3	7	84	A5	57	34
AD11	8	85	A4	58	35
AD4 AD12	10	<u>86</u> 87	A3 A2	59 60	36 37
AD12 AD5	10	88	VCC	61	38
GND	12	89	A1	62	39
AD13	13	90	A0	63	40
AD6	14	91	GND	64	41
VCC	15	92	WHB	65	42
AD14	16	93	·	66	43
			WLB		
AD7 AD15	17 18	<u>94</u> 95	HLDA HOLD	67 68	44 45
	18	95	SRDY/PIO6	69	43
S6/ UZI /PIO29					_
UZI/PIO26	20	97	NMI	70	47
TXD/PIO27	21	98	DT/\overline{R} /PIO4	70	48
RXD/PIO28	22	99	DEN /PIO5	72	49
SDATA/PIO21	23	100	MCS0/PIO14	73	50
SDEN1/PIO23	24	1		74	51
			MCS1/PIO15		
SDEN0/PIO22	25	2	I NT4/ PIO30	75	52
SCLK/PIO20	26	3	I NT3/ INTAI /I RQ	76	53
BHE / ADEN	27	4	I NT2/ INTA0 /PIO31	77	54
WR	28	5	INT1/SELECT	78	55
RD	29	6	I NTO	79	56
ALE	30	7		80	57
ARDY	31	8	UCS/CNCE1	81	58
AKDY			LCS/CNCE0		
$\overline{S2}$	32	9	PCS6/A2/PIO2	82	59
$\overline{S1}$	33	10	PCS5 /A1/PIO3	83	60
	34	11	VCC	84	31
\overline{SO}	54	11	VCC	04	51
GND	35	12	PCS3/PIO19	85	62
X1	36	13	PCS2/PIO18	86	63
X2	37	14	GND	87	64
VCC	38	15	PCS1/PIO17	88	65
CLKOUTA	39	16	$\overline{PCS0}/PIO16$	89	66
CLKOUTB	40	17	VCC	90	67
GND	40	18		90	68
			MCS2/PI 024		
A19/PIO9	42	19	MCS3/RFSH/PIO25	92	69
A18/PIO8	43	20	GND	93	70
VCC	44	21	RST	94	71
A17/PIO7	45	22	TMRI N1/PIO0	95	72
A16	46	23	TMROUT1/PIO1	96	73
A15	47	24	TMROUT0/PIO10	97	74
A14	48	25	TMRI N0/PIO11	98	75
A13	49	26	DRQ1/PIO13	99	76
A12	50	27	DRQ0/PIO12	100	77

R8800 PQFP and LQFP Pin-Out table

RDC Semiconductor Co. Subject to change without notice

Pin Description

Pin No.(PQFP)	Symbol	Туре	Description				
15, 21, 38, 61, 67, 92	VCC	Input	System power: +5 volt power supply.				
12, 18, 41, 64, 70, 89	GND	Input	System ground.				
71	RST	Input*	Reset input. When \overrightarrow{RST} is asserted, the CPU immediately terminate all operations, clears the internal registers & logic, and the address transfers to the reset address FFFF0h.				
13	X1	Input	Input to the oscillator amplifier.				
14	X2	Output	Output from the inverted oscillator amplifier.				
16	CLKOUTA	Output	Clock output A. The CLKOUTA operation is the same as crystal input frequency (X1). CLKOUTA remains active during reset and bus hold conditions.				
17	CLKOUTB	Output	Clock output B. The CLKOUTB operation is the same as crystal input frequency (X1). CLKOUTB remains active during reset and bus hold conditions.				
	Syr	nchronous S	Serial Port Interface				
1 2	SDEN1/PIO23 SDEN0/PIO22	Output/Input	Serial data enables. Active-high. These pins enable data transfers of the synchronous serial interface. SDEN1 for port1, SDEN0 for port0.				
3	SCLK/PIO20	Output/Input	Synchronous serial data clock. This pin provides the shift clock to an external device. SCLK=X1/2, 4, 8 or 16 depending on register setting. This pin held high during the UART inactive.				
100	SDATA/PIO21	Input/Output	Synchronous serial data. This pin provides the shift data to or receives a serial data from an external device.				
	Asy	nchronous 8	Serial Port Interface				
98	TXD/PIO27	Output/Input	from the UAR1 of the microcontroller.				
99	RXD	Input	Receive data. This pin receives asynchronous serial data.				
		Bus	Interface				
4	BHE / ADEN	Output/Input	Bus high enable/address enable. During a memory access, the \overline{BHE} and (AD0 or A0) encodings indicate what type of thebus cycle. \overline{BHE} is asserted during T1 and keeps the assertedto T3 and Tw. This pin is floating during bus hold and reset. \overline{BHE} and (AD0 or A0) Encodings \overline{BHE} AD0 or A0Type of Bus Cycle000Word transfer01101011RefreshThe address portion of the AD bus can be enabled or disabledby DA bit in the LMCS and UMCS register during LCS orUCS bus cycle access, if $\overline{BHE}/\overline{ADEN}$ is held high duringpower-on reset. The $\overline{BHE}/\overline{ADEN}$ with an internal weakpull-up register, so no external pull-up register is required. TheAD bus always drives both address and data during LCS orUCS bus cycle access, if the $\overline{BHE}/\overline{ADEN}$ pin with externalpull-low resister during reset.				
5	WR	Output	Write strobe. This pin indicates that the data on the bus is to be written into a memory or an I/O device. \overline{WR} is active during T2, T3 and Tw of any write cycle, floats during a bus hold or				

			reset.						
6	RD	Output	Read Strobe. Active low signal which indicates that microcontroller is performing a memory or I/O read cyon $\overline{\text{RD}}$ floats during bus hold or reset.						
7	ALE	Output	Address latch enable. Active high. This pin indicates that an address output on the AD bus. Address is guaranteed to be valid on the trailing edge of ALE. This pin is tri-stated during ONCE mode and is never floating during a bus hold or reset.						
8	ARDY	Input	Asynchronous ready. This pin performs the microcontrolle that the address memory space or I/O device will complete a data transfer. The ARDY pin accepts a rising edge that is asynchronous to CLKOUTA and is active high. The falling edge of ARDY must be synchronized to CLKOUTA. The ARDY high, the microcontroller is always asserted in the ready condition. If the ARDY is not used, the this pin low to yield control to SRDY. Both SRDY and ARDY should be tied to high if the system need not assert wait state by externality.						
9 10 11	$ \frac{\overline{S2}}{\overline{S1}} \frac{\overline{S1}}{\overline{S0}} $	Output	Bus cycle status. These pins are encoded to indicate the bus status. $\overline{S2}$ can be used as memory or I/O indicator. $\overline{S1}$ can be used as DT/ \overline{R} indicator. These pins are floating during hold and reset.Bus Cycle Encoding Description $\overline{S2}$ $\overline{S1}$ $\overline{S0}$ Bus Cycle000Interrupt acknowledge001Read data from I/O010Instruction fetch101Read data from memory110Write data to memory111Passive						
19 20 22 23-37 39,40	A19/PIO9 A18/PIO8 A17/PIO7 A16-A2 A1, A0	Output/Input	Address bus. Non-multiplexed memory or I/O address. The A bus is one-half of a CLKOUTA period earlier than the AD bus. These pins are high-impedance during bus hold or reset.						
78,80,82,84,86,88 91,94 79,81,83,85,87,90 93,95	AD0-AD7 AD8-AD15	Input/Output	The multiplexed address and data bus for memory or accessing. The address is present during the t1 clock phase, the data bus phase is in t2-t4 cycle. The address phase of the AD bus can be disabled when $\overline{BHE} / \overline{ADEN}$ pin with external pull-low resister during rese The AD bus is in high-impedance state during bus hold or re condition and this bus also be used to load sys configuration information (with pull-up or pull-Low resis into the F6h register when the reset input from low go high.						
42	WHB	Output	Write high byte. This pin indicates the high byte data (AD15-AD8) on the bus is to be written to a memory or I/O device. This pin is floating during reset or bus hold.						
43	WLB	Output	Write low byte. This pin indicates the low byte data (AD7-AD0) on the bus is to be written to a memory or I/O device.						

RDC® RISC DSP Controller

			This pin is floating during reset or bus hold.
44	HLDA	Output	Bus hold acknowledge. Active high. The microcontroller will issue an HLDA in response to a HOLD request by external bus master at the end of T4 or Ti. When the microcontroller is in hold status (HLDA is high), the AD15-AD0, A19-A0, \overline{WR} , \overline{RD} , \overline{DEN} , $\overline{S0}$ - $\overline{S1}$, $\overline{S6}$, \overline{BHE} , DT/\overline{R} , \overline{WHB} and \overline{WLB} are floating, and the \overline{UCS} , \overline{LCS} , $\overline{PCS6}$ - $\overline{PCS5}$, $\overline{MCS3}$ - $\overline{MCS0}$ and $\overline{PCS3}$ - $\overline{PCS0}$ will be drive high. After HOLD is detected as being low, the microcontroller will lower HLDA.
45	HOLD	Input	Bus Hold request. Active high. This pin indicates that another bus master is requesting the local bus.
46	SRDY/PIO6	Input/Output	Synchronous ready. This pin performs the microcontroller that the address memory space or I/O device will complete a data transfer. The SRDY pin accepts a falling edge that is asynchronous to CLKOUTA and is active high. SRDY is accomplished by elimination of the one-half clock period
48	DT/R /PIO4	Output/Input	Data transmit or receive. This pin indicates the direction of D_{LL}
49	DEN /PIO5	Output/Input	Data enable. This pin is provided as a data bus transceiver output enable. $\overline{\text{DEN}}$ is asserted during memory and I/O access. $\overline{\text{DEN}}$ is drived high when DT/\overline{R} changes state. It is floating during bus hold or reset condition.
96	S6/ CLKDIV2 /PIO29		Bus cycle status bit6/clock divided by 2. For S6 feature, this pin is low to indicate a microcontroller-initiated bus cycle or high to indicate a DMA-initiated bus cycle during T2, T3, Tw and T4. For $\overline{\text{CLKDIV2}}$ feature. The internal clock of microcontroller is the external clock be divided by 2. (CLKOUTA, CLKOUTB=X1/2), if this pin held low during power-on reset. The pin is sampled on the rising edge of $\overline{\text{RST}}$.
97	UZI /PIO26	Output/Input	Upper zero indicate. This pin is the logical OR of the inverted A19-A16. It asserts in the T1 and is held throughout the cycle.
		Chip Selec	t Unit Interface
50 51 68 69	MCS0 /PIO14 MCS1 /PIO15 MCS2 /PIO24 MCS3 / RFSH /PIO25	Output/Input	Midrange memory chip selects. For $\overline{\text{MCS}}$ feature, these pins are active low when enable the MMCS(A6h) register to access a memory. The address ranges are programmable. $\overline{\text{MCS3}}$ - $\overline{\text{MCS0}}$ are held high during bus hold. When programming LMCS(A6h) register, pin69 is as a $\overline{\text{RFSH}}$ pin to auto refresh the PSRAM.
57	UCS/ONCEI	Output/Input	Upper memory chip select/ONCE mode request 1. For $\overline{\text{UCS}}$ feature, this pin acts low when system accesses the defined portion memory block of the upper 512K bytes (80000h-FFFFFh) memory region. $\overline{\text{UCS}}$ default acted address region is from F0000h to FFFFFh after power-on reset.

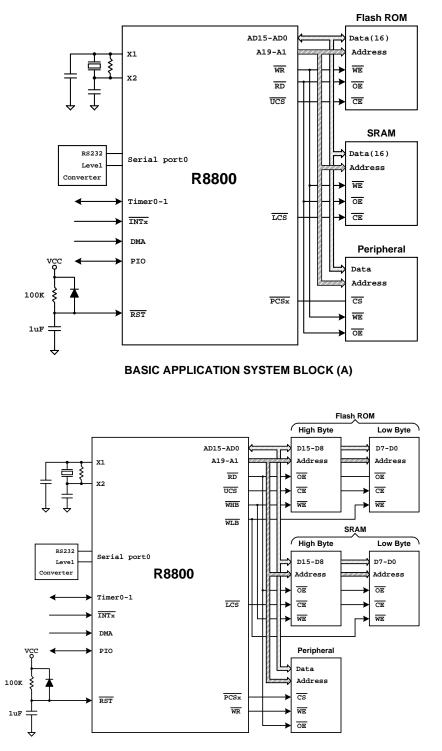
RDC® RISC DSP Controller

R8800

58 $\overline{\text{LCS}}/\overline{\text{ONCE0}}$ Output/Input59 $\overline{\text{PCS6}}/\text{A2/PIO2}$ $\overline{\text{PCS5}}/\text{A1/PIO3}$ Output/Input62 $\overline{\text{PCS3}}/\text{PIO19}$ Output/Input62 $\overline{\text{PCS3}}/\text{PIO19}$ $\overline{\text{PCS3}}/\text{PIO19}$ 62 $\overline{\text{PCS3}}/\text{PIO19}$ $\overline{\text{PCS3}}/\text{PIO19}$ $\overline{\text{PCS3}}/\text{PIO19}$ 61 $\overline{\text{PCS3}}/\text{PIO19}$ $\overline{\text{PCS3}}/\text{PIO19}$ $\overline{\text{PCS3}}/\text{PIO19}$ 62 $\overline{\text{PCS3}}/\text{PIO19}$ $\overline{\text{PCS3}}/\text{PIO19}$ $\overline{\text{PCS3}}/\text{PIO19}$ 63 $\overline{\text{PCS3}}/\text{PIO19}$ $\overline{\text{PCS3}}/\text{PIO19}$ $\overline{\text{PCS3}}/\text{PIO19}$ 64 $\overline{\text{PCS3}}/\text{PIO19}$ $\overline{\text{PCS3}}/\text{PIO19}$ $\overline{\text{PCS3}}/\text{PIO19}$ 65 $\overline{\text{PCS3}}/\text{PIO19}$ $\overline{\text{PCS3}}/\text{PIO19}$ $\overline{\text{PCS3}}/\text{PIO19}$ 66 $\overline{\text{PCS3}}/\text{PIO19}$ $\overline{\text{PCS3}}/\text{PIO19}$ $\overline{\text{PCS3}}/\text{PIO19}$ 67 $\overline{\text{PCS3}}/\text{PIO19}$ $\overline{\text{PCS3}}/\text{PIO19}$ $\overline{\text{PCS3}}/\text{PIO19}$ 68 $\overline{\text{PCS3}}/\text{PIO19}$ $\overline{\text{PCS3}}/\text{PIO19}$ $\overline{\text{PCS3}}/\text{PIC3}/PIC$	58 <u>LCS</u> / <u>ONCE0</u>
58 ICS / ONCE0 Output/Input Low on the rising edge of RST . The microcontroller enter ONCE mode, all pins are high-impedanc This pin incorporates weakly pull-up resistor. 58 ICS / ONCE0 Output/Input Lower memory chip select/ONCE mode request 0. For ICC feature, this pin acts low when the microcontroller accesses th defined portion memory block of the lower 512 58 ICS / ONCE0 Output/Input Output/Input Lower memory chip select/ONCE mode request 0. For ICC feature, this pin acts low when the microcontroller accesses the defined portion memory block of the lower 512 58 ICS / ONCE0 Output/Input Output/Input Icomon memory block of the lower 512 59 PCS6 / A2/PIO2 Output/Input Peripheral chip selects/latched address bit. For PCS feature these pins act low when the microcontroller accesses the fift or sixth region of the peripheral memory (I/O or memory space). The base address of PCS is programmable. These pin assert with the AD address bus and are not float during bu hold. 60 PCS5 / A1/PIO3 Output/Input For latched address bit feature. These pins output the latched address A2, A1 when cleared the EX bit in the MCS ar PCS auxiliary register. The A2, A1 retains previous latched data during bus hold. 62 PCS3 /PIO19 Peripheral chip selects. These pins act low when the microcontroller accesses the defined memory address). For I/C	58 <u>LCS</u> / <u>ONCE0</u>
58 ICS / ONCE0 Output/Input Lower memory chip select/ONCE mode request 0. For ICC feature, this pin acts low when the microcontroller accesses the defined portion memory block of the lower 512 (00000h-7FFFFh) memory region. The address range actin ICS is programmed by software. 58 ICS / ONCE0 Output/Input Conceol feature, this pin acts low when the microcontroller accesses the defined portion memory block of the lower 512 (00000h-7FFFFh) memory region. The address range actin ICS is programmed by software. 59 For ONCE0 feature, see UCS / ONCE1 description. This pin incorporates weakly pull-up register. 60 PCS5 / A1/PIO3 Output/Input 61 Output/Input 62 PCS3 /PIO19	58 <u>LCS</u> / <u>ONCE0</u>
58 ICS/ONCE0 Output/Input Lower memory chip select/ONCE mode request 0. For ICC feature, this pin acts low when the microcontroller accesses th defined portion memory block of the lower 512 (00000h-7FFFFh) memory region. The address range actir ICS is programmed by software. 58 ICS/ONCE0 Output/Input (00000h-7FFFFh) memory region. The address range actir ICS is programmed by software. 59 PCS6 /A2/PIO2 Peripheral chip selects/latched address bit. For PCS featur these pins act low when the microcontroller accesses the fift or sixth region of the peripheral memory (I/O or memory space). The base address of PCS is programmable. These pin assert with the AD address bus and are not float during bu hold. 60 PCS5 /A1/PIO3 Output/Input 62 PCS3/PIO19 Peripheral chip selects. The A2, A1 retains previous latched data during bus hold. 62 PCS3/PIO19 Peripheral chip selects. These pins act low when the microcontroller accesses the defined memory area of the peripheral memory and the set bit in the MCS ar PCS auxiliary register. The A2, A1 retains previous latched add actions pushold.	58 <u>LCS</u> / <u>ONCE0</u>
58 $\overline{\text{LCS}}/\overline{\text{ONCE0}}$ Output/InputLower memory chip select/ONCE mode request 0. For $\overline{\text{LC}}$ feature, this pin acts low when the microcontroller accesses th defined portion memory block of the lower 512 (00000h-7FFFh) memory region. The address range actir $\overline{\text{LCS}}$ is programmed by software. For $\overline{\text{ONCE0}}$ feature, see $\overline{\text{UCS}}/\overline{\text{ONCE1}}$ description. This pi incorporates weakly pull-up register.59 $\overline{\text{PCS6}}/\text{A2/PIO2}$ $\overline{\text{PCS5}}/\text{A1/PIO3}$ Peripheral chip selects/latched address bit. For $\overline{\text{PCS}}$ featur these pins act low when the microcontroller accesses the fift or sixth region of the peripheral memory (I/O or memor space). The base address of $\overline{\text{PCS}}$ is programmable. These pin assert with the AD address bus and are not float during bu hold. For latched address bit feature. These pins output the latched address A2, A1 when cleared the EX bit in the $\overline{\text{MCS}}$ ar $\overline{\text{PCS}}$ auxiliary register. The A2, A1 retains previous latched data during bus hold.62 $\overline{\text{PCS3}}/\text{PIO19}$ Peripheral chip selects. These pins act low when th microcontroller accesses the defined memory area of th peripheral memory block (I/O or memory address). For I/O	58 <u>LCS</u> / <u>ONCE0</u>
58 ICS/ONCE0 Output/Input feature, this pin acts low when the microcontroller accesses the defined portion memory block of the lower 512 (00000h-7FFFFh) memory region. The address range actin ICS is programmed by software. 58 ICS/ONCE0 Output/Input ICS is programmed by software. For ONCE0 feature, see UCS/ONCE1 description. This pincorporates weakly pull-up register. Peripheral chip selects/latched address bit. For PCS feature these pins act low when the microcontroller accesses the fifth or sixth region of the peripheral memory (I/O or memory space). The base address of PCS is programmable. These pin assert with the AD address bus and are not float during bus hold. 60 PCS5/A1/PIO3 Output/Input 61 Output/Input Peripheral chip selects. These pins output the latche address A2, A1 when cleared the EX bit in the MCS ar PCS auxiliary register. The A2, A1 retains previous latche data during bus hold. 62 PCS3/PIO19 Peripheral chip selects. These pins act low when the microcontroller accesses the defined memory area of the peripheral memory block (I/O or memory address). For I/O at the peripheral memory block (I/O or memory address). For I/O at the peripheral memory block (I/O or memory address). For I/O at the peripheral memory block (I/O or memory address). For I/O at the peripheral memory block (I/O or memory address). For I/O at the peripheral memory block (I/O or memory address). For I/O at the peripheral memory block (I/O or memory address). For I/O at the peripheral memory block (I/O or memory address). For I/O at the peripheral memory block (I/O or memory address). For I/O at the peripheral memory block (I/O or memory addr	58 ICS / ONCEO
$\frac{1}{10000000000000000000000000000000000$	58 ICS/ONCE0
58 $\overline{\text{LCS}}/\overline{\text{ONCE0}}$ Output/Input (0000h-7FFFFh) memory region. The address range actin 58 $\overline{\text{LCS}}/\overline{\text{ONCE0}}$ Output/Input (0000h-7FFFFh) memory region. The address range actin $\overline{\text{LCS}}$ is programmed by software. For $\overline{\text{ONCE0}}$ feature, see $\overline{\text{UCS}}/\overline{\text{ONCE1}}$ description. This princorporates weakly pull-up register. 59 $\overline{\text{PCS6}}/\text{A2/PIO2}$ Peripheral chip selects/latched address bit. For $\overline{\text{PCS}}$ feature these pins act low when the microcontroller accesses the fifth or sixth region of the peripheral memory (I/O or memory space). The base address of $\overline{\text{PCS}}$ is programmable. These pin assert with the AD address bus and are not float during buchold. 60 $\overline{\text{PCS5}}/\text{A1/PIO3}$ Output/Input 61 $\overline{\text{PCS5}}/\text{A1/PIO3}$ Output/Input 62 $\overline{\text{PCS3}}/\text{PIO19}$ Peripheral chip selects. These pins act low when the microcontroller accesses the defined memory area of the peripheral memory block (I/O or memory address). For I/O or memory block (I/O or memory address). For I/O or memory address). For I/O or memory block (I/O or memory address). For I/O or memory address).	58 ICS/ONCE0
62 PCS3/PIO19 Output/Input ICCS is programmed by software. For ONCE0 feature, see UCS/ONCE1 description. This princorporates weakly pull-up register. 62 PCS3/PIO19 PCS3/PIO19 Peripheral chip selects. These pins act low when the microcontroller accesses the defined memory address. For I/	
59 PCS6 /A2/PIO2 60 PCS5 /A1/PIO3 0utput/Input Output/Input 60 PCS5 /A1/PIO3 62 PCS3 /PIO19	
59 PCS6 /A2/PIO2 60 PCS5 /A1/PIO3 0utput/Input Output/Input 60 PCS5 /A1/PIO3 62 PCS3 /PIO19	
59 PCS6 /A2/PIO2 Peripheral chip selects/latched address bit. For PCS feature these pins act low when the microcontroller accesses the fifted or sixth region of the peripheral memory (I/O or memory space). The base address of PCS is programmable. These pins assert with the AD address bus and are not float during bus hold. 60 PCS5 /A1/PIO3 Output/Input 61 PCS5 /A1/PIO3 62 PCS3 /PIO19 62 PCS3 /PIO19	
59 PCS6 /A2/PIO2 60 PCS5 /A1/PIO3 0utput/Input Output/Input 60 PCS5 /A1/PIO3 61 Output/Input 62 PCS3 /PIO19 62 PCS3 /PIO19	
59 $\overline{PCS6}$ /A2/PIO2 60 $\overline{PCS6}$ /A2/PIO2 60 $\overline{PCS5}$ /A1/PIO3 Output/Input or sixth region of the peripheral memory (I/O or memory space). The base address of \overline{PCS} is programmable. These pin assert with the AD address bus and are not float during bus hold. For latched address bit feature. These pins output the latched address A2, A1 when cleared the EX bit in the MCS ar \overline{PCS} auxiliary register. The A2, A1 retains previous latched data during bus hold. 62 $\overline{PCS3}$ /PIO19 62 $\overline{PCS3}$ /PIO19	
59 $\overline{PCS6}/A2/PIO2$ Output/Input space). The base address of \overline{PCS} is programmable. These pin assert with the AD address bus and are not float during bus hold. 60 $\overline{PCS5}/A1/PIO3$ Output/Input space). The base address of \overline{PCS} is programmable. These pin assert with the AD address bus and are not float during bus hold. For latched address bit feature. These pins output the latched address A2, A1 when cleared the EX bit in the \overline{MCS} are \overline{PCS} auxiliary register. The A2, A1 retains previous latched data during bus hold. 62 $\overline{PCS3}/PIO19$ Peripheral chip selects. These pins act low when the microcontroller accesses the defined memory area of the peripheral memory block (I/O or memory address). For I/Pickal data memory block (I/O or memory address).	
59 PCS6 /A2/PIO2 60 PCS5 /A1/PIO3 Output/Input assert with the AD address bus and are not float during buchdld. For latched address bit feature. These pins output the latched address A2, A1 when cleared the EX bit in the MCS ar PCS auxiliary register. The A2, A1 retains previous latched data during bus hold. 62 PCS3 /PIO19	
60 PCS5/A1/PIO3 Output/Input address hold. For latched address bit feature. These pins output the latched address A2, A1 when cleared the EX bit in the MCS ar PCS auxiliary register. The A2, A1 retains previous latched data during bus hold. 62 PCS3/PIO19 Peripheral chip selects. These pins act low when the microcontroller accesses the defined memory address). For I/Pipheral memory block (I/O or memory address). For I/Pipheral memory block (I/O or memory address).	59 $\overline{PCS6}/A2/PIO2$
62 PCS3 /PI019 For latched address bit feature. These pins output the latched address A2, A1 when cleared the EX bit in the MCS ar PCS auxiliary register. The A2, A1 retains previous latched data during bus hold. Peripheral chip selects. These pins act low when the microcontroller accesses the defined memory area of the peripheral memory block (I/O or memory address). For I/	
62 PCS3 /PIO19 PCS3 /PIO19 Peripheral chip selects. The A2, A1 retains previous latched data during bus hold.	1057/41/1105
62 PCS3 /PIO19 data during bus hold. Peripheral chip selects. These pins act low when the microcontroller accesses the defined memory area of the peripheral memory block (I/O or memory address). For I/	
62 PCS3 /PIO19 data during bus hold. Peripheral chip selects. These pins act low when the microcontroller accesses the defined memory area of the peripheral memory block (I/O or memory address). For I/	
62 Peripheral chip selects. These pins act low when the microcontroller accesses the defined memory area of the peripheral memory block (I/O or memory address). For I/	
62 PCS3/PIO19 peripheral memory block (I/O or memory address). For I/	
be the perpheral memory block (1/O of memory address). For 1/	$\overline{PCS3}/PIO19$
63 PCS2/PIO18 accessed, the base address can be programmed in the region	02
66 Eor memory address access the base address can be located	66
PCS0 /PIO16 PCS0 /	PCS0/PIO16
multiplexed AD address bus and are not float during bus hold.	
Interrupt Control Unit Interface	I ı
Nonmaskable Interrupt. The NMI is the highest priorit	
hardware interrupt and is nonmaskable. When this pin	
47NMIInputasserted (NMI transition from low to high), the microcontrolle always transfers the address bus to the location specified by the	47 NMI
nonmaskable interrupt vector in the microcontroller interrupt	T/ INIVII
vector table. The NMI pin must be asserted for at least or	
CLKOUTA period to guarantee that the interrupt is recognized	
Maskable interrupt request 4. Act high. This pin indicates th	
an interrupt request has occurred. The microcontroller wi	
52 INT4/PIO30 Input/Output if the INT4 address vector to execute the service routing the INT4 is enable. The interrupt input can be configured to the interrupt	52 INT4/PIO30
be either edge- or level-triggered. The requesting device mu	52 11117/11050
holt the INT4 until the request is acknowledged to guarante	
interrupt recognition.	
Maskable interrupt request 3/interrupt acknowledge 1/slav	
interrupt request. For INT3 feature, except the difference interrupt line and interrupt address water, the function of INT	
interrupt line and interrupt address vector, the function of INT is the same as INT4.	
53 INT3/ INTA1 /IRQ Input/Output For INTA1 feature, in cascade mode or special fully-nested	
mode, this pin corresponds the INT1.	53 INT3/INTA1 /IR
For IRQ feature, when the microcontroller is as a slave devic	53 INT3/ INTA1 /IR
this pin issues an interrupt request to the master interrupt	53 INT3/INTA1 /IR

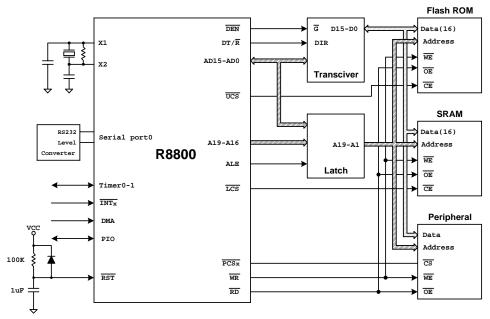
			controller.
54	INT2/ INTA0 /PIO31	Input/Output	Maskable interrupt request 2/interrupt acknowledge 0. For INT2 feature, except the difference interrupt line and interrupt address vector, the function of INT2 is the same as INT4. For INTA0 feature, in cascade mode or special fully-nested mode, this pin corresponds the INT0.
55	INT1/SELECT	Input/Output	Maskable interrupt request 1/slave select. For INT1 feature, except the difference interrupt line and interrupt address vector, the function of INT1 is the same as INT4. For $\overline{\text{SELECT}}$ feature, when the microcontroller is as a slave device, this pin is drived from the master interrupt controller decoding. This pin acts to indicate that an interrupt appears on the address and data bus. The INT0 must act before $\overline{\text{SELECT}}$ acts when the interrupt type appears on the bus.
56	INT0	Input	Maskable interrupt request 0. Except the interrupt line and interrupt address vector, the function of INT0 is the same as INT4.
	Т	'imer Conti	rol Unit Interface
72 75	TMRIN1/PIO0 TMRIN0/PIO11	Input/Output	Timer input. These pins can be as clock or control signal input, which depend upon the programmed timer mode. After internally synchronizing low to high transitions on TMRIN, the timer controller increments. These pins must be pull-up if not being used.
73 74	TMROUT1/PIO1 TMROUT0/PIO10	Output/Input	Timer output. Depending on timer mode select these pins provide single pulse or continuous waveform. The duty cycle of the waveform can be programmable. These pins are floated during a bus hold or reset.
		DMA U	nit Interface
76 77	DRQ1/PIO13 DRQ0/PIO12	Input/Output	DMA request. These pins are asserted high by an external device when the device is ready for DMA channel 1 or channel 0 to perform a transfer. These pins are level-triggered and internally synchronized. The DRQ signals must remain act until finish serviced and are not latched.

Notes:

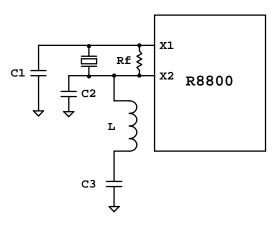

1. When enable the PIO Data register, there are 32 MUX definition pins can be as a PIO pin. For example, the DRD1/PIO13

(pin76) can be as a PIO13 when enable the PIO Data register.

2. The PIO status during Power-On reset : PIO1, PIO10, PIO22, PIO23 are input with pull-down, PIO4 to PIO9 are


normal operation and the others are input with pull-up.

Basic Application System Block


BASIC APPLICATION SYSTEM BLOCK (B)

RDC Semiconductor Co. Subject to change without notice

BASIC APPLICATION SYSTEM BLOCK (C)

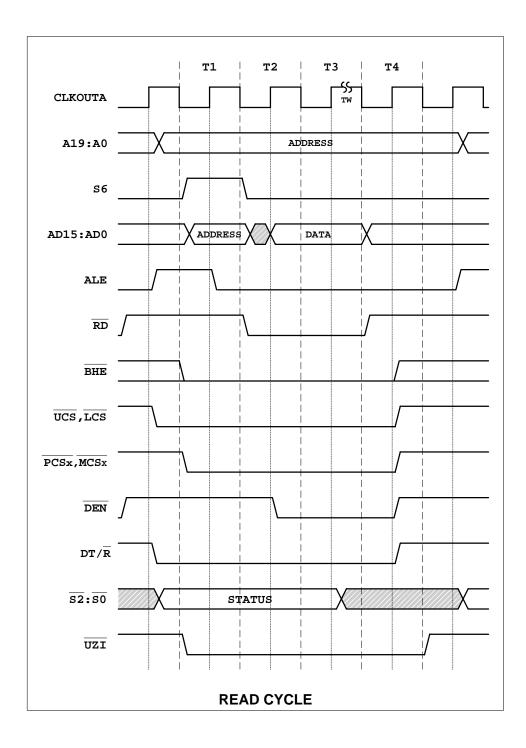
Oscillator Characteristics

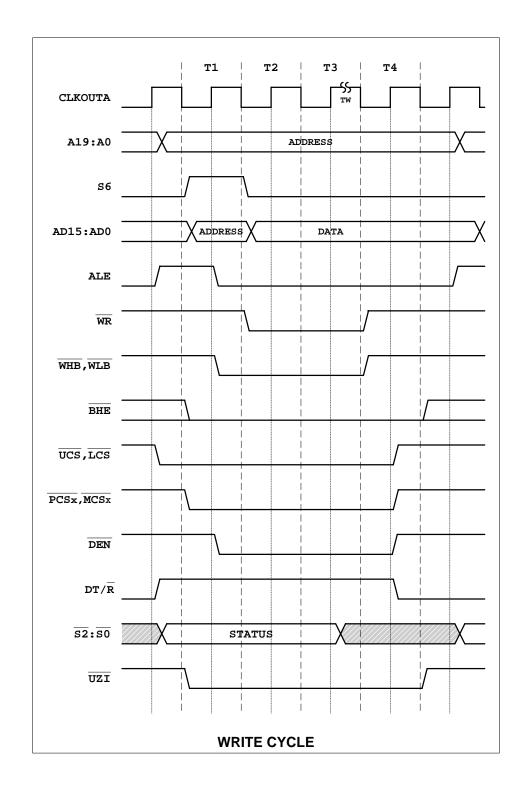
For fundamental -mode crystal:

Reference valve

Frequency	10.8288M Hz	19.66M Hz	30M Hz	33M Hz	40M Hz
Rf	None	None	None	None	None
C1	10Pf	10Pf	None	None	None
C2	10Pf	10Pf	10Pf	10Pf	10Pf
C3	None	None	None	None	None
L	None	None	None	None	None

RDC Semiconductor Co. Subject to change without notice


For third-overtone mode crystal:


Reference valve

Frequency	22.1184M Hz	28.322M Hz	33.177M Hz	40M Hz	44.1M Hz
Rf	1M	1.5M	1.5M	1.5M	1.5M
C1	15Pf	15Pf	15Pf	15Pf	15Pf
C2	30Pf	30Pf	30Pf	30Pf	30Pf
C3		220Pf	220Pf	220Pf	120Pf
L		10uL	4.7uL	2.7uL	2.7uL

RDC® RISC DSP Controller

Read/Write timing Diagram

Execution Unit

General Register

The R8800 has eight 16-bit general registers. And the AX,BX,CX,DX can be subdivided into two 8-bit register (AH,AL,BH,

BL,CH,CL,DH,DL). Tthe functions of these registers are described as follows.

 $\boldsymbol{A}\boldsymbol{X}$: Word Divide , Word Multiply, Word I/O operation.

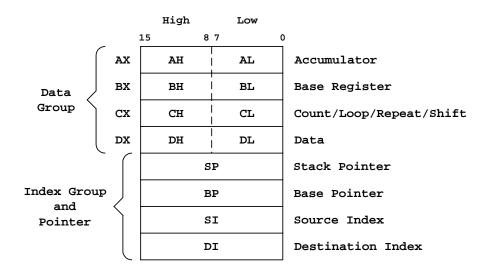
AH : Byte Divide , Byte Multiply, Byte I/O , Decimal Arithmetic, Translate operation.

AL : Byte Divide , Byte Multiply operation.

BX : Translate operation.

CX : Loops, String operation

 $\ensuremath{\mathbf{CL}}$: Variable Shift and Rotate operation.


 $\boldsymbol{D}\boldsymbol{X}$: Word Divide , Word Multiply, Indirect I/O operation

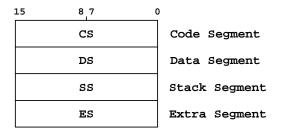
SP : Stack operations (POP, POPA, POPF, PUSH, PUSHA, PUSHF)

BP : General-purpose register which can be used to determine offset address of operands in Memory.

SI : String operations

DI : String operations

GENERAL REGISTERS


Segment Register

R8800 has four 16-bit segment registers, CS, DS, SS, ES. The segment registers contain the base addresses (starting location) of these memory segments, and they are immediately addressable for code (CS), data (DS & ES), and stack (SS) memory. **CS (Code Segment)** : The CS register points to the current code segment, which contains instruction to be fetched. The default location memory space for all instruction is 64K. The initial value of CS register is 0FFFFh.

DS (**Data Segment**) : The DS register points to the current data segment, which generally contains program variables. The DS register initialize to 0000H.

SS (**Stack Segment**) : The SS register points to the current stack segment, which is for all stack operations, such as pushes and pops. The stack segment is used for temporary space. The SS register initialize to 0000H.

ES (Extra Segment) : The ES register points to the current extra segment which is typically for data storage, such as large string operations and large data structures. The DS register initialize to 0000H.

Instruction Pointer and Status Flags Register

IP (**Instruction Pointer**) : The IP is a 16-bit register and it contains the offset of the next instruction to be fetched. Software can not to direct access the IP register and this register is updated by the Bus Interface Unit. It can change, be saved or be restored as a result of program execution. The IP register initialize to 0000H and the <u>CS:IP</u> starting execution address is at 0FFFF0H.

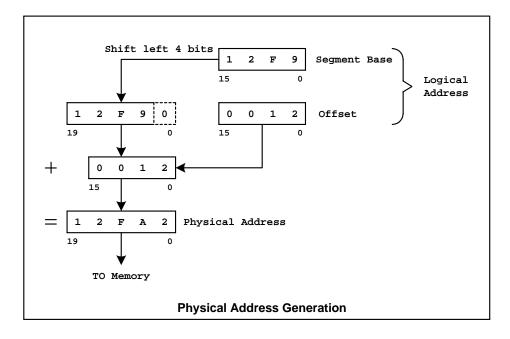
Processor Status Flags Registers									AGS set Va	lue : 0	000h				
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Rese	erved		OF	DF	IF	TF	SF	ZF	Res	AF	Res	PF	Res	CF

These flags reflect the status after the Execution Unit is executed.

Bit 15-12 : Reserved

Bit 11: OF, Overflow Flag. An arithmetic overflow has occurred, this flag will be set.

- Bit 10 : DF, Direction Flag. If this flag is set, the string instructions are increment address process. If DF is cleared, the string instructions are decrement address process. Refer the STD and CLD instructions for how to set and clear the DF flag.
- Bit 9: IF, Interrupt-Enable Flag. Refer the STI and CLI instructions for how to set and clear the IF flag.


Set to 1 : The CPU enables the maskable interrupt request.

Set to 0 : The CPU disables the maskable interrupt request.

- **Bit 8: TF**, Trace Flag. Set to enable single-step mode for debugging; Clear to disable the single-step mode. If an application program sets the TF flag using POPF or IRET instruction, a debug exception is generated after the instruction (The CPU automatically generates an interrupt after each instruction) that follows the POPF or IRET instruction.
- Bit 7: SF, Sign Flag. If this flag is set, the high-order bit of the result of an operation is 1, indicating it is negative.
- Bit 6: ZF, Zero Flag. The result of operation is zero, this flag is set.
- Bit 5: Reserved
- **Bit 4: AF**, Auxiliary Flag. If this flag is set, there has been a carry from the low nibble to the high or a borrow from the high nibble to the low nibble of the AL general-purpose register. Used in BCD operation.
- Bit 3: Reserved.
- Bit 2: PF, Parity Flag. The result of low-order 8 bits operation has even parity, this flag is set.
- Bit 1: Reserved
- Bit 0: CF, Carry Flag. If CF is set, there has been a carry out or a borrow into the high-order bit of the instruction result.

Address generation

The Execution Unit generates a 20-bit physical address to Bus Interface Unit by the Address Generation. Memory is organized in sets of segments. Each segment contains a 16 bits value. Memory is addressed using a two-component address that consists of a 16-bit segment and 16-bit offset. The Physical Address Generation figure describes how the logical address transfers to the physical address.

Peripheral Control Block Register

The peripheral control block can be mapped into either memory or I/O space which is to program the FEh register. And it

starts at FF00h in I/O space when reset the microprocessor.

The following table is the definition of all the peripheral Control Block Register, and the detail description will arrange on the relation Block Unit.

Offset (HEX)	Register Name	Page	Offset (HEX)	Register Name	Page
FE	Peripheral Control Block Relocation Register	21	66	Timer 2 Mode / Control Register	61
F6	Reset Configuration Register	24	62	Timer 2 Maxcount Compare A Register	62
F4	Processor Release Level Register	21	60	Timer 2 Count Register	62
F0	PDCON Register	22	5E	Timer 1 Mode / Control Register	59
E4	Enable RCU Register	75	5C	Timer 1 Maxcount Compare B Register	61
E2	Clock Prescaler Register	75	5A	Timer 1 Maxcount Compare A Register	61
E0	Memory Partition Register	75	58	Timer 1 Count Register	61
DA	DMA 1 Control Register	53	56	Timer 0 Mode / Control Register	58
D8	DMA 1 Transfer Count Register	55	54	Timer 0 Maxcount Compare B Register	59
D6	DMA 1 Destination Address High Register	55	52	Timer 0 Maxcount Compare A Register	59
D4	DMA 1 Destination Address Low Register	56	50	Timer 0 Count Register	58
D2	DMA 1 Source Address High Register	56	44	Serial Port Interrupt Control Register	38
D0	DMA 1 Source Address Low Register	56	42	Watchdog Timer Control Register	62
CA	DMA 0 Control Register	52	40	INT4 Control Register	39
C8	DMA 0 Transfer Count Register	52	3E	INT3 Control Register	39
C6	DMA 0 Destination Address High Register	52	3C	INT2 Control Register	40
C4	DMA 0 Destination Address Low Register	53	3A	INT1 Control Register	40
C2	DMA 0 Source Address High Register	53	38	INT0 Control Register	41
C0	DMA 0 Source Address Low Register	53	36	DMA 1 Interrupt Control Register	42
A8	PCS and MCS Auxiliary Register	32	34	DMA 0 Interrupt Control Register	43
A6	Midrange Memory Chip Select Register	31	32	Timer Interrupt Control Register	43
A4	Peripheral Chip Select Register	33	30	Interrupt Status Register	44
A2	Low Memory Chip Select Register	30	2E	Interrupt Request Register	44
A0	Upper Memory Chip Select Register	29	2C	In-service Register	45
88	Serial Port Baud Rate Divisor Register	67	2A	Priority Mask Register	47
86	Serial Port Receive Register	66	28	Interrupt Mask Register	48
84	Serial Port Transmit Register	66	26	Poll Status Register	48
82	Serial Port Status Register	65	24	Poll Register	49
80	Serial Port Control Register	64	22	End-of-Interrupt	49
7A	PIO Data 1 Register	73	20	Interrupt Vector Register	50
78	PIO Direction 1 Register	73	18	Synchronous Serial Receive Register	69
76	PIO Mode 1 Register	73	16	Synchronous Serial Transmit 0 Register	69
74	PIO Data 0 Register	74	14	Synchronous Serial Transmit 1 Register	69
72	PIO Direction 0 Register	74	12	Synchronous Serial Enable Register	68
70	PIO Mode 0 Register	74	10	Synchronous Serial Status Register	68

Per	ipher	al Co	ontro	Blo	ck Re	loca	tion F	Regis	ster:			-	set : I		
15	14	13	12	11	10	0	0	7	c	F	4		set Va	lue : 2	20FFh
15	14	13			10	9	8		6	5	4	3	2		
Res	S/M	Res	M/IO		•		•	•	R19	- R8	•	•			

The peripheral control block is mapped into either memory or I/O space by programming this register. When the other chip selects (\overline{PCSx} or \overline{MCSx}) are programmed to zero wait states and ignore the external ready, the \overline{PCSx} or \overline{MCSx} can overlap the control block.

Bit 15: Reserved

Bit 14: S/\overline{M} , Slave/Master – Configures the interrupt controller

set 0 : Master mode, set 1: Slaved mode

Bit 13 : Reserved

Bit 12: M/IO, Memory/IO space. At reset, this bit is set to 0 and the PCB map start at FF00h in I/O space.

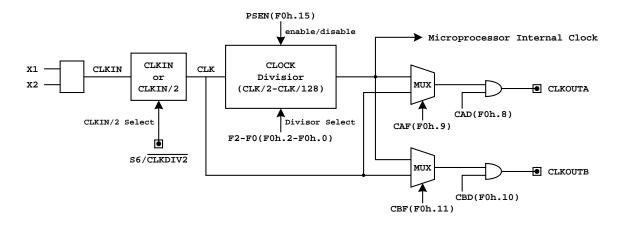
set 1- The peripheral control block (PCB) is located in memory space.

set 0- The PCB is located in I/O space.

Bit 11-0 : R19-R8, Relocation Address Bits

The upper address bits of the PCB base address. The lower eight bits default to 00h. When the PCB is mapped to I/O space, the R19-R16 must be programmed to 0000b.

Pro	cess	or Re	leas	e Lev	vel Re	egiste	ər					Offset : eset V	: F4h alue :	-D9h	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	l		PI	I RL	I			1	1	0	1	1	0	0	1


Read only register that specifies the processor release version and RDC identify number

Bit 15-8 : Processor version

01h : version A , 02h : version B, 03h : version C, 04h : version D

Bit 7-0 : RDC identify number - D9h

System Clock Block

System Clock

Ρο	wer-S	Save	Cont	rol R	egist	er							t : F0h t Value		0h
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
PSEN	0	0	0	CBF	CBD	CAF	CAD	0	0	0	0	0	F2	F1	F0

Bit 15: PSEN, Enable Power-save Mode. This bit is cleared by hardware when an external interrupt occurs. This bit does not be changed when software interrupts (INT instruction) and exceptions occurs.

Set 1: enable power-save mode and divides the internal operating clock by the value in F2-F0.

Bit14-12: Reserved

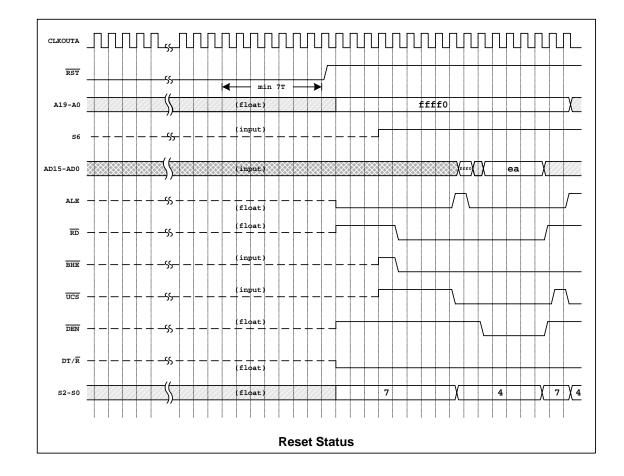
- Bit 11: CBF, CLKOUTB Output Frequency selection.
 - Set 1: CLKOUTB output frequency is same as crystal input frequency.
 - Set 0 : CLKOUTB output frequency is from the clock divisor, which frequency is same as that of microprocessor internal clock.
- Bit 10 : CBD, CLKOUTB Drive Disable

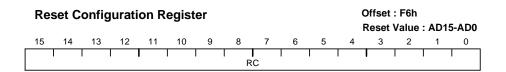
Set 1: Disable the CLKOUTB. This pin will be three-state.

- Set 0 : Enable the CLKOUTB.
- Bit 9: CAF, CLKOUTA Output Frequency selection.
 - Set 1: CLKOUTA output frequency is same as crystal input frequency.
 - Set 0 : CLKOUTB output frequency is from the clock divisor, which frequency is same as that of microprocessor internal clock .
- Bit 8: CAD, CLKOUTA Drive Disable.

Set 1: Disable the CLKOUTA. This pin will be three-state.

Set $\mathbf{0}$: Enable the CLKOUTA.


Bit 7-3 : Reserved

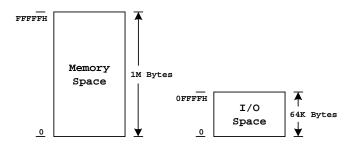

Bit 2-0: F2- F0, Clock Divisor Select.

F2,	F1,	FO	 Divider Factor
0,	0,	0	 Divide by 1
0,	0,	1	 Divide by 2
0,	1,	0	 Divide by 4
0,	1,	1	 Divide by 8
1,	0,	0	 Divide by 16
1,	0,	1	 Divide by 32
1,	1,	0	 Divide by 64
1,	1,	1	 Divide by 128
0, 1, 1, 1,	1, 0, 0, 1,	1 0 1 0	 Divide by 8 Divide by 16 Divide by 32 Divide by 64

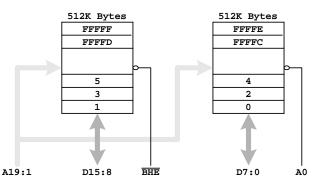
Reset

Processor initialization is accomplished with activation of the \overline{RST} pin. To reset the processor, this pin should be held low for at least seven oscillator periods. The Reset Status Figure shows the status of the \overline{RST} pin and others relation pins. When \overline{RST} from low go high, the state of input pin (with weakly pull-up or pull-down) will be latched, and each pin will perform the individual function. The AD15-AD0 will be latched into the register F6h. $\overline{UCS} / \overline{ONCE1}$, $\overline{LCS} / \overline{ONCE0}$ will enter ONCE mode (All of the pins will floating except X1, X2) when with pull-low resisters. The input clock will divide by 2 when S6/ $\overline{CLKDIV2}$ with pull-low resister. The AD15-AD0 bus will not drive the address phase during \overline{UCS} , \overline{LCS} cycle if $\overline{BHE} / \overline{ADEN}$ with pull-low resister

Bit 15-0: RC, Reset Configuration AD15 – AD0.


The AD15 to AD0 must with weakly pull-up or pull-down resistors to correspond the contents when AD15-AD0 be latched into this register during the $\overline{\text{RST}}$ pin from low go high. And the value of the reset configuration register provides the system information when software read this register. This register is read only and the contents remain valid until the next processor reset.

Bus Interface Unit

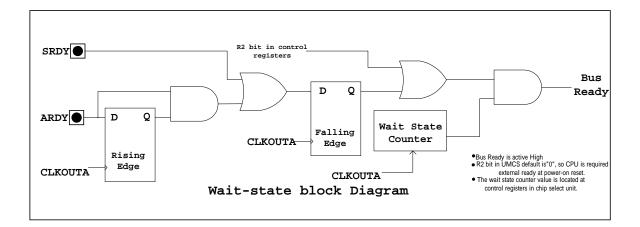

The bus interface unit drives address, data, status and control information to define a bus cycle. The bus A19-A0 are non-multiplex memory or I/O address. The AD15-AD0 are multiplexed address and data bus for memory or I/O accessing. The $\overline{S2} - \overline{S1}$ are encoded to indicate the bus status, which is described in the Pin Description table in page 5. The Basic Application System Block (page 10) and Read/Write Timing Diagram (page 12) describe the basic bus operation.

Memory and I/O interface

The memory space consists of 1M bytes (512k 16-bit port) and the I/O space consists of 64k bytes (32k 16-bit port). Memory devices exchange information with the CPU during memory read, memory write and instruction fetch bus cycles. I/O read and I/O write bus cycles use a separate I/O address space. Only IN/OUT instruction can access I/O address space, and information must be transferred between the peripheral device and the AX register. The first 256 bytes of I/O space can be accessed directly by the I/O instructions. The entire 64k bytes I/O address space can be accessed indirectly, through the DX register. I/O instructions always force address A19-A16 to low level.

Memory and I/O Space

Physical Data Bus Models


Data Bus

The memory address space data bus is physically implemented by dividing the address space into two banks of up to 512k bytes. Each one bank connects to the lower half of the data bus and contains the even-addressed bytes (A0=0). The other

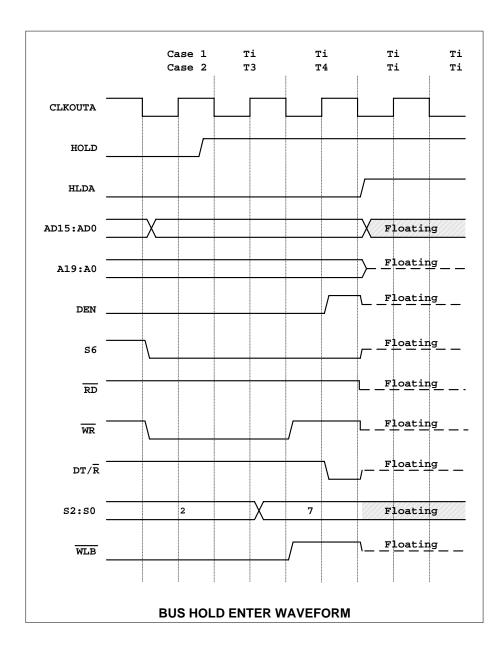
bank connects to the upper half of the data bus and contains odd-addressed bytes (A0=1). A0 and BHE determine whether one bank or both banks participate in the data transfer.

Wait States

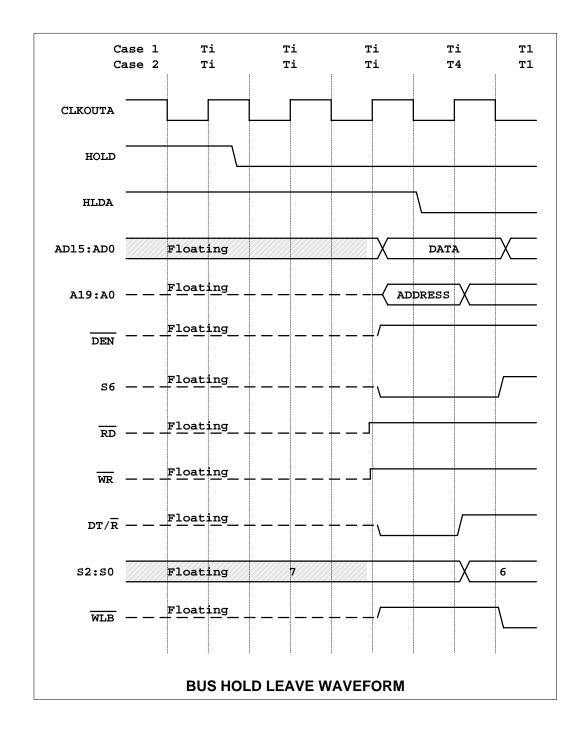
Wait states extend the data phase of the bus cycle. The ARDY or SRDY input with low level will insert wait states. If R2 bit=0, The user also can inserts wait state by programmed the internal chip select registers.

The R2 bit of UMCS (offset 0A0h) default is low, so each one of the ARDY or SRDY should in ready

state (with pull high resistor) when at power on reset or external reset.


The wait state counter value is decided by the R3, R1,R0 bits in each chip select register. There are five group R3,R1,R0 bits in the registers offset A0h, A2h, A4h, A6h, A8h. Each group is independent.

Bus Hold


When the bus hold requested (HOLD pin active high) by the another bus master, the microprocessor will issue a HLDA

RDC® RISC DSP Controller

in response to a HOLD request at the end of T4 or Ti. When the microprocessor is in hold status (HLDA is high), the AD15-AD0, A19-A0, \overline{WR} , \overline{RD} , \overline{DEN} , $\overline{S1}$ - $\overline{S0}$, $\overline{S6}$, \overline{BHE} , DT/\overline{R} , \overline{WHB} and \overline{WLB} are floating, and the \overline{UCS} , \overline{LCS} , $\overline{PCS6}$ - $\overline{PCS5}$, $\overline{MCS3}$ - $\overline{MCS0}$ and $\overline{PCS3}$ - $\overline{PCS0}$ will be drive high. After HOLD is detected as being low, the microprocessor will lower the HLDA.

Chip Select Unit

The Chip Select Unit provides 12 programmable chip select pins to access a specific memory or peripheral device. The chip selects are programmed through five peripheral control registers (A0h, A2h, A4h, A6h, A8h). And all of the chip selects can be insert wait states by programmed the peripheral control register.

UCS

The UCS default to active on reset for program code access. The memory active range is upper 512k (80000h - FFFFFh), which is programmable. And the default memory active range of UCS is 64k (F0000h - FFFFFh).

The $\overline{\text{UCS}}$ active to drive low four CLKOUTA oscillators if no wait state inserts. There are three wait-states insert to $\overline{\text{UCS}}$ active cycle on reset.

Up	per N	lemo	ory Cl	hip S	elect	Regi	ister					-	set : A set Va	-	03Bh
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	L	 B2 - LE	1 50	0	0	0	0	DA	0	1	1	1	R2	R1	R0

Bit 15 : Reserved

Bit 14-12 : LB2-LB0, Memory block size selection for $\overline{\text{UCS}}$ chip select pin.

The $\overline{\text{UCS}}$ chip select pin active region can be configured by the LB2-LB0.

The default memory block size is from F0000h to FFFFFh.

LB2, LB1, LB0 ---- Memory Block size , Start address, End Address

1,	1,	1	 64k	, F0000h	, FFFFFh
1,	1,	0	 128k	, E0000h	, FFFFFh
1,	0,	0	 256k	, C0000h	, FFFFFh
0,	0,	0	 512k	, 80000h	, FFFFFh

Bit 11-8 : Reserved

- **Bit 7 : DA**, Disable Address. If the $\overline{BHE} / \overline{ADEN}$ pin is held high on the rising edge of \overline{RST} , then the DA bit is valid to enable/disable the address phase of the AD bus. If the $\overline{BHE} / \overline{ADEN}$ pin is held low on the rising edge of \overline{RST} , the AD bus always drive the address and data.
 - Set 1 : Disable the address phase of the AD15 AD0 bus cycle when $\overline{\text{UCS}}$ is asserted.

Set 0 : Enable the address phase of the AD15 – AD0 bus cycle when $\overline{\text{UCS}}$ is asserted.

Bit 6-3: Reserved

- Bit 2 : R2, Ready Mode. This bit is used to configure the ready mode for $\overline{\text{UCS}}$ chip select.
 - Set 1: external ready is ignored.

Set 0: external ready is required.

Bit 1-0: R1-R0, Wait-State value. When R2 is set to 0, it can inserted wait-state into an access to the UCS memory area.

(R1,R0) = (0,0) - 0 wait-state ; (R1,R0) = (0,1) - 1 wait-state (R1,R0) = (1,0) - 2 wait-state ; (R1,R0) = (1,1) - 3 wait-state

LCS

The lower 512k bytes (00000h-9FFFFh) memory region chip selects. The memory active range is programmable, which has no default size on reset. So the A2h register must be programmed first before to access the target memory range. The $\overline{\text{LCS}}$ pin is not active on reset, but any read or write access to the A2h register activates this pin.

Lov	w Me	mory	Chip	o Sele	ect R	egist	er					-	set : A set Va		_
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	U	 B2 - UE	1 30	1	1	1	1	DA	PSE	1	1	1	R2	R1	R0

Bit 15: Reserved

Bit 14-12 : UB2-UB0, Memory block size selection for \overline{LCS} chip select pin

The $\overline{\text{LCS}}$ chip select pin active region can be configured by the UB2-UB0.

The $\overline{\text{LCS}}$ pin is not active on reset, but any read or write access to the A2h (LMCS) register activates this pin.

0,	0,	0	 64k	,	00000h	,	0FFFFh
0,	0,	1	 128k	,	00000h	,	1FFFFh
0,	1,	1	 256k	,	00000h	,	3FFFFh
1,	1,	1	 512k	,	00000h	,	7FFFFh

Bit 11-8 : Reserved

Bit 7 : DA, Disable Address. If the $\overline{BHE} / \overline{ADEN}$ pin is held high on the rising edge of \overline{RST} , then the DA bit is valid to enable/disable the address phase of the AD bus. If the $\overline{BHE} / \overline{ADEN}$ pin is held high on the rising edge of \overline{RST} , the AD bus always drive the address and data.

Set 1 : Disable the address phase of the AD15 – AD0 bus cycle when $\overline{\text{LCS}}$ is asserted.

Set 0 : Enable the address phase of the AD15 – AD0 bus cycle when $\overline{\text{LCS}}$ is asserted.

Bit 6 : PSE, PSRAM Mode Enable. This bit is used to enable PSRAM support for the LCS chip select memory space. The refresh control unit registers E0h,E2h,E4h must be configured for auto refresh before PSRAM support is enabled.
PSE set to 1: PSRAM support is enable

PSE set to 0: PSRAM support is disable

Bit 5-3: Reserved

Bit 2 : R2, Ready Mode. This bit is used to configure the ready mode for $\overline{\text{LCS}}$ chip select. Set 1: external ready is ignored. Set 0: external ready is required.

Bit 1-0: R1-R0, Wait-State value. When R2 is set to 0, it can inserted wait-state into an access to the LCS memory area.

(R1,R0) = (0,0) - 0 wait-state ; (R1,R0) = (0,1) - 1 wait-state

(R1,R0) = (1,0) - 2 wait-state ; (R1,R0) = (1,1) - 3 wait-state

MCSx

The memory block of $\overline{\text{MCS4}}$ - $\overline{\text{MCS0}}$ can be located anywhere within the 1M bytes memory space, exclusive of the areas associated with the $\overline{\text{UCS}}$ and $\overline{\text{LCS}}$ chip selects. The maximum $\overline{\text{MCSx}}$ active memory range is 512k bytes. The MCS chip selects are programmed through two registers A6h and A8h, and these select pins are not active on reset. Both A6h and A8h registers must be accessed with a read or write to activate $\overline{\text{MCS4}}$ - $\overline{\text{MCS0}}$. There aren't default value on A6h and A8h registers, so the A6h and A8h must be programmed first before $\overline{\text{MCS4}}$ - $\overline{\text{MCS0}}$ active.

Mid	Irana	ge M	emor	y Ch	ip Se	lect	Regis	ster				-	set : A set Val		_
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	I		BA19	- BA13				1	1	1	1	1	R2	R1	R0

Bit 15-7 : BA19-BA13, Base Address. The BA19-BA13 correspond to bits 19-13 of the 1M bytes (20-bits) programmable base address of the MCS chip select block. The bits 12 to 0 of the base address are always 0.
The base address can be set to any integer multiple of the size of the memory block size selected in these bits. For

example, if the midrange block is 32Kbytes, only the bits BA19 to BA15 can be programmed. So the block address could be locate at 20000h or 38000h but not in 22000h.

The base address of the $\overline{\text{MCS}}$ chip select can be set to 00000h only if the $\overline{\text{LCS}}$ chip select is not active. And the $\overline{\text{MCS}}$ chip select address range is not allowed to overlap the $\overline{\text{LCS}}$ chip select address range.

The $\overline{\text{MCS}}$ chip select address range also is not allowed to overlap the $\overline{\text{UCS}}$ chip select address range.

Bit 8-3 : Reserved

Bit 2: R2, Ready Mode. This bit is configured to enable/disable the wait states inserted for the MCS chip selects. The R1,R0 bits of this register determine the number of wait state to insert.

set to 1: external ready is ignored

set to 0: external ready is required

Bit 1-0 : R1-R0, Wait-State value. The R1,R0 determines the number of wait states inserted into a $\overline{\text{MCS}}$ access. (R1,R0) : (1,1) - 3 wait states , (1,0) - 2 wait states, (0,1) - 1 wait states , (0,0) - 0 wait states

PC	S and	d MC	S Au	xiliar	y Re	giste	r					-	set : A set Va	8h lue : -	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1		I	l	 M6 - M0)		I	EX	MS	1	1	1	R2	R1	R0

Bit 15: Reserved

Bit 14-8: M6-M0, $\overline{\text{MCS}}$ Block Size. These bits determines the total block size for the $\overline{\text{MCS3}}$ - $\overline{\text{MCS0}}$ chip selects. Each individual chip select is active for one quarter of the total block size. For example, if the block size is 32K bytes and the base address is located at 20000h. The individual active memory address range of $\overline{\text{MCS3}}$ to $\overline{\text{MCS0}}$ is $\overline{\text{MCS0}}$ - 20000h to 21FFF, $\overline{\text{MCS1}}$ -22000 to 23FFFh, MCS2- 24000h to 25FFFh, MCS3- 26000h to 27FFFh. MCS total block size is defined by M6-M0,

<u>M6-M0</u>	, <u>To</u>	tal block	size, MCS	x address active range
0000001b	,	8k	,	2k
0000010b	,	16k	,	4k
0000100b	,	32k	,	8k
0001000b	,	64k	,	16k
0010000b	,	128k	,	32k
0100000b	,	256k	,	64k
1000000b	,	512k	,	128k

Bit 7: EX, Pin Selector. This bit configures the multiplex output which the $\overline{PCS6}$ - $\overline{PCS5}$ pins as chip selects or A2-A1.

Set 1 : $\overline{PCS6}$, $\overline{PCS5}$ are configured as peripheral chip select pins.

Set 0: $\overline{\text{PCS6}}$ is configured as address bit A2, $\overline{\text{PCS5}}$ is configured as A1.

Bit 6: MS, Memory or I/O space Selector.

Set 1: The \overline{PCSx} pins are active for memory bus cycle.

Set 0: The \overline{PCSx} pins are active for I/O bus cycle.

Bit 5-3 : Reserved

Bit 2: R2, Ready Mode. This bit is configured to enable/disable the wait states inserted for the PCS5, PCS6 chip selects. The

R1,R0 bits of this register determine the number of wait state to insert.

set to 1: external ready is ignored

set to 0: external ready is required

Bit 1-0 : R1-R0, Wait-State value. The R1,R0 determines the number of wait states inserted into a PCS5 - PCS6 access. (R1,R0) : (1,1) - 3 wait states , (1,0) - 2 wait states, (0,1) - 1 wait states , (0,0) - 0 wait states

PCSx

The peripheral or memory chip selects which are programmed through A4h and A8h register to define these pins.

The base address memory block can be located anywhere within the 1M bytes memory space, exclusive of the areas associated with the $\overline{\text{MCS4}}$, $\overline{\text{LCS}}$ and $\overline{\text{MCS}}$ chip elects. If the chip selects are mapped to I/O space, the access range is 64k bytes. PCS6 – PCS5 can be configured from 0 wait-state to 3 wait-states. $\overline{\text{PCS3}} - \overline{\text{PCS0}}$ can be configured from 0 wait-state to 15 wait-states.

Peripheral Chip Select Register								Offset : A4h Reset Value : ——							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	BA19 - BA11						1	1	1	R3	R2	R1	R0		

Bit 15-7 : BA19-BA11, Base Address. BA19-BA11 correspond to bit 19-11 of the 1M bytes (20-bits) programmable base

address of the \overline{PCS} chip select block.

When the $\overline{\text{PCS}}$ chip selects are mapped to I/O space, BA19-BA16 must be wrote to 0000b because the I/O address bus in only 64K bytes (16-bits) wide.

PCSx address range:

PCS0	:	Base Address -	Base Address + FFh
PCS1	:	Base Address + 100h -	Base Address + 1FFh
$\overline{\text{PCS2}}$:	Base Address + 200h -	Base Address + 2FFh
PCS3	:	Base Address + 300h -	Base Address + 3FFh
PCS5	:	Base Address + 500h -	Base Address + 5FFh
PCS6	:	Base Address + 600h -	Base Address + 6FFh

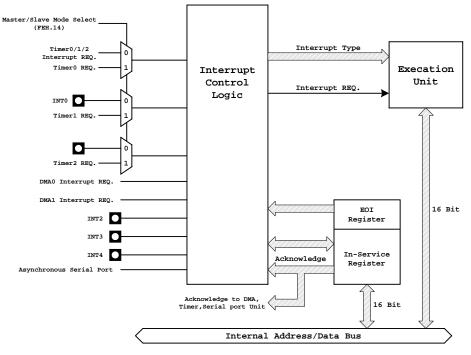
Bit 6-4: Reserved

Bit 3: R3; Bit 1-0: R1,R0, Wait-State Value. The R3,R1,R0 determines the number of wait-states inserted into a PCS3 -

PCS0 access.

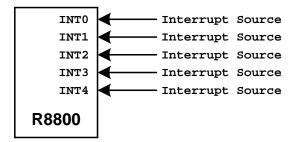
R3,	R1,	R0	 Wait States
0,	0,	0	 0
0,	0,	1	 1
0,	1,	0	 2
0,	1,	1	 3
1,	0,	0	 5
1,	0,	1	 7
1,	1,	0	 9
1,	1,	1	 15

Bit 2 : **R2**, Ready Mode. This bit is configured to enable/disable the wait states inserted for the $\overline{PCS3} - \overline{PCS0}$ chip selects. The R3,R1,R0 bits determine the number of wait state to insert.

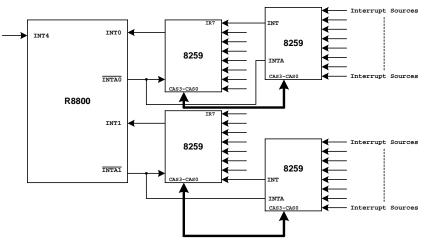

set to 1: external ready is ignored

set to 0: external ready is required

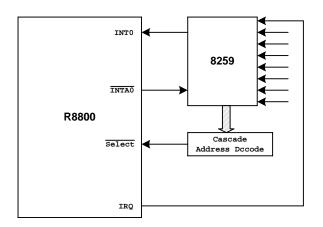
Interrupt Controller Unit


There are twelve interrupt requests source connect to the controller: five maskable interrupt pins (INT0 – INT4); one non-maskable interrupt pin (NMI); Six internal unit request source (Timer 0, 1,2; DMA 0,1; Asynchronous serial unit).

Interrupt Control Unit Block Diagram


Master Mode and Slave Mode

The interrupt controller can be programmed as a master or slave mode. (program FEh, bit 14). The master mode has two connections : Fully Nested Mode connection or Cascade Mode connection.



Fully Nested Mode Connections

Cascade Mode Connection

Slave Mode Connection

Interrupt Vector, Type and Priority

The following table shows the interrupt vector addresses, type and the priority. The maskable interrupt priority can be changed

by programmed the priority register	r. The Vector addresses for	r each interrupt are fixed.
-------------------------------------	-----------------------------	-----------------------------

Interrupt source	Interrupt	Vector	EOI	Priority	Note
_	Туре	Address	Туре		
Divide Error Exception	00h	00h		1	
Trace interrupt	01h	04h		1-1	*
NMI	02h	08h		1-2	*
Breakpoint Interrupt	03h	0Ch		1	
INTO Detected Over Flow Exception	04h	10h		1	
Array Bounds Exception	05h	14h		1	

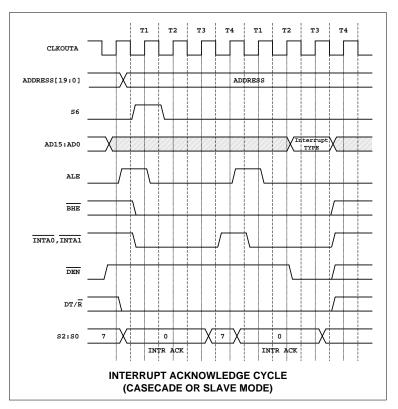
Undefined Opcode Exception	06h	18h		1	
ESC Opcode Exception	07h	1Ch		1	
Timer 0	08h	20h	08	2-1	*/**
Reserved	09h				
DMA 0	0Ah	28h	0A	3	**
DMA 1	0Bh	2Ch	0B	4	**
INT0	0Ch	30h	0C	5	
INT1	0Dh	34h	0D	6	
INT2	0Eh	38h	0E	7	
INT3	0Fh	3Ch	0F	8	
INT4	10h	40h	10	9	
Watchdog Timer	11h	44h	11	9	
Timer 1	12h	48h	08	2-2	*/**
Timer 2	13h	4Ch	08	2-3	*/**
Asynchronous Serial port	14h	50h	14	9	
Reserved	15h-1Fh				

Note * : When the interrupt occurs in the same time, the priority is (1-1 > 1-2); (2-1 > 2-2 > 2-3)

Note **: The interrupt types of these sources are programmable in slave mode.

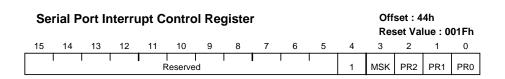
Interrupt Request

When an interrupt is request, the internal interrupt controller verifies the interrupt is enable (The IF flag is enable, no MSK bit set) and that there are no higher priority interrupt requests being serviced or pending. If the interrupt is granted, the interrupt controller uses the interrupt type to access a vector from the interrupt vector table.


If the external INT is active (level-trigger) to request the interrupt controller service, and the INT pins must hold till the microcontroller enter the interrupt service routine. There is no interrupt-acknowledge output when running in fully nested mode, so it should use PIO pin to simulate the interrupt-acknowledge pin if necessary.

Interrupt Acknowledge

The processor requires the interrupt type as an index into the interrupt table. The internal interrupt can provide the interrupt type or an external controller can provide the interrupt type.


The internal interrupt controller provides the interrupt type to processor without external bus cycles generation. When an external interrupt controller is supplying the interrupt type, the processor generates two acknowledge bus cycles, and the interrupt type is written to the AD7-AD0 lines by the external interrupt controller.

RDC[®] RISC DSP Controller

Programming the Registers

Software is programmed through the registers (**Master mode:** 44h, 42h, 40h, 3Eh, 3Ch, 3Ah, 38h, 36h, 34h, 32h, 30h, 2Eh, 2Ch, 2Ah, 28h, 26h, 24h, 22h; **Slave Mode:** 3Ah, 38h, 36h, 34h, 32h, 30h, 2Eh, 2Ch, 2Ah, 28h, 22h, 20h) to define the interrupt controller operation.

(Master Mode)

Bit 15-4 : Reserved

Bit 3: MSK, Mask.

Set 1: Mask the interrupt source of the asynchronous serial port.

Set 0: Enable the serial port interrupt.

Bit 2-0 : PR2-PR0, Priority. These bits determine the priority of the serial port relative to the other interrupt signals.

The priority selection:

PR2, PR1, PR0 -- Priority

0	,	0,	0	 0	(High)
0	,	0,	1	 1	
0	,	1,	0	 2	
0	,	1,	1	 3	
1	,	0,	0	 4	
1	,	0,	1	 5	
1	,	1,	0	 6	
1	,	1,	1	 7	(Low)

INT	Г4 Co	ontrol	Reg	ister								-	set : 4 set Va	-	00Fh
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		Reserved						ETM	R	 es	LTM	MSK	PR2	PR1	PR0

(Master Mode)

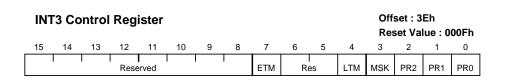
Bit 15-8, bit 6-5 : Reserved

Bit 7: ETM, Edge trigger mode enable. When this bit set to 1 and Bit 4 set to 0, the Interrupt is triggered by low go high edge.

The low go high edge will be latched (one level) till this interrupt is been serviced.

Bit 4: LTM, Level-Triggered Mode.

Set 1: Interrupt is triggered by high active level


Set 0 : Interrupt is triggered by low go high edge.

Bit 3 : MSK, Mask.

Set 1: Mask the interrupt source of the INT4

- Set 0: Enable the INT4 interrupt.
- Bit 2-0: PR, Interrupt Priority

These bits setting for priority selection is same as bit 2-0 of 42h

(Master Mode)

Bit 15-8, bit 6-5 : Reserved

Bit 7:ETM, Edge trigger mode enable. When this bit set to 1 and Bit 4 set to 0, the Interrupt is triggered by low go high edge The low go high edge will be latched (one level) till this interrupt is been serviced.

Bit 4: LTM, Level-Triggered Mode.

Set 1: Interrupt is triggered by high active level

Set 0 : Interrupt is triggered by low go high edge.

Bit 3 : MSK, Mask.

Set 1: Mask the interrupt source of the INT3

Set 0: Enable the INT3 interrupt.

Bit 2-0: PR, Interrupt Priority

These bits setting for priority selection is same as bit 2-0 of 42h

IN	Г2 Со	ntrol	Reg	ister								-	set : 3 set Va	Ch lue : 0	00Fh
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved							ETM	R	 es	LTM	MSK	PR2	PR1	PR0

(Master Mode)

Bit 15-8, bit 6- 5 : Reserved

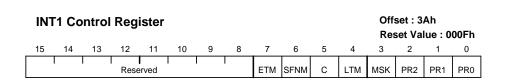
Bit 7: ETM, Edge trigger mode enable. When this bit set to 1 and Bit 4 set to 0, the Interrupt is triggered by low go high edge.

The low go high edge will be latched (one level) till this interrupt is been serviced.

Bit 4: LTM, Level-Triggered Mode.

Set 1: Interrupt is triggered by high active level

Set 0 : Interrupt is triggered by low go high edge.


Bit 3 : MSK, Mask.

Set 1: Mask the interrupt source of the INT2

Set 0: Enable the INT2 interrupt.

Bit 2-0: PR, Interrupt Priority

These bits setting for priority selection is same as bit 2-0 of the register 44h

(Master Mode)

Bit 15-8 : Reserved

- **Bit 7 : ETM**, Edge trigger mode enable. When this bit set to 1 and Bit 4 set to 0, the Interrupt is triggered by low go high edge. The low go high edge will be latched (one level) till this interrupt is been serviced.
- Bit 6: SFNM, Special Fully Nested Mode.

Set 1: Enable the special fully nested mode of INT1

Bit 5: C, Cascade Mode, Set this bit to 1 to enable cascade mode.

Bit 4: LTM, Level-Triggered Mode.

Set 1: Interrupt is triggered by high active level

Set 0 : Interrupt is triggered by low go high edge.

Bit 3 : MSK, Mask.

Set 1: Mask the interrupt source of the INT1

Set 0: Enable the INT1 interrupt.

Bit 2-0: PR, Interrupt Priority

These bits setting for priority selection is same as bit 2-0 of the register 44h

(Slave Mode), Timer 2 interrupt control register, reset value is 0000h

Bit 15-4: Reserved

Bit 3 : MSK, Mask.

Set 1: Mask the interrupt source of the Timer 2

Set 0: Enable the Timer 2 interrupt.

Bit 2-0: PR, Interrupt Priority

These bits setting for priority selection is same as bit 2-0 of the register 44h

INT	Г0 Со	ontrol	Reg	ister								-	set : 3 set Va		00Fh
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	I	I	Rese	l erved	I			ЕТМ	SFNM	С	LTM	MSK	PR2	PR1	PR0

(Master Mode)

Bit 15-8 : Reserved

Bit 7 : ETM, Edge trigger mode enable. When this bit set to 1 and Bit 4 set to 0, the Interrupt is triggered by low go high edge.

The low go high edge will be latched (one level) till this interrupt is been serviced.

Bit 6: SFNM, Special Fully Nested Mode.

Set 1: Enable the special fully nested mode of INTO.

Bit 5: C, Cascade Mode, Set this bit to 1 to enable cascade mode.

Bit 4: LTM, Level-Triggered Mode.

Set 1: Interrupt is triggered by high active level

Set 0 : Interrupt is triggered by low go high edge.

Bit 3 : MSK, Mask.

Set 1: Mask the interrupt source of the INTO

Set 0: Enable the INT0 interrupt.

Bit 2-0: PR, Interrupt Priority

These bits setting for priority selection is same as bit 2-0 of the register 44h

(Slave Mode), Timer 1 interrupt control register, reset value is 0000h

Bit 15-4 : Reserved

Bit 3: MSK , Mask.

Set 1: Mask the interrupt source of the timer 1

Set 0: Enable the timer 1 interrupt.

Bit 2-0: PR, Interrupt Priority

These bits setting for priority selection is same as bit 2-0 of the register 44h

DM	A 1 li	nterr	upt C	ontro	ol Re	giste	r					-	set : 3 set Va	6h lue : 0	00Fh
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	0	0	0	0	0	MSK	PR2	PR1	PR0

(Master Mode)

Bit 15-4 : Reserved

Bit 3: MSK , Mask.

Set 1: Mask the interrupt source of the DMA 1 controller

Set 0: Enable the DMA 1 controller interrupt.

Bit 2-0: PR, Interrupt Priority

These bits setting for priority selection is same as bit 2-0 of the register 44h

(Slave Mode), DMA 1 interrupt control register , reset value is 0000h

Bit 15-4 : Reserved

Bit 3: MSK , Mask.

Set 1: Mask the interrupt source of the DMA 1 controller

Set 0: Enable the DMA 1 controller interrupt.

Bit 2-0: PR, Interrupt Priority

These bits setting for priority selection is same as bit 2-0 of the register 44h

DM	A 0 I	nterr	upt C	ontro	ol Re	giste	r					-	set : 3 set Va		00Fh
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	0	0	0	0	0	MSK	PR2	PR1	PR0

(Master Mode)

Bit 15-4 : Reserved

Bit 3: MSK , Mask.

Set 1: Mask the interrupt source of the DMA 0 controller

Set 0: Enable the DMA 0 controller interrupt.

Bit 2-0: PR, Interrupt Priority

These bits setting for priority selection is same as bit 2-0 of the register 44h

(Slave Mode), reset value is 0000h

Bit 15-4 : Reserved

Bit 3: MSK , Mask.

Set 1: Mask the interrupt source of the DMA 0 controller

Set 0: Enable the DMA 0 controller interrupt.

Bit 2-0: PR, Interrupt Priority

These bits setting for priority selection is same as bit 2-0 of the register 44h

Tir	ner Ir	nterru	ipt C	ontro	ol Reg	giste	r					-	set : 3 set Va	2h lue : 0	00Fh
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	0	0	0	0	0	MSK	PR2	PR1	PR0

(Master Mode)

Bit 15-4 : Reserved

Bit 3: MSK , Mask.

Set 1: Mask the interrupt source of the Timer controller

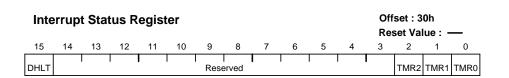
Set 0: Enable the Timer controller interrupt.

Bit 2-0: PR, Interrupt Priority

These bits setting for priority selection is same as bit 2-0 of the register 44h

(Slave Mode), Timer 0 interrupt control register , reset value is 0000h

Bit 15-4 : Reserved


Bit 3: MSK , Mask.

Set 1: Mask the interrupt source of the Timer 0 controller

Set 0: Enable the Timer 0 controller interrupt.

Bit 2-0: PR, Interrupt Priority

These bits setting for priority selection is same as bit 2-0 of the register 44h

(Master Mode), Reset value undifine

Bit 15 : DHLT, DMA Halt.

Set 1: halts any DMA activity. When non-maskable interrupts occur.

Set 0: When an IRET instruction is excuted.

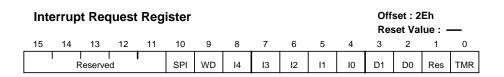
Bit 14-3 : Reserved.

Bit 2-0 : TMR2-TMR0,

Set 1: indicates the corresponding timer has an interrupt request pending.

(Slave Mode), Reset value is 0000h

Bit 15 : DHLT, DMA Halt.


Set 1: halts any DMA activity. When non-maskable interrupts occur.

Set 0: When an IRET instruction is executed.

Bit 14-3 : Reserved.

Bit 2-0: TMR2-TMR0,

Set 1: indicates the corresponding timer has an interrupt request pending.

(Master Mode)

RDC[®] RISC DSP Controller

The Interrupt Request register is a read-only register. For internal interrupts (SPI, WD, D1, D0, and TMR), the corresponding bit is set to 1 when the device requests an interrupt. The bit is reset during the internally generated interrupt acknowledge. For INT4-INT0 external interrupts, the corresponding bit (I4-I0) reflects the current value of the external signal.

Bit 15-11 : Reserved.

- Bit 10 : SPI, Serial Port Interrupt Request. Indicates the interrupt state of the serial port.
- Bit 9 : WD, Watchdog Timer Interrupt Request.

Set 1: The Watchdog Timer has an interrupt pending.

Bit 8-4 : I4-I0, Interrupt Requests.

Set 1: The corresponding INT pin has an interrupt pending.

Bit 3-2 : D1-D0, DMA Channel Interrupt Request.

Set 1: The corresponding DMA channel has an interrupt pending.

Bit 1: Reserved.

Bit 0 : TMR, Timer Interrupt Request.

Set 1: The timer control unit has an interrupt pending.

Inte	errupt	: In - \$	Servi	ce Re	egiste	er						-	set : 2 set Va	Ch lue : 0	000h
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved				SPI	WD	14	13	12	11	10	D1	D0	Res	TMR

(Slave Mode)

The Interrupt Request register is a read-only register. For internal interrupts (D1, D0, TMR2, TMR1, and TMR0), the corresponding bit is set to 1 when the device requests an interrupt. The bit is reset during the internally generated interrupt acknowledge.

Bit 15-6 : Reserved.

Bit 5-4 : TMR2/TMR1, Timer2/Timer1 Interrupt Request.

Set 1: Indicates the state of any interrupt requests form the associated timer.

Bit 3-2 : D1-D0, DMA Channel Interrupt Request.

Set 1: Indicates the corresponding DMA channel has an interrupt pending.

Bit 1 : Reserved.

Bit 0 : TMR0, Timer 0 Interrupt Request.

Set 1: Indicates the state of an interrupt request from Timer 0.

In ·	- Serv	vice F	Regis	ster								-	set : 2 set Va	Ch lue : 0	000h
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved					WD	14	13	12	11	10	D1	D0	Res	TMR

(Master Mode)

The bits in the INSERV register are set by the interrupt controller when the interrupt is taken. Each bit in the register is cleared

by writing the corresponding interrupt type to the EOI register.

Bit 15-11 : Reserved.

Bit 10 : SPI, Serial Port Interrupt In-Service.

Set 1: the serial port interrupt is currently being serviced.

Bit 9: WD, Watchdog Timer Interrupt In-Service.

Set 1: the watchdog timer interrupt is currently being serviced.

Bit 8-4 : I4-I0, Interrupt In-Service.

Set 1: the corresponding INT interrupt is currently being serviced.

Bit 3-2 : D1-D0, DMA Channel Interrupt In-Service.

Set 1: the corresponding DMA channel interrupt is currently being serviced.

Bit 1 : Reserved.

Bit 0 : TMR, Timer Interrupt In-Service.

Set 1: the timer interrupt is currently being serviced.

In -	Serv	ice R	egist	er								-	set : 2 set Va	Ch lue : 0	000h
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	l F	 Reserve	l d	I	SPI	WD	14	13	12	11	10	D1	D0	Res	TMR

(Slave Mode)

The bits in the In-Service register are set by the interrupt controller when the interrupt is taken. The in-service bits are cleared by writing to the EOI register.

Bit 15-6 : Reserved.

Bit 5-4 : TMR2-TMR1, Timer2/Timer1 Interrupt In-Service.

Set 1: the corresponding timer interrupt is currently being serviced.

Bit 3-2 : D1-D0, DMA Channel Interrupt In-Service.

Set 1: the corresponding DMA Channel is currently being serviced.

Bit 1 : Reserved.

Bit 0 : TMR0, Timer 0 Interrupt In-Service.

Set 1: the Timer 0 interrupt is currently being serviced.

Prie	ority	Mask	Reg	ister								-	set : 2 set Va		007h
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	0	0	0	0	0	0	PRM2	PRM1	PRM0

(Master Mode)

Determining the minimum priority level at which maskable interrupts can generate an interrupt.

Bit 15-3 : Reserved.

Bit 2-0 : PRM2-PRM0, Priority Field Mask. Determining the minimum priority that is required in order for a maskable

interrupt source to generate an interrupt.

Priority	PR2-PR0
(High) 0	000
1	001
2	010
3	011
4	100
5	101
6	110
(Low) 7	111

(Slave Mode)

Determining the minimum priority level at which maskable interrupts can generate an interrupt.

Bit 15-3 : Reserved.

Bit 2-0 : PRM2-PRM0, Priority Field Mask. Determining the minimum priority that is required in order for a maskable

	-
Priority	PR2-PR0
(High) 0	000
1	001
2	010
3	011
4	100
5	101
6	110
(Low) 7	111

interrupt source to generate an interrupt.

In	ter	rupt	Mas	k Reg	giste	r							Off	set:2	8h	
		•		Res	set Val	ue : 0	7FDh									
15	5	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved SPI WD 14 13 12 1										11	10	D1	D0	Res	TMR

(Master Mode)

Bit 15-11 : Reserved.

Bit 10: SPI, Serial Port Interrupt Mask. The state of the mask bit of the asynchronous serial port interrupt.

Bit 9: WD, Virtual Watchdog Timer Interrupt Mask. The state of the mask bit of the Watchdog Timer interrupt.

Bit 8-4: I4-I0, Interrupt Masks. Indicates the state of the mask bit of the corresponding interrupt.

Bit 3-2: D1-D0, DMA Channel Interrupt Masks. Indicates the state of the mask bit of the corresponding DMA Channel

interrupt.

Bit 1: Reserved.

Bit 0: TMR, Timer Interrupt Mask. The state of the mask bit of the timer control unit .

Int	errup	ot Red	quest	Reg	ister							-	set : 2 set Val		03Dh
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved										TMR1	D1	D0	Res	TMR0

(Slave Mode)

Bit 15-6 : Reserved.

Bit 5-4 : TMR2-TMR1, Timer 2/Timer1 Interrupt Mask. The state of the mask bit of the Timer Interrupt Control register.

Set 1: Timer2 or Time1 has its interrupt requests masked

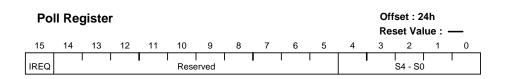
Bit 3-2: D1-D0, DMA Channel Interrupt Mask. The state of the mask bits of the corresponding DMA control register.

Bit 1 : Reserved.

Bit 0: TMR0, Timer 0 Interrupt Mask. The state of the mask bit of the Timer Interrupt Control Register

Pol	I Stat	tus R	egist	er								-	set : 2 set Val		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
IREQ		I		I	Rese	erved							 S4 - S0		l

(Master mode)


The Poll Status (POLLST) register mirrors the current state of the Poll register. the POLLST register can be read without affecting the current interrupt request.

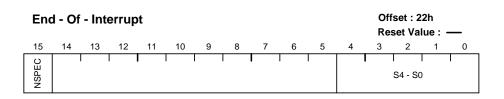
Bit 15 : IREQ, Interrupt Request.

Set 1: if an interrupt is pending. The S4-S0 field contains valid data.

Bit 14-5 : Reserved.

Bit 4-0 : S4-S0, Poll Status. Indicates the interrupt type of the highest priority pending interrupt.

(Master mode)


When the Poll register is read, the current interrupt is acknowledged and the next interrupt takes its place in the Poll register.

Bit 15 : IREQ, Interrupt Request.

Set 1: if an interrupt is pending. The S4-S0 field contains valid data.

Bit 14-5 : Reserved.

Bit 4-0 : S4-S0, Poll Status. Indicates the interrupt type of the highest priority pending interrupt.

(Master Mode)

Bit 15 : NSPEC, Non-Specific EOI.

Set 1: indicates non-specific EOI.

Set 0: indicates the specific EOI interrupt type in S4-S0.

Bit 14-5 : Reserved.

Bit 4-0: S4-S0, Source EOI Type. Specifies the EOI type of the interrupt that is currently being processed.

Spe	ecific	EOI										-	set : 2 set Va		000h
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	0	0	0	0	0	0	L2	L1	L0

(Slave Mode)

RDC[®] RISC DSP Controller

Bit 15-3 : Reserved.

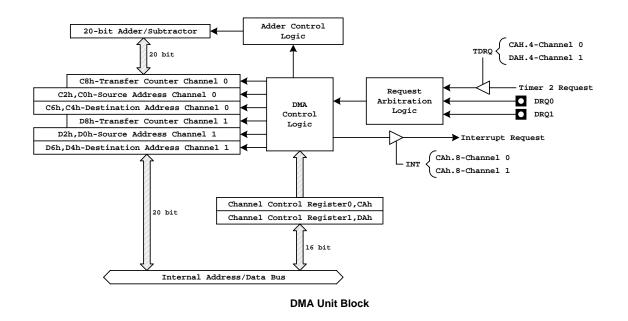
Bit 2-0 : L2-L0, Interrupt Type. Encoded value indicating the priority of the IS(interrupt service) bit to reset. Writes to these bits cause an EOI to be issued for the interrupt type in slave mode.

Int	errup	ot Veo	ctor F	Regis	ter							-	set : 2 set Val		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	0	T4 - T0					0	0	0

(Slave Mode)

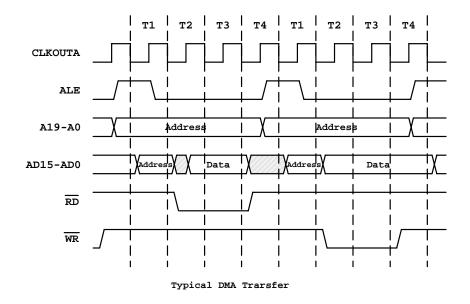
Bit 15-8 : Reserved

Bit 7-3 : T4-T0, Interrupt Type.

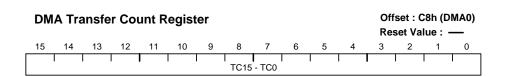

The following interrupt type of slave mode can be programmed.

Timer 2 interrupt controller :	(T4,T3,T2,T1,T0, 1, 0, 1)b
Timer 1 interrupt controller :	(T4,T3,T2,T1,T0, 1, 0, 0)b
DMA 1 interrupt controller :	(T4,T3,T2,T1,T0, 0, 1, 1)b
DMA 0 interrupt controller :	(T4,T3,T2,T1,T0, 0, 1, 0)b
Timer 0 interrupt controller :	(T4,T3,T2,T1,T0, 0, 0, 0)b

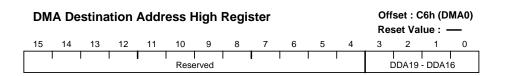
Bit 2-0 :Reserved


DMA Unit

The DMA controller provides the data transfer between the memory and peripherals without the intervention of the CPU. There are two DMA channels in the DMA unit. Each channel can accept DMA request from one of two source : external pin (DRQ0 for channel 0 or DRQ1 for channel 1) or Timer 2 overflow. The data transfer from source to destination can be memory to memory or memory, to I/O, or I/O to I/O, or I/O to memory. Either bytes or words can be transferred to or from even or odd addresses and two bus cycles are necessary (read from source and write to destination) for each data transfer.


DMA Operation

Every DMA transfer consists of two bus cycles (figure of Typical DMA Transfer) and the two bus cycles can not be separated by a bus hold request, a refresh request or another DMA request. The registers (CAh, C8h, C6h, C4h, C2h, C0h, DAh, D8h, D6h, D4h, D2h, D0h) are used to configure and operate the two DMA channels.



DN	IA Co	ontrol	l Reg	isters	6								set : Ca set Valu	•	,
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
DM/IO	DDEC	DINC	SM/ĪŌ	SDEC	SINC	тс	INT	SYN1	SYN0	Ρ	TDRQ	Res	CHG	ST	B/W

The definition of Bits 15-0 for DMA0 are same as the Bits 15-0 of register DAh for DMA1.

Bit 15-0: TC15-TC0, DMA 0 transfer Count. The value of this register is decremented by 1 after each transfer.

Bit 15-4: Reserved

Bit 3-0: DDA19-DDA16, High DMA 0 Destination Address. These bits are map to A19- A16 during a DMA transfer when the destination address is in memory space or I/O space. If the destination address is in I/O space (64Kbytes), these bits must be programmed to 0000b.

DN	IA De	estina	ation	Addı	ress I	Low	Regis	ster					set : C set Va	•	,
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	DDA15 - DDA0														

Bit 15-0: DDA15-DDA0, Low DMA 0 Destination Address. These bits are mapped to A15- A0 during a DMA transfer.

The value of (DDA19-DDA0)b will increment or decrement by 2 after each DMA transfer.

DN	IA So	ource	Add	ress	High	Reg	ister						set : C set Va	•	,
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	l	l	I	I	1		I	l	I				I DSA19	l - DSA1	6

Bit 15-4: Reserved

Bit 3-0: DSA19-DSA16, High DMA 0 Source Address. These bits are mapped to A19- A16 during a DMA transfer when the source address is in memory space or I/O space. If the source address is in I/O space (64Kbytes), these bits must be programmed to 0000b.

DN	MA S	ource	e Ado	lress	Low	Reg	ister							0h (Di lue : -	,
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1	1	I	I			l DSA15	- DSA0							

Bit 15-0: DSA15-DSA0, Low DMA 0 Source Address. These bits are mapped to A15- A0 during a DMA transfer.

The value of (DSA19-DSA0)b will increment or decrement by 2 after each DMA transfer.

DN	IA Co	ontro	l Reg	isters	6								set : D. et Valu	•	,
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
DM/IO	DDEC	DINC	SM/ĪŌ	SDEC	SINC	тс	INT	SYN1	SYN0	Ρ	TDRQ	Res	CHG	ST	B/W

- Bit 15: DM / IO, Destination Address Space Select.
 - Set 1: The destination address is in memory space.
 - Set 0: The destination address is in I/O space.
- Bit 14: DDEC, Destination Decrement.
 - Set 1: The destination address is automatically decrement after each transfer.
 - The B/W (bit 0) bit determines the decrement value which is by 1 or 2 When both DDEC and DINC bits are
 - set to 1, the address remains constant
 - Set 0 : Disable the decrement function.
- Bit 13: DINC, Destination Increment.
 - Set 1: The destination address is automatically increment after each transfer.
 - The \overline{B}/W (bit 0) bit determines the increment value which is by 1 or 2
 - Set 0 : Disable the decrement function.
- Bit 12: SM/ IO, Source Address Space Select.
 - Set 1: The Source address is in memory space.
 - Set 0: The Source address is in I/O space
- Bit 11: SDEC, Source Decrement.
 - Set 1: The Source address is automatically decrement after each transfer.
 - The \overline{B}/W (bit 0) bit determines the decrement value which is by 1 or 2 When both SDEC and SINC bits are set
 - to 1, the address remains constant
 - Set 0 : Disable the decrement function.

Bit 10: SINC, Source Increment.

- Set 1: The Source address is automatically increment after each transfer.
 - The \overline{B}/W (bit 0) bit determines the increment value which is by 1 or 2
- Set 0 : Disable the decrement function

Bit 9 : TC, Terminal Count.

- Set 1: The synchronized DMA transfer is terminated when the DMA transfer count register reaches 0.
- Set 0: The synchronized DMA transfer is terminated when the DMA transfer count register reaches 0.

Unsynchronized DMA transfer is always terminated when the DMA transfer count register reaches 0, regardless the setting of this bit.

Bit 8 : INT, Interrupt.

Set 1: DMA unit generates an interrupt request when complete the transfer count .

The TC bit must set to 1 to generate an interrupt.

- Bit 7-6: SYN1-SYN0, Synchronization Type Selection.
 - <u>SYN1</u>, <u>SYN0</u> -- <u>Synchronization Type</u>
 - 0 , 0 -- Unsynchronized
 - 0 , 1 -- Source synchronized

RDC® RISC DSP Controller

1 , 0 -- Destination synchronized

1 , 1 -- Reserved

Bit 5: P , Priority.

Set 1: It selects high priority for this channel when both DMA 0 and DMA 1 are transfer in same time.

Bit 4: TDRQ, Timer Enable/Disable Request

Set 1: Enable the DMA requests from timer 2.

Set 0: Disable the DMA requests from timer 2.

Bit 3: Reserved

Bit 2: CHG, Changed Start Bit. This bit must set to 1 when will modify the ST bit.

Bit 1: ST, Start/Stop DMA channel.

Set 1: Start the DMA channel

Set 0: Stop the DMA channel

Bit 0: $\overline{\mathbf{B}}$ /W, Byte/Word Select.

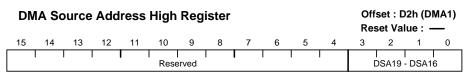
Set 1: The address is incremented or decremented by 2 after each transfer.

Set 0 :The address is incremented or decremented by 1 after each transfer.

DM	A Tra	ansfe	er Co	unt R	egist	er							set : D set Va	•	MA1)
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1	I	l	I	l		TC15	- TC0		I	I	ĺ	l	I	1

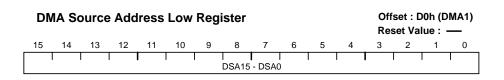
Bit 15-0: TC15-TC0, DMA 1 transfer Count. The value of this register is decremented by 1 after each transfer.

DM	IA De	stina	tion	Addr	ess I	ligh	Regi	ster					set : D set Va	•	,
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				I	l Rese	l erved		I	l			[I DDA19	l - DDA1	6


Bit 15-4: Reserved

Bit 3-0: DDA19-DDA16, High DMA 1 Destination Address. These bits are map to A19- A16 during a DMA transfer when the destination address is in memory space or I/O space. If the destination address is in I/O space (64Kbytes), these bits must be programmed to 0000b.

DN	IA De	estina	ation	Addı	ress I	low	Regis	ster					ⁱ set : E set Va	•	0MA1) —
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	I	I		I			l DDA15	 - DDA()	I	I				

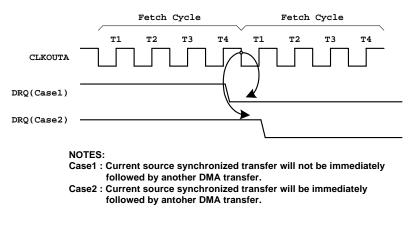

Bit 15-0: DDA15-DDA0, Low DMA 1 Destination Address. These bits are mapped to A15- A0 during a DMA transfer.

The value of (DDA19-DDA0)b will increment or decrement by 2 after each DMA transfer.

Bit 15-4: Reserved

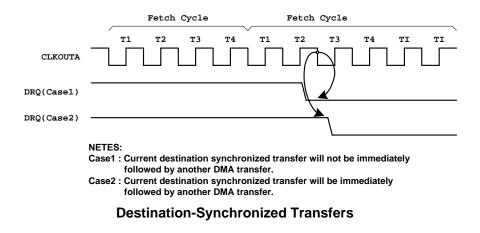
Bit 3-0: DSA19-DSA16, High DMA 1 Source Address. These bits are mapped to A19- A16 during a DMA transfer when the source address is in memory space or I/O space. If the source address is in I/O space (64Kbytes), these bits must be programmed to 0000b.

Bit 15-0: DSA15-DSA0, Low DMA 1 Source Address. These bits are map to A15- A0 during a DMA transfer.

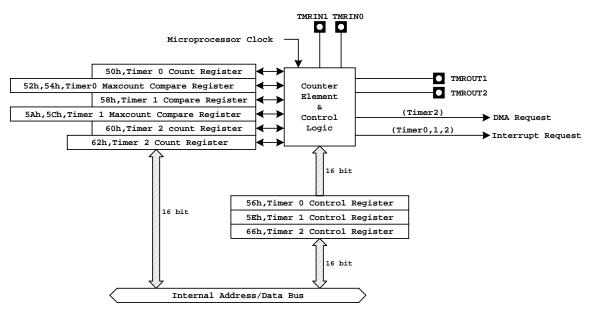

The value of (DSA19-DSA0)b will increment or decrement by 2 after each DMA transfer.

External Requests

External DMA requests are asserted on the DRQ pins. The DRQ pins are sampled on the falling edge of CLKOUTA. It takes a minimum of four clocks before the DMA cycle is initiated by the Bus Interface. The DMA request is cleared four clocks before the end of the DMA cycle. And no DMA acknowledge is provided, since the chip-selects (MCSx, PCSx) can be programmed to be active for a given block of memory or I/O space, and the DMA source and destination address registers can be programmed to point to the same given block.


DMA transfer can be either source or destination synchronized, and it can also be unsynchronized. The Source-Synchronized Transfer figure shows the typical source-synchronized transfer which provides the source device at least three clock cycles from the time it is acknowledged to deassert its DRQ line.

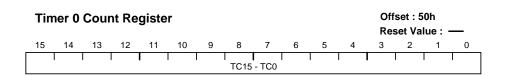
57


The Destination-Synchronized Transfer figure shows the typical destination-synchronized transfer which differs from a source-synchronized transfer in that two idle states are added to the end of the deposit cycle. The two idle states extend the DMA cycle to allow the destination device to deassert its DRQ pin four clocks before the end of the cycle. If the two idle states were not inserted, the destination device would not have time to deassert its DRQ signal.

R8800

Timer Control Unit

RISC DSP Controller



Timer / Counter Unit Block

There are three 16-bit programmable timers in the R8800. The timer operation is independent of the CPU. The three timers can be programmed as a timer element or as a counter element. Timers 0 and 1 are each connect to two external pins (TMRIN0, TMROUT0, TMRIN1, TMROUT1) which can be used to count or time external events, or they can be used to generate a variable-duty-cycle waveforms. Timer 2 is not connected any external pins. It can be used as a prescale to timer 0 and timer 1 or as a DMA request source.

т	ïm	er 0	Mode	∍/Co	ontro	Reg	ister						-	set : 5 set Va		000h
1	5	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
E	N	ĪNH	INT	RIU	0	0	0	0	0	0	мс	RTG	Р	EXT	ALT	CONT

These bits definition for timer 0 are same as the bits of register 5Eh for timer 1.

Bit 15 – 0: TC15-TC0, Timer 0 Count Value. This register contains the current count of timer 0. The count is incremented by one every four internal processor clocks or by prescaled the timer 2, or by one every four external clock which is configured the external clock select bit to refer the TMRIN1 signal.

Tin	ner O	Maxo	count	t Cor	npare	AR	egist	er				-	set : 5 set Va		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							TC15	- TC0		I	I	I			1

Bit 15-0 : TC15 – TC0, Timer 0 Compare A Value.

Tin	ner O	Max	coun	t Cor	npare	BR	egist	er				-	set : 5 set Va	i4h lue : -	_
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	I	I		I	I		TC15	- TC0		I					

Bit 15-0 : TC15 – TC0, Timer 0 Compare B Value.

Tin	ner 1	Mode	e / Co	ontro	l Reg	ister						-	set : 5 set Va		000h
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
EN	ĪNĦ	INT	RIU	0	0	0	0	0	0	мс	RTG	Ρ	EXT	ALT	CONT

Bit 15: EN, Enable Bit.

Set 1: The timer 1 is enable.

Set 0: The timer 1 is inhibited from counting.

The INH bit must be set 1 during writing the EN bit, and the INH bit and EN bit must be in the same write.

Bit 14: $\overline{\text{INH}}$, Inhibit Bit. This bit is allows selective updating the EN bit. The $\overline{\text{INH}}$ bit must be set 1 during writing the EN

bit, and both the INH bit and EN bit must be in the same write. This bit is not stored and is always read as 0.

Bit 13: INT, Interrupt Bit.

Set 1: A interrupt request is generated when the count register equals a maximum count. If the timer is configured in dual max-count mode, an interrupt is generated each time the count reaches max-count A or max-count B Set 0: Timer 1 will not issue interrupt request.

Bit 12: RIU, Register in Use Bit.

Set 1: The Maxcount Compare B register of timer 1 is being used

Set 0: The Maxcount Compare A register of timer 1 is being used

Bit 11-6 : Reserved.

- **Bit 5: MC**, Maximum Count Bit. When the timer reaches its maximum count, the MC bit will set to 1 by H/W. In dual maxcount mode, this bit is set each time either Maxcount Compare A or Maxcount Compare B register is reached. This bit is set regardless of the EN bit (66h.15).
- **Bit 4: RTG**, Re-trigger Bit. This bit define the control function by the input signal of TMRIN1 pin. When EXT=1 (5Eh.2), this bit is ignored.
 - Set 1: Timer1 Count Register (58h) counts internal events; Reset the counting on every TMRIN1 input signal from low go high (rising edge trigger).
 - Set 0: Low input holds the timer 1 Count Register (58h) value; High input enables the counting which counts internal events.

The definition of setting the (EXT, RTG)

- (0, 0) Timer1 counts the internal events. if the TMRIN1 pin remains high.
- (0,1) -- Timer1 counts the internal events; count register reset on every rising transition on the TMRIN1 pin
- (1, x) -- TMRIN1 pin input acts as clock source and timer1 count register increase one every four external clock.

Bit 3: P, Prescaler Bit. This bit and EXT(5Eh.2) define the timer 1 clock source.

The definition of setting the (EXT, P)

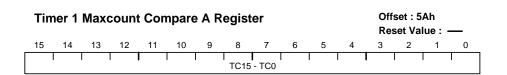
- (0,0) Timer1 Count Register increase one every four internal processor clock.
- (0, 1) Timer1 count register increase one which prescal by timer 2.
- (1, x) -- TMRIN1 pin input acts as clock source and Timer1 Count Register increase one every four external clock.

Bit 2: EXT, External Clock Bit.

- Set 1: Timer 1 clock source from external
- Set 0: Timer 1 clock source from internal

Bit 1: ALT, Alternate Compare Bit. This bit controls whether the timer runs in single or dual maximum count mode.

- Set 1: Specify dual maximum count mode. In this mode the timer counts to Maxcount Compare A, then resets the count register to 0. Then the timer counts to Maxcount Compare B, then resets the count register to 0 again, and starts over with Maxcount Compare A.
- Set 0: Specify single maximum count mode. In this mode the timer will count to the valve contained in Maxcount Compare A and reset to 0, and then the timer counts to Maxcount Compare A again. Maxcount Compare B is not used in this mode.


Bit 0: CONT, Continuous Mode Bit.

Set 1: The timer to run continuously.

Set 0: The timer will halt after each counting to the maximum count and the EN bit will be cleared.

Tin	ner 1	Cou	nt Re	giste	r							-	set:{ setVa	58h Ilue :	_
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	I	I	I	I			TC15	- TC0		I	I	I		1	

Bit 15 – 0: TC15-TC0, Timer 1 Count Value. This register contains the current count of timer 1. The count is incremented by one every four internal processor clocks or by prescaled the timer 2, or by one every four external clock which is configured the external clock select bit to refer the TMRIN1 signal.

Bit 15-0 : TC15 – TC0, Timer 1 Compare A Value.

Tin	ner 1	Maxo	coun	t Cor	npare	BR	egist	er				-	set:5 setVa	iCh lue : ·	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	I	1		1			TC15	- TC0		1		I			1

Bit 15-0 : TC15 – TC0, Timer 1 Compare B Value.

Tin	ner 2	Mode	e / Co	ontro	Reg	ister						-	set : 6 set Va		000h
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
EN	INH	INT	0	0	0	0	0	0	0	мс	0	0	0	0	CONT

Bit 15: EN, Enable Bit.

Set 1: The timer 2 is enable.

Set 0: The timer 2 is inhibited from counting.

The INH bit must be set 1 during writing the EN bit, and the INH bit and EN bit must be in the same write.

Bit 14: INH, Inhibit Bit. This bit is allows selective updating the EN bit. The INH bit must be set 1 during writing the EN

bit, and both the \overline{INH} bit and EN bit must be in the same write. This bit is not stored and is always read as 0.

Bit 13: INT, Interrupt Bit.

Set 1: A interrupt request is generated when the count register equals a maximum count.

Set 0: Timer 2 will not issue interrupt request.

Bit 12-6 : Reserved.

Bit 5: MC, Maximum Count Bit. When the timer reaches its maximum count, the MC bit will set to 1 by H/W. This bit is set regardless of the EN bit (66h.15).

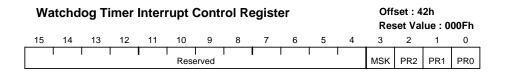
Bit 4-1: Reserved.

Bit 0: COUNT, Continuous Mode Bit.

Set 1: Timer is continuously running when timer reaches the maximum count.

Set 0: The EN bit (66h.15) is cleared and the timer is hold after each timer count reaches the maximum count.

Tin	Timer 2 Count Register 15 14 13 12 11 10 9 8 7 6 5												set : 6 set Val		_
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	TC15 - TC0														


Bit 15 – 0: TC15-TC0, Timer 2 Count Value. This register contains the current count of timer 2. The count is incremented by one every four internal processor clocks.

Tin	Timer 2 Maxcount Compare A Register												set : 6 set Va	62h Iue : -	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	TC15 - TC0												I	1	

Bit 15-0 : TC15 – TC0, Timer 2 Compare A Value.

Watchdog Timer

Timer 1 can also be configure as a watchdog timer. Software must fist programmed the Timer 1 Mode/Control (5Eh), Count (58h), and Max Count (5Ah, 5Ch) registers and then program the Watchdog Timer Interrupt Control Register (42h) to enable the watchdog timer interrupt , The Timer 1 Count Register must be reloaded at intervals less than the Timer 1 Maxcount value to assure the watchdog interrupt is not occurred.

(Master Mode)

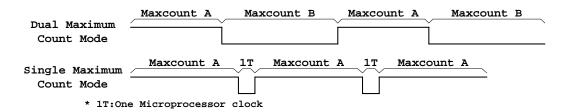
Bit 15-4 : Reserved

Bit 3: MSK , Mask.

Set 1: Mask the interrupt source of the watchdog timer

Set 0: Enable the watchdog timer interrupt.

Bit 2- 0: PR, Priority.


The priority selection:

PR2, PR1, PR0 -- Priority

0 , 0, 0 -- 0 (High) 0 , 0, 1 -- 1 0 , 1, 0 -- 2 0 , 1, 1 -- 3 1 , 0, 0 -- 4 1 , 0, 1 -- 5 1 , 1, 0 -- 6 1 , 1, 1 -- 7 (Low)

Timer/Counter Unit Output Mode

Timers 0 and 1 can use one maximum count value or two maximum count value. Timer 2 can use only one maximum count value. Timer 0 and timer 1 can be configured to single or dual Maximum Compare count mode, the TMROUT0 or TMROUT1 signals can be used to generated waveform of various duty cycle.


Timer/Counter Unit Output Modes

RDC[®] RISC DSP Controller

Asynchronous Serial Port

R8800 asynchronous serial port provides the TXD, RXD pins for the full duplex bi-directional data transfer and without handshaking signals. The UART port supports : 8-bit or 7-bit data transfer; odd parity, even parity, or no parity; 1 or 2 stop bits. DMA transfers through the serial port are not supported

The receive/transmit clock is based on the microprocessor clock. The serial port can be used in power-saved mode, but the transfer rate must be adjusted to correctly reflect the new internal operating frequency. Software is programmed through the 80h, 82h, 84h, 86h, 88h registers to configure the asynchronous serial port.

Serial Port Block Diagram

Se	rial P	ort C	ontro	ol Re	giste	r						-	set : 8 set Val		000h
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved TXIE RXIE LOOP				BRK	BRKVAL	PM	I DDE	WLGN	STP	TMOD	RSIE	RMODE		

Bit 15-12: Reserved

Bit 11: TXIE, Transmit Holding Register Empty Interrupt Enable.

This bit is set 1 to enable serial port to generates an interrupt request when the transmit holding register is empty.

Bit 9: LOOP, Loopback.

Set 1: The serial port in the loopback mode. In this mode, the transmit shift register is connect to the transmit shift register internal and the TXD pin output high. It provides the serial port testing in this mode.

Bit 8: BRK, Send Break.

It should to check the TEMT bit (82h.6) is a 1 before setting the BRK bit.

Set 1: The serial port send a frame of continues level output on the TXD pin and the output level depends on the BRAVAL bit status, when any data is written to transmit data register.

Bit 7: BRKVAL, Break Value.

- Set 1: TXD pin continuous drive high level signal during send break operation.
- Set 0: TXD pin continuous drive low level signal during send break operation.
- Bit 6-5: PMODE, Parity Mode. Parity generation and checking during transmission and reception.

Parity mode selection by (Bit 6, Bit 5): (0, x) – No parity bit in frame, (1, 0) – Odd number of 1s in frame.

- (1, 1) Even number of 1s in frame.
- Bit 4: WLGN, Word Length.
 - Set 1: The serial port sends and receives 8 bits of data per frame.
 - Set 0: The serial port sends and receives 7 bits of data per frame.
- Bit 3: STP, Stop Bits.
 - Set 1: Two stop bits are used to signify the end of a frame.
 - Set 0: One stop bit are used to signify the end of a frame.
- Bit 2: TMODE, Transmit Mode.
 - Set 1: Enable the transmit section of the serial port.
 - Set 0: Disable the transmit section of the serial port.
- Bit 1: RSIE, Receive Status interrupt Enable.
 - Set 1: Enable the receive section of serial port to generate an interrupt
 - Set 0: Disable the receive section of serial port to generate an interrupt

Bit 0: RMODE, Receive Mode.

- Set 1: Enable the receive section of the serial port.
- Set 0: Disable the receive section of the serial port.

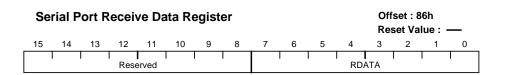
Se	rial P	ort S	tatus	Reg	ister						-	set : 8 set Val	2h lue : -	_	
15	14	13	12 11 10 9 8 7 6 5 4 3									2	1	0	
	Reserved									THRE	RDR	BRK1	FER	PER	OER

Bit 15-7 : Reserved

- **Bit 6: TEMT**, Transmitter Empty. Read only bit. This bit is set by H/W when the transmit shift register is empty. It can not disable the transmit function when the bit is 0.
- **Bit 5: THRE**, Transmit Holding Register Empty. Read only bit. When this bit is 1, the transmit holding buffer contains invalid data and the transmit data register (84h) can be written a new data. When this bit is 0, it indicate that transmit holding buffer contains valid data that not yet been copied to transmit shift register and the transmit data register (84h) can not be written a new data.

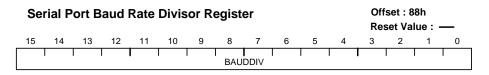
When the transmit interrupt is enabled, a serial port interrupt is generated when this bit is 1. The THRE bit is automatically cleared by H/W during copy data to transmit holding buffer.

- **Bit 4: RDR**, Receive Data Ready. Read only bit. When the receive data register is ready to read, this bit is 1. When the bit is 0, the receive data register dose not contain valid data. This bit will be cleared by H/W when reading the receive data register.
- **Bit 3: BRKI**, Break Interrupt. It indicates that a break has been receive when this bit is set 1 and it will generate a serial pot interrupt request if the RISE bit (80h.1) is enabled. This bit is set by H/W and should be cleared by software.
- **Bit 2: FER**, Framing Error. This bit is set to indicate that a framing error occurred during reception of data and it will generate a serial pot interrupt request if the RISE bit (80h.1) is enabled. This bit is set by H/W and should be cleared by software.
- **Bit 1: PER**, Parity Error. This bit is set to indicate that a party error occurred during reception of data and it will generate a serial pot interrupt request if the RISE bit (80h.1) is enabled. This bit is set by H/W and should be cleared by software.
- **Bit 0: OER**, Overrun Error. This bit is set to indicate that a overrun error occurred during reception of data and it will generate a serial port interrupt request if the RISE bit (80h.1) is enabled. This bit is set by H/W and should be cleared by software.


Ser	ial P	ort T	ransr	nit D	ata R	egist	er					-	set : 8 set Va		_				
15	14	13	12	11	10	9	8	7	6	5	4	Reset Value : — 4 3 2 1 0							
	13 14 13 12 11 10 3 I </td <td></td> <td>I</td> <td>l TD/</td> <td>I Ata</td> <td></td> <td></td> <td>I</td>									I	l TD/	I Ata			I				

Bit 15-8: Reserved

Bit 7-0 : TDATA, Transmit Data. Software writes this register with data to be transmitted on the serial port.


The THRE bit (82h.5) should be read as a 1 before writing this register to avoid overwriting data to this register.

When writing data to this register, the THRE bit will be cleared by H/W in the same time.

Bit 15-8: Reserved

Bit 7-0: RDATA, Received DATA. The PDR bit (82h.4) should be read as 1 beforeread the RDATA register to avoid reading invalid data.

Bit 15-0: BAUDDIV, Baud Rate Divisor.

The general formula for baud rate divisor is **Baud Rate = Microprocessor Clock / [32 * (BAUDDIV+1)]**

For example, The Microprocessor clock is 22.1184MHz and the BAUDDIV=5 (Decimal), the baud rate of serial port

is

115.2k.

RDC[®] RISC DSP Controller

Synchronous Serial Port

There are four pins for synchronous serial port interface, which is half duplex, bi-directional data transfer. The synchronous serial interface operates in a master/slave configuration, and the synchronous serial port of R8800 as a master mode. The SCLK frequency is affected by the reduced microprocessor clock frequency when in power-save mode. Software is programmed the 10h, 12h, 14h, 16h, 18h to configured the synchronous serial port interface.

Sy	nchro	onou	s Ser	ial S	tatus	Regi	ynchronous Serial Status Register												
15	14	13	12	11	10	9	8	7	6	5	4	3	Reset Value : 0000h 3 2 1 0						
	I I I I I I I I Reserved I I I I I I I											I	RE/TE	DR/DT	PB				

Read only register that indicates the state of the SSI port.

Bit 15-3 : Reserved.

Bit 2 : RE/TE, Receive/Transmit Error Detect.

Set 1: Either a read of Synchronous Serial Receive register or a write to one transmit registers while the SSI is busy (PB=1).

Set 0: SDEN output is inactive.

Bit 1: DR/TR, Data Receive/Transmit Complete.

- Set 1: End of the transfer of data bit 7 (SCLK rising edge) during a transmit or receive operation.
- Set 0: When the SSR register is read, when one of the SSD0 or SSD1 registers is written, when the SSS register is read, or when both SDEN0 and SDEN1 become inactive.

Bit 0: PB, SSI port Busy.

Set 1: a transmit or receive operation is in progress.

Set 0: the port is ready to transmit or receive data.

Sy	nchr	onou	s Sei	rial C	Synchronous Serial Control Register 5 14 13 12 11 10 9 8 7 6										000h			
15	14	13	12	11	10	9	8	7	6	5	4	3	Reset Value : 0000h3210					
	Reserved									SCL	i Kdiv	R	l es	DE1	DE0			

This read/write register controls the operation of the SDEN0-SDEN1 outputs the transfer rate of the SSI port.

Bit 15-3 : Reserved.

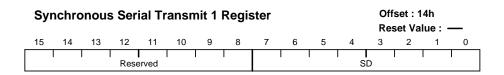
Bit 3-2 : SCLKDIV, SCLK Divide.

SCLKDIV	SCLK Frequency Divider
00b	Processor clock/2
01b	Processor clock/4

RDC[®] RISC DSP Controller

10b	Processor clock/8
11b	Processor clock/16

Bit 1: DE1, SDEN1 Enable.


Set 1: SDEN1 pin is held High.

Set 0: SDEN1 pint is Low.

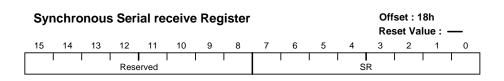
Bit 0 : DE0, SDEN0 Enable.

Set 1: SDEN0 pin is held High.

Set 0: SDEN0 pint is Low.

Synchronous Serial Transmit 1 Register. The register contains data to be transfer from the processor to the peripheral on a write operation.

Bit 15-8 : Reserved.


Bit 7-0: SD, Send Data. Data to transmit over the SDATA pin.

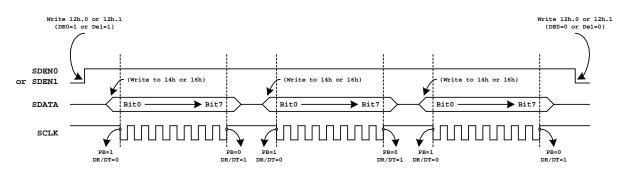
Sy	nchro	onou	s Ser	ial Tr	ansn	nit O I	Regis	ster					set : 1 set Va	6h lue : -	_
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved										S	D			I

Synchronous Serial Transmit 0 Register. The register contains data to be transfer from the processor to the peripheral on a write operation.

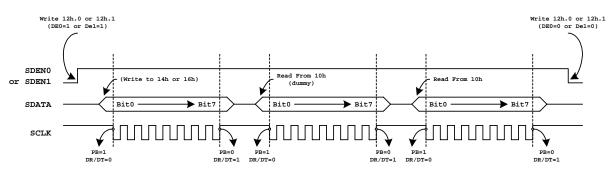
Bit 15-8 : Reserved.

Bit 7-0: SD, Send Data. Data to transmit over the SDATA pin.

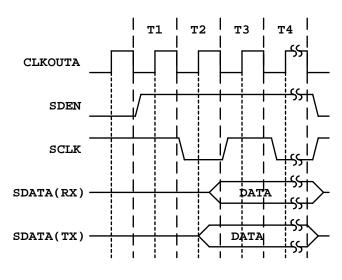
Th Synchronous Serial Receive Register contains the data transferred from the peripheral to the processor on a read operation.



Bit 15-8 : Reserved.

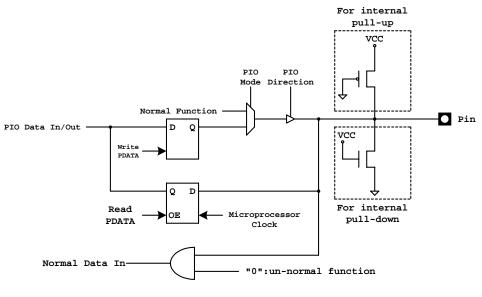

Bit 7-0: SR, Receive Data. Data received over the SDATA pin.

Synchronous serial port operation


The following figures show the data transmit and data receive operation.

Synchronous Serial Port Multiple Write

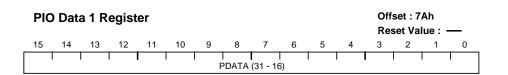
Synchronous Serial Port Multiple Read



Synchronous Serial Interface Waveforms

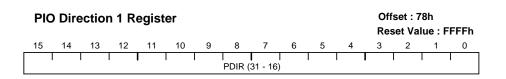
PIO Unit

R8800 provides 32 programmable I/O signals, which are multi-function pins with others normal function signals. Software is programmed through the registers (7Ah, 78h, 76h, 74h, 72h, 70h) to configure the multi-function pins for PIO or normal function.


PIO pin Operation Diagram

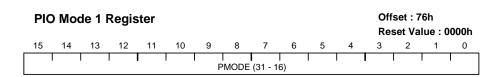
PIO multi-function Pin list table

PIO No.	Pin No.	Multi Function	Reset status/PIO internal resister
0	72	TMRIN1	Input with 10k pull-up
1	73	TMROUT1	Input with 10k pull-down
2	59	PCS6 /A2	Input with 10k pull-up
3	60	PCS5/A1	Input with 10k pull-up
4	48	DT/\overline{R}	Normal operation/ Input with 10k pull-up
5	49	DEN	Normal operation/ Input with 10k pull-up
6	46	SRDY	Normal operation/ Input with 10k pull-down
7	22	A17	Normal operation/ Input with 10k pull-up
8	20	A18	Normal operation/ Input with 10k pull-up
9	19	A19	Normal operation/ Input with 10k pull-up
10	74	TMROUT0	Input with 10k pull-down
11	75	TMRIN0	Input with 10k pull-up
12	77	DRQ0	Input with 10k pull-up
13	76	DRQ1	Input with 10k pull-up
14	50	MCS0	Input with 10k pull-up
15	51	MCSI	Input with 10k pull-up
16	66	PCS0	Input with 10k pull-up
17	65	PCS1	Input with 10k pull-up


RDC[®] RISC DSP Controller

18	63	PCS2	Input with 10k pull-up
19	62	PCS3	Input with 10k pull-up
20	3	SCLK	Input with 10k pull-up
21	100	SDATA	Input with 10k pull-up
22	2	SDEN0	Input with 10k pull-down
23	1	SDEN1	Input with 10k pull-down
24	68	MCS2	Input with 10k pull-up
25	69	MCS3/RFSH	Input with 10k pull-up
26	97	UZI	Input with 10k pull-up
27	98	TXD	Input with 10k pull-up
28	99	RXD	Input with 10k pull-up
29	96	S6/CLKDIV2	Input with 10k pull-up
30	52	INT4	Input with 10k pull-up
31	54	INT2	Input with 10k pull-up

Bit 15-0: PDATA31-PDATA16, PIO Data Bits.

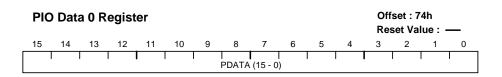

These bits PDATA31- PDATA16 map to the PIO31 –PIO16 which indicate the driven level when the PIO pin as an output or reflects the external level when the PIO pin as an input .

Bit 15-0 : PDIR 31- PDIR16, PIO Direction Register.

Set 1: Configure the PIO pin as an input.

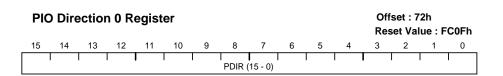
Set 0: Configure the PIO pin as an output or as normal pin function.

Bit 15-0: PMODE31-PMODE16, PIO Mode Bit.


74

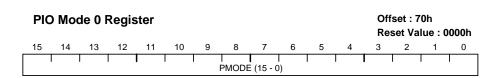
The definition of PIO pins are configured by the combination of PIO Mode and PIO Direction. And the PIO pin is programmed individual.

The definition (PIO Mode, PIO Direction) for PIO pin function:


(0, 0) – Normal operation, (0, 1) – PIO input with pullup/pulldown

(1,0) – PIO output , (1,1) -- PIO input without pullup/pulldown

Bit 15-0 : PDATA15- PDATA0 : PIO Data Bus.


These bits PDATA15- PDATA0 map to the PIO15 –PIO0 which indicate the driven level when the PIO pin as an output or reflects the external level when the PIO pin as an input.

Bit 15-0 : PDIR 15- PDIR0, PIO Direction Register.

Set 1: Configure the PIO pin as an input.

Set 0: Configure the PIO pin as an output or as normal pin function.

Bit 15-0: PMODE15-PMODE0, PIO Mode Bit.

PSRAM Control Unit

The PSRAM interface is provided by the R8800 and the refresh control unit automatically generates refresh bus cycles. The refresh control unit uses the internal microprocessor clock as a operating source clock. if the power-saved mode is enabled, the refresh control unit must be programmed to reflect the new clock rate. Software programs the registers (E0, E2, E4) to control the refresh control unit operation.

Me	Memory Partition Register											-	fset : I set Va	E0h Ilue : C	000h
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	 M6 - M0				0	0	0	0	0	0	0	0	0		

Bit 15-9: M6-M0, Refresh Base. M6-M0 map to A19-A13 of the 20-bit memory refresh address. **Bit 8-0** : Reserved.

Clock Prescaler Register												-	fset : set Va	E2h alue :	_
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	0	0		I		l R	 C8 - R(0 0			I

Bit 15-9 : Reserved

Bit 8-0: RC8-RC0, Refresh Counter Reload Value.

Enable RCU Register								Offset : E4h Reset Value :			0000h				
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Е	0	0	0	0	0	0		I			I Т8 - Т0		l		

Bit 15: E, Enable RCU.

Set 1: Enable the refresh counter unit

Set 0 : Disable the refresh counter unit.

Bit 14-9 : Reserved

Bit 8-0: T8-T0, Refresh Count. Read only bits and these bits present value of the down counter which triggers refresh requests.

INSTUCTION SET OPCODES AND CLOCK CYCLES

Function		Fo	rmat		Clocks	Notes
DATA TRANSFER INSTRUCTIONS						
MOV = Move						
register to register/memory	1000100w	mod reg r/m			1/1	
register/memory to register	1000101w	mod reg r/m			1/6	
immediate to register/memory	1100011w	mod 000 r/m	data d	ata if w=1	1/1	
immediate to register	1011w reg	data	data if w=1		1	
memory to accumulator	1010000w	addr-low	addr-high		6	
accumulator to memory	1010001w	addr-low	addr-high		1	
register/memory to segment register	10001110	mod 0 reg r/m			3/8	
segment register to register/memory	10001100	mod 0 reg r/m			2/2	
PUSH = Push	<u> </u>					
memory	11111111	mod 110 r/m			8	
register	01010 reg				3	
segment register	000reg110				2	
immediate	011010s0	data	data if s=0		1	
POP = Pop	L	I				
memory	10001111	mod 000 r/m			8	
register	01011 reg		·		6	
segment register	000 reg 111	(reg 01)			8	
PUSHA = Push all	01100000		!		36	
$\mathbf{POPA} = \mathbf{Pop} \text{ all}$	01100000	-			30 44	
XCHG = Exchange	01100001					
register/memory	1000011w	mod reg r/m	7		3/8	
register with accumulator	1000011W 10010 reg	mou reg 1/m			3/8	
$\mathbf{XTAL} = \text{Translate byte to AL}$		_			10	
III = Input from	11010111				10	
fixed port	1110010w	nort	7		12	
variable port	1110010w	port			12	
-	1110110w	_]			12	
OUT = Output from fixed port	1110010	in out	_		10	
-	1110010w 1110110w	port			12 12	
variable port			_			
LEA = Load EA to register	10001101	mod reg r/m	(1 11)		1	
LDS = Load pointer to DS	11000101	mod reg r/m	(mod 11)		14	
LES = Load pointer to ES	11000100	mod reg r/m	(mod 11)		14	
ENTER = Build stack frame	11001000	data-low	data-high L			
$\mathbf{L} = 0$					7	
L = 1					11	
L>1		7			11+10(L-1)	
LEAVE = Tear down stack frame	11001001	4			7	
LAHF = Load AH with flags	10011111	_			2	
SAHF = Store AH into flags	10011110	_			2	
PUSHF = Push flags	10011100	_			2	
POPF = Pop flags	10011101				11	
ARITHMETIC INSTRUCTIONS						
ADD = Add	0000001		-		1 /7	
reg/memory with register to either	000000dw	mod reg r/m	data 1	ata if and 01	1/7	
immediate to register/memory	100000sw	mod 000 r/m	data d	ata if sw=01	1/8	

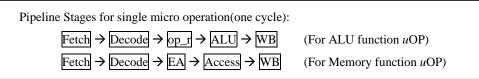
Function		Fo	rmat		Clocks	Notes
ADC = Add with carry						
reg/memory with register to either	000100dw	mod reg r/m			1/7	
immediate to register/memory	100000sw	mod 010 r/m	data	data if sw=01	1/8	
immediate to accumulator	0001010w	data	data if w=1		1	
INC = Increment						
register/memory	11111111w	mod 000 r/m			1/8	
register	01000 reg				1	
SUB = Subtract						
reg/memory with register to either	001010dw	mod reg r/m			1/7	
immediate from register/memory	10000sw	mod 101 r/m	data	data if sw=01	1/8	
immediate from accumulator	0001110w	data	data if w=1		1	
SBB = Subtract with borrow	r	7				
reg/memory with register to either	000110dw	mod reg r/m			1/7	
immediate from register/memory	100000sw	mod 011 r/m			1/8	
immediate from accumulator	0001110w	data	data if w=1		1	
DEC = Decrement			_			
register/memory	1111111w	mod 001 r/m			1/8	
register	01001 reg				1	
NEG = Change sign		- · · · ·				
register/memory	1111011w	mod reg r/m			1/8	
CMP = Compare		· · · · ·				
register/memory with register	0011101w	mod reg r/m			1/7	
register with register/memory	0011100w	mod reg r/m			1/7	
immediate with register/memory	100000sw	mod 111 r/m	data	data if sw=01	1/7	
immediate with accumulator	0011110w	data	data if w=1		1	
MUL = multiply (unsigned)	1111011w	mod 100 r/m				
register-byte					13	
register-word					21	
memory-byte					18	
memory-word			_		26	
IMUL = Integer multiply (signed)	1111011w	mod 101 r/m				
register-byte					16	
register-word					24	
memory-byte					21	
memory-word	011010 1			1 10 0	29	
register/memory multiply immediate (signed)	011010s1	mod reg r/m	data	data if s=0	23/28	
DIV = Divide (unsigned)	1111011W	mod 110 r/m				
register-byte					18	
register-word					26	
memory-byte					23	
memory-word	r	r			31	
IDIV = Integer divide (signed)	1111011w	mod 111 r/m				
register-byte					18	
register-word					26	
memory-byte					23	
memory-word					31	
AAS = ASCII adjust for subtraction	00111111				3	
DAS = Decimal adjust for subtraction	00101111				2	
AAA = ASCII adjust for addition	00110111				3	
DAA = Decimal adjust for addition	00100111				2	
AAD = ASCII adjust for divide	11010101	00001010			14	
AAM = ASCII adjust for multiply	11010100	00001010			15	
CBW = Corrvert byte to word	10011000				2	
CWD = Convert word to double-word	10011001				2	

Function		For	rmat	Clocks	Notes
BIT MANIPULATION INSTRUCTUIONS		1 01	mat	CIOCKS	TIOLES
NOT = Invert register/memory	1111011w	mod 010 r/m	7	1/7	
AND = And					
reg/memory and register to either	001000dw	mod reg r/m		1/7	
immediate to register/memory	100000w	mod 100 r/m	data data if w=1	1/8	
immediate to accumulator	0010010w	data	data if w=1	1	
$\mathbf{OR} = \mathbf{Or}$			_		
reg/memory and register to either	000010dw	mod reg r/m		1/7	
immediate to register/memory	100000w	mod 001 r/m	data data if w=1	1/8	
immediate to accumulator	0000110w	data	data if w=1	1	
XOR = Exclusive or			_		
reg/memory and register to either	001100dw	mod reg r/m		1/7	
immediate to register/memory	1000000w	mod 110 r/m	data data if w=1	1/8	
immediate to accumulator	0011010w	data	data if w=1	1	
$\mathbf{TEST} = \mathbf{And} \; \mathbf{function} \; \mathbf{to} \; \mathbf{flags} \; , \; \mathbf{no} \; \mathbf{result}$	1000010	1 /	7	1/7	
register/memory and register	1000010w	mod reg r/m	lata lata frant	1/7	
immediate data and register/memory immediate data and accumulator	1111011w 1010100w	mod 000 r/m	data data if w=1	1/8	
Sifts/Rotates	1010100W	data	data if w=1	1	
register/memory by 1	1101000w	mod TTT r/m	7	2/8	
register/memory by CL	1101000w 1101001w	mod TTT r/m	-	$\frac{2}{8}$ 1+n / 7+n	
register/memory by Count	1101001w 1100000w	mod TTT r/m	count	1+n/7+n 1+n/7+n	
register/memory by Count	1100000w		count	1+11/7+11	
STRING MANIPULATION INSTRUCTIONS					
MOVS = Move byte/word	1010010w	7		13	
INS = Input byte/word from DX port	0110110w	_		13	
OUTS = Output byte/word to DX port	0110111w	_		13	
CMPS = Compare byte/word	1010011w	_		18	
SCAS = Scan byte/word	101011w			13	
LODS = Load byte/word to AL/AX	1010110w			13	
STOS = Store byte/word from AL/AX	1010101w	-		7	
Repeated by count in CX:		_			
MOVS = Move byte/word	11110010	1010010w	7	4+9n	
INS = Input byte/word from DX port	11110010	0110110w		5+9n	
OUTS = Output byte/word to DX port	11110010	0110111w		5+9n	
CMPS = Compare byte/word	1111011z	1010011w		4+18n	
SCAS = Scan byte/word	1111001z	1010111w		4+13n	
LODS = Load byte/word to AL/AX	11110010	0101001w		3+9n	
STOS = Store byte/word from AL/AX	11110100	0101001w		4+3n	
PROGRAM TRANSFER INSTRUCTIONS					
Conditional Transfers — jump if:		-	-		
JE/JZ = equal/zero	01110100	disp	_	1/9	
JL/JNGE = less/not greater or equal	01111100	disp	_	1/9	
JLE/JNG = less or equal/not greater	01111110	disp	4	1/9	
JC/JB/JNAE = carry/below/not above or equal	01110010	disp	4	1/9	
JBE/JNA = below or equal/not above	01110110	disp	_	1/9	
JP/JPE = parity/parity even	01111010	disp		1/9	
JO = overflow	01110000	disp	-	1/9	
JS = sign	01111000	disp		1/9	
JNE/JNZ = not equal/not zero	01110101	disp		1/9	
JNL/JGE = not less/greater or equal JNL E/IC = not less or equal/greater	01111101	disp		1/9	
JNLE/JG = not less or equal/greater	01111111	disp		1/9	
JNC/JNB/JAE = not carry/not below	01110011	disp	J	1/9	
/above or equal	01110111	dian	7	1/0	
JNBE/JA = not below or equal/above	01110111	disp		1/9	
JNP/JPO = not parity/parity odd JNO = not overflow	01111011 01110001	disp		1/9	
		disp		1/9 1/9	
JNS = not sign	01111001	disp		1/9	

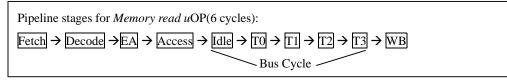
R8800

Function		For	mat	Clocks	Notes
Unconditional Transfers	1				
CALL = Call procedure					
direct within segment	11101000	disp-low	disp-high	11	
reg/memory indirect within segment	11111111	mod 010 r/m		12/17	
indirect intersegment	11111111	mod 011 r/m	(mod 11)	25	
direct intersegment	10011010	segment offset		18	
		selector			
RET = Retum from procedure					
within segment	11000011	7		16	
within segment adding immed to SP	11000010	data-low	data-high	16	
intersegment	11001011	data 10 fr	uuu iigi	23	
instersegment adding immed to SP	1001010	data-low	data-high	23	
JMP = Unconditional jump	1001010	uuu 10 W	autu ingi	23	
short/long	11101011	disp-low	7	9/9	
direct within segment	11101001	disp-low	disp-high	9	
reg/memory indirect within segment	111111111	mod 100 r/m	and men	11/16	
indirect intersegment	11111111	mod 100 i/m mod 101 r/m	(mod ?11)	18	
direct intersegment	11101010	segment offset	(mod)	10	
under intersegnient	11101010	selector		11	
		Serveror			
Iteration Control					
LOOP = Loop CX times	11100010	disp	1	7/16	
LOOPZ/LOOPE = Loop while zero/equal	11100001	disp		7/16	
LOOPNZ/LOOPNE = Loop while not zero/equal		disp	-	7/16	
JCXZ = Jump if CX = zero	11100011	disp	-	7/15	
Interrupt INT = Interrupt			_		
Type specified	11001101	type	J	41	
Туре 3	11001100			41	
INTO = Interrupt on overflow	11001110		_	43/4	
BOUND = Detect value out of range	01100010	mod reg r/m		21-60	
IRET = Interrupt return	11001111]		31	
PROCESSOR CONTROL INSTRUCTIONS					
CLC = clear carry	11111000			2	
CMC = Complement carry	11110101			2	
STC = Set carry	11111001			2	
CLD = Clear direction	11111100			2	
STD = Set direction	11111101			2	
CLI = Clear interrupt	11111010			5	
STI = Set interrupt	11111011			5	
HLT = Halt	11110100			1	
WAIT = Wait	10011011			1	
LOCK = Bus lock prefix	11110000			1	
ESC = Math coprocessor escape	11011MMM	mod PPP r/m]	1	
NOP = No operation	10010000		-	1	
SEGMENT OVERRIDE PREFIX					
CS	00101110			2	
SS	00110110	1		2	
DS	00111110	1		2	
ES	00100110			2	

R8800 Execution Timings


The above instruction timing represent the minimum execution time in clock cycles for each instruction. The timings given are based on the following assumptions:

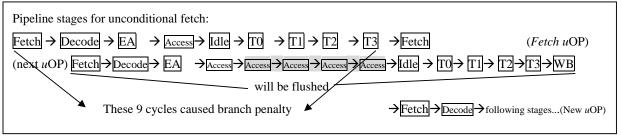
1. The opcode, along with and data or displacement required for execution, has been prefetched and resides in the instruction queue at the time is needed.


2. No wait states or bus HOLDs occur.

3. All word -data is located on even-address boundaries.

4. One RISC micro operation(*u*OP) maps one cycle(according the pipeline stages described below), except the following case:

4.1 *Memory read u*OP need 6 cycles for bus.



4.2 *Memory push u*OP need 1 cycle if it has no previous *Memory push u*OP, and 5 cycles if it has previous *Memory push* or *Memory Write u*OP.

Pipeline stages for Memory push uOP after Memory push uOP (another 5 cycles):
$Fetch \rightarrow Decode \rightarrow EA \rightarrow Access \rightarrow Idle \rightarrow T0 \rightarrow T1 \rightarrow T2 \rightarrow T3 \rightarrow WB \qquad (1^{st} Memory push uOP)$
$(2^{nd} uOP) Fetch \rightarrow Decode \rightarrow EA \rightarrow Access \rightarrow Access \rightarrow Access \rightarrow Access \rightarrow Access \rightarrow Idle \rightarrow T0 \rightarrow T1 \rightarrow T2 \rightarrow T3 \rightarrow WB$
pipeline stall

4.3 *MUL u*OP and *DIV* of ALU function *u*OP for 8 bits operation need both 8 cycles, for 16 bits operation need both 16 cycles.

4.4 All jumps, calls, ret and loopXX instructions required to fetch the next instruction for the destination address(*Unconditional Fetch uOP*) will need 9 cycles.

Note: op_r: operand read stage, EA: Calculate Effective Address stage, Idle: Bus Idle stage, T0..T3: Bus T0..T3 stage, Access: Access data from cache memory stage.

DC Characteristics

Absolute Maximum Rating

Symbol	Rating	Commercial	Unit	Note
Vterm	Terminal Voltage	-0.5 to Vcc+0.5	V	
	with Respect	V		
	To GND			
Та	Operating	0 to +70	Centigrade	
	Temperature			
Pt	Power Dissipation	1.5	W	

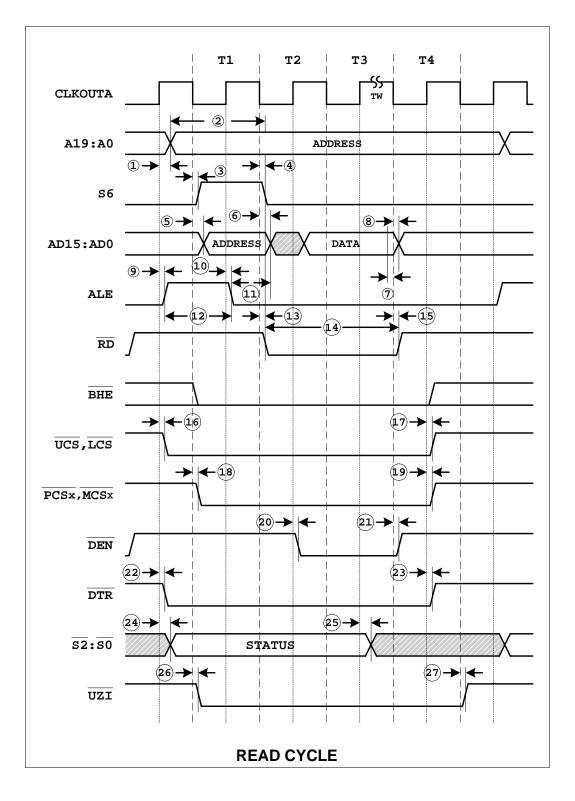
Recommended DC Operating Conditions

Symbol	Parameter	Min.	Тур.	Max.	Unit	
Vcc	Supply Voltage	4.75	5	5.25	V	
GND	Ground	0	0	0	V	
Vih	Input High Voltage(1)	2.0		Vcc+0.5	V	
Vih1	Input High Voltage(RES)	3		Vcc+0.5	V	
Vih2	Input High Voltage (X1)	3		Vcc+0.5	V	
Vil	Input Low voltage	-0.5	0	0.8	V	

Note 1:RES,X1 pins not included

DC Electrical Characteristics

Symbol	Parameter	Test Condition	Min	Max	Unit
Ili	Input Leakage Current	Vcc=Vmax Vin=GND to Vmax	-10	10	uA
Ili(with 10K pull R)	Input Leakage Current With Pull_R 10K enable	Vcc=Vmax Vin=GND to Vmax	-400	400	uA
Ili(with 50K pull R)	Input Leakage Current With Pull_R 50K	Vcc=Vmax Vin=GND to Vmax	-120	120	uA
110	Output Leakage Current	Vcc=Vmax Vin=GND to Vmax	-10	10	uA
VOL	Output Low Voltage	Iol=6mA, Vcc=Vmin.		0.4	V
VOH	Output High Voltagr	Ioh=-6mA, Vcc=Vmin.	2.4		V
Icc	Max Operating Current	Vcc=5.25V 40MHz		140	ma

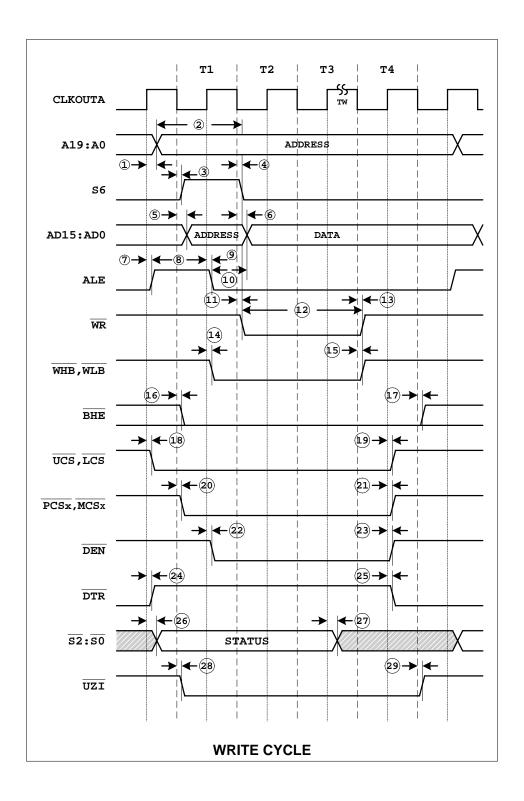

Note1:Vmax=5.25V Vmin=4.75V

Symbol	Parameter	Min.	Max.	Unit	Note
Fmax	Max operation clock	0	40	Mhz	Vcc+-5%
	frequency				

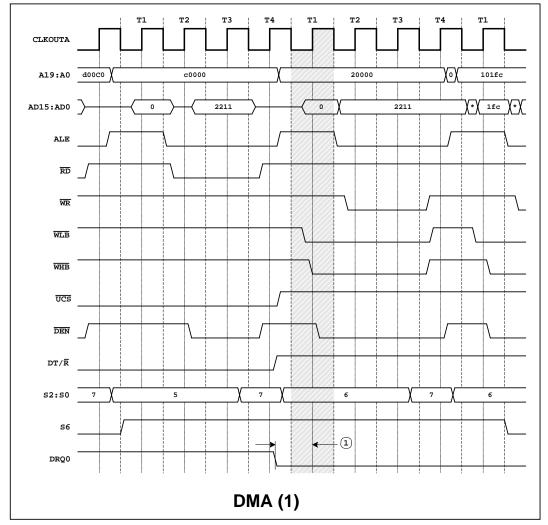
RDC[®] RISC DSP Controller

R8800

AC Characteristics

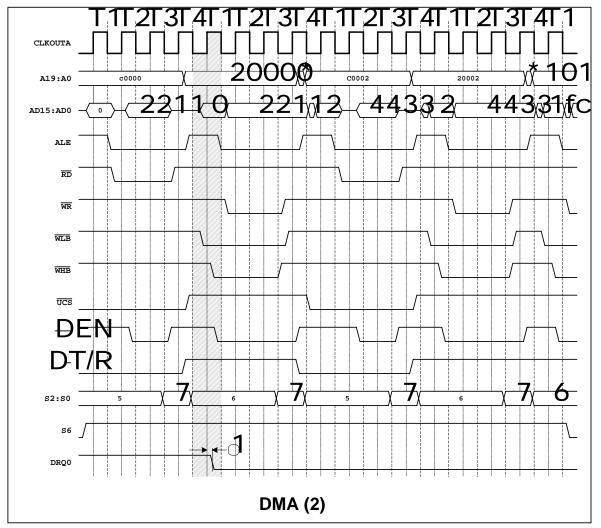


No.	Description	MIN	MAX	Unit
1	CLKOUTA high to A Address Valid	0	12	ns
2	A address valid to \overline{RD} low	1.5T-9		ns
3	S6 active delay	0	15	ns
4	S6 inactive delay	0	15	ns
5	AD address Valid Delay	0	12	ns
6	Address Hold	0	12	ns
7	Data in setup	5		ns
8	Data in Hold	2		ns
9	ALE active delay	0	12	ns
10	ALE inactive delay	0	12	ns
11	Address Valid after ALE inactive	T/2-5		ns
12	ALE width	T-5		ns
13	RD active delay	0	12	ns
14	RD Pulse Width	2T-10		ns
15	RD inactive delay	0	12	ns
16	CLKOUTA HIGH to $\overline{\text{LCS}}$ $\overline{\text{UCS}}$ valid	0	15	ns
17	UCS,LCS inactive delay	0	15	ns
18	$\overline{\text{PCS}}$, $\overline{\text{MCS}}$ active delay	0	15	ns
19	$\overline{\text{PCS}}$, $\overline{\text{MCS}}$ inactive delay	0	15	ns
20	DEN active delay	0	15	ns
21	DEN inactive delay	0	15	ns
22	DTR active delay	0	15	ns
23	DTR inactive delay	0	15	ns
24	Status active delay	0	15	ns
25	Status inactive delay	0	15	ns
26	UZI active delay	0	15	ns
27	UZI inactive delay	0	15	ns

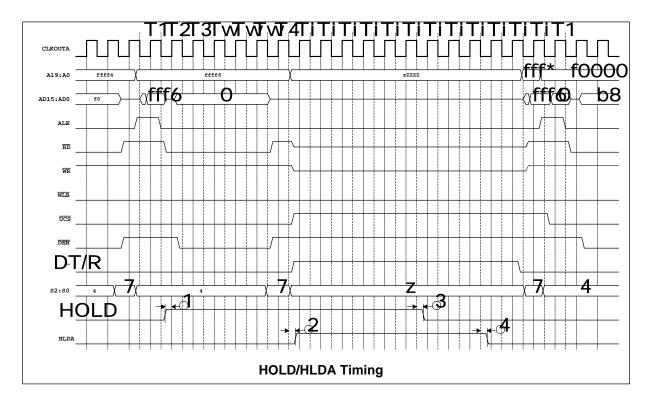

1. T means a clock period time

2. All timing parameters are measured at 1.5V with 50 PF loading on CLKOUTA

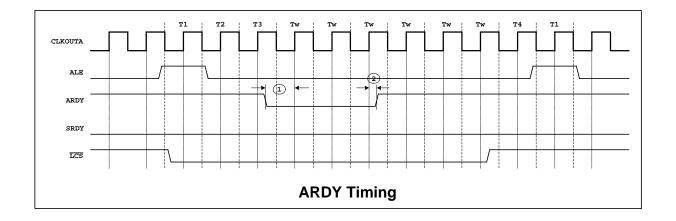
All output test conditions are with CL=50 pF



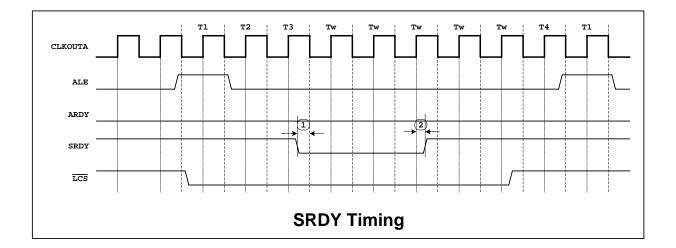
No.	Description	MIN	MAX	Unit
1	CLKOUTA high to A Address Valid	0	12	ns
2	A address valid to \overline{WR} low	1.5T-9		ns
3	S6 active delay	0	15	ns
4	S6 inactive delay	0	15	ns
5	AD address Valid Delay	0	12	ns
6	Address Hold			ns
7	ALE active delay	0	12	ns
8	ALE width	T-10		ns
9	ALE inactive delay	0	12	ns
10	Address valid after ALE inactive	1/2T-5		ns
11	$\overline{\mathrm{WR}}$ active delay	0	12	ns
12	WR pulse width	2T-10		ns
13	WR inactive delay	0	12	ns
14	$\overline{\text{WHB}}$, $\overline{\text{WLB}}$ active delay	0	15	ns
15	$\overline{\text{WHB}}$, $\overline{\text{WLB}}$ inactive delay	0	15	ns
16	BHE active delay	0	15	ns
17	BHE inactive delay	0	15	ns
18	CLKOUTA high to $\overline{\text{UCS}}$, $\overline{\text{LCS}}$ valid	0	15	ns
19	$\overline{\text{UCS}}$, $\overline{\text{LCS}}$ inactive delay	0	15	ns
20	$\overline{\text{PCS}}$, $\overline{\text{MCS}}$ active delay	0	15	ns
21	$\overline{\text{PCS}}$, $\overline{\text{MCS}}$ inactive delay	0	15	ns
22	DEN active delay	0	15	ns
23	DEN inactive delay	0	15	ns
24	DTR active delay	0	15	ns
25	DTR inactive delay	0	15	ns
26	Status active delay	0	15	ns
27	Status inactive delay	0	15	ns
28	UZI active delay	0	15	ns
29	$\overline{\text{UZI}}$ inactive delay	0	15	ns


* The source-synchronized transfer is not followed immediately by another DMA transfer

No.	Description	MIN	MAX	Unit
1	DRQ is confirmed time	5		ns

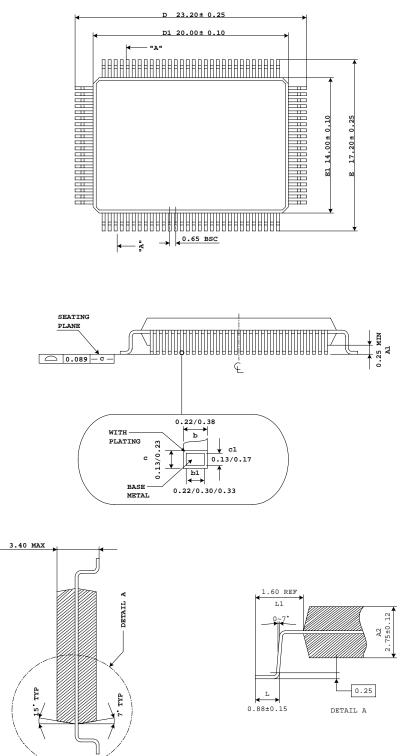


* The source-synchronized transfer is followed immediately by another DMA transfer


No.	Description	MIN	MAX	Unit
1	DRQ is confirmed time	2	0	ns

No.	Description	MIN	MAX	Unit
1	HOLD setup time	5	0	ns
2	HLDA Valid Delay	0	15	ns
3	HOLD hold time	2	0	ns
4	HLDA Valid Delay	0	15	ns

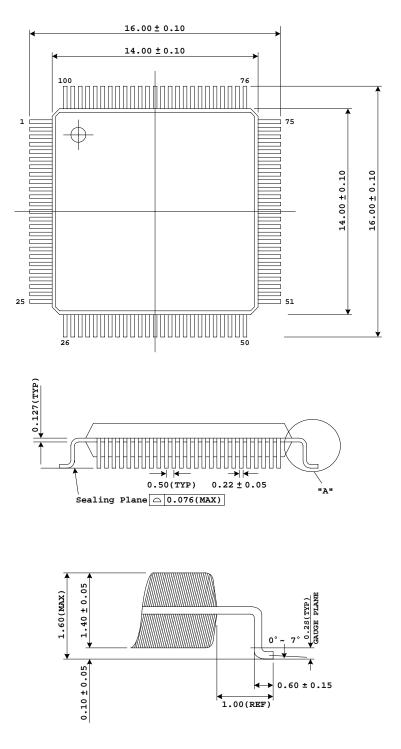
No.	Description	MIN	MAX	Unit
1	ARDY Resolution Transition setup time	5	0	ns
2	ARDY active hold time	5	0	ns


No.	Description	MIN	MAX	Unit
1	SRDY transition setup time	5	0	ns
2	SRDY transition hold time	5	0	ns

PACKAGE INFORMATION (PQFP)

RISC DSP Controller

R


R

(LQFP)

<u>RD</u>C[®]

RISC DSP Controller

UNIT:mm

Revision History

Rev.	Date	History
0.1	2000/3/8	Preliminary release
1.0	2000/7/31	Formal release
1.1	2000/9/1	Adding the pin configuration & package information for LQFP
		package.
1.2	2001/2/20	Add AC/DC.
1.3	2001/3/13	Add PQFP and LQFP Pin-Out Table
1.4	2001/8/7	Modify Wait state description(p26).
1.5	2001/12/12	DC Characteristics
1.6	2001/12/24	Modify Oscillator Characteristics
1.7	2002/05/06	Modify Wait State Description