QL5020 QuickPCI Data Sheet

••••• 33 MHz/32-bit PCI with Embedded Programmable Logic

Device Highlights

High Performance PCI Controller

- 32-bit/33 MHz PCI Target with Embedded Programmable Logic
- Zero-wait state target Write bursts and one-wait state Read bursts
- Programmable back-end interface to optional local processor
- Independent PCI bus and local bus (up to 160 MHz) clocks
- Fully Customizable PCI Configuration Space
- Reference design with driver code (Win 95/98/Win 2000/NT4.0) available
- PCI v2.2 compliant
- Supports Type 0 Configuration Cycles in Target mode
- 3.3 V, 5 V tolerant PCI signaling supports Universal PCI Adapter designs
- High performance PCI controller 3.3 V CMOS in 208-pin PQFP and 144-pin TQFP packages

Extendable PCI Functionality

- Support for Configuration Space from 0×40 to $0\times 3FF$
- Multi-Function, Expanded Capabilities, and Expansion ROM capable
- Power Management, Compact PCI, Hot-Swap/Hot-Plug compatible
- PCI v2.2 Power Management Specification compatible
- PCI v2.2 Vital Product Data (VPD) configuration support
- I₂O Support with local processor
- Mailbox Register support

Programmable Logic

- 560 Logic Cells
- 250 MHz 16-bit counters and 275 MHz datapaths
- All back-end interface and glue-logic can be implemented on chip
- Three 32-bit bus interfaces between the PCI Controller and the Programmable Logic

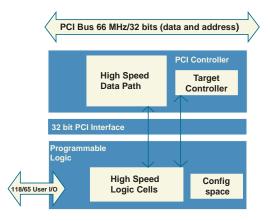


Figure 1: QL5020 Block Diagram

Architecture Overview

The QL5020 device in the QuickLogic[®] QuickPCI[™] ESP (Embedded Standard Product) family provides a complete and customizable PCI interface solution combined with programmable logic. This device eliminates any need for the designer to worry about PCI bus compliance, yet allows for the maximum 32bit PCI bus bandwidth (132 MBps).

The programmable logic portion of the device contains 560 QuickLogic logic cells.

The QL5020 device meets PCI 2.2 electrical and timing specifications and has been fully hardware-tested. This device also supports the Win'98 and PC'98 standards.

The QL5020 device features 3.3 V operation with multi-volt compatible I/Os. Thus, it can easily operate in 3 V systems and is fully compatible with 3.3 V, 5 V, or Universal PCI card development.

Preliminary

PCI Controller

The PCI Controller is a 32-bit/33 MHz PCI 2.2 Compliant Target Controller. It is capable to accept infinite length Write transactions at zero wait states (132 MBps). The QL5020 will not insert wait states during Write transfers as long as the logic in the programmable device can accept the data. The Target interface offers full PCI Configuration Space and flexible target addressing. Any number of 32-bit BARs may be configured, as either memory or I/O space. All required and optional PCI 2.2 Configuration Space registers can be implemented within the programmable region of the device. A reference design of a Target Configuration and Addressing module is provided.

The Target Configuration Space and Address Decoding are done in the programmable logic region of the device. Since these functions are not timing critical, leaving these elements in the programmable region allows the greatest degree of flexibility to the designer. References to Configuration Space and Address Decoding blocks are included so that the design cycle can be minimized.

Configuration Space and Address Decode

The configuration space is completely customizable in the programmable region of the device.

PCI address and command decoding is performed by logic in the programmable section of the device. This allows support for any size of memory or I/O space for back-end logic. It also allows the user to implement any subset of PCI commands supported by the QL5020. QuickLogic provides a reference Address Register/Counter and Command Decode block.

Internal PCI Interface

Figure 2 shows the interface symbol you will use in your schematic design to attach the local interface programmable logic design to the PCI core. If you were designing with a top-level Verilog[®] or VHDL file, then you would use a structural instantiation of this PCIT32N block, instead of a graphical symbol.

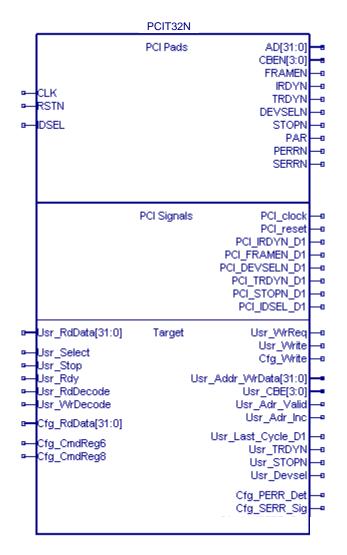


Figure 2: PCI Interface Symbol

Preliminary

PCI Target Interface

Table	1:	PCI	Target	Interface	Signals
iabio			Julger	maoo	eignale

Signal	I/O	Description
Usr_Addr_WrData [31:0]	0	Target address and data from target Writes . During all target accesses, the address will be presented on Usr_Addr_WrData[31:0] and simultaneously, Usr_Adr_Valid will be active. During target Write transactions, this port will present write data to the PCI configuration space or user logic.
Usr_CBE[3:0]	0	PCI command and byte enables . During target accesses, the PCI command will be presented on Usr_CBE[3:0] and simultaneously, Usr_Adr_Valid will be active. During target Read or Write transactions, this port will present active-low byte-enables to the PCI configuration space or user logic.
Usr_Adr_Valid	0	Indicates the beginning of a PCI transaction, and that a target address is valid on Usr_Addr_WrData[31:0] and the PCI command is valid on Usr_CBE[3:0]. When this signal is active, the target address must be latched and decoded to determine if this address belongs to the device's memory space. Also, the PCI command must be decoded to determine the type of PCI transaction. On subsequent clocks of a target access, this signal will be low, indicating that data (not an address) is present on Usr_Addr_WrData[31:0].
Usr_Adr_Inc	0	Indicates that the target address should be incremented, because the previous data transfer was completed. During burst target accesses, the target address is only presented to the back-end logic at the beginning of the transaction (when Usr_Adr_Valid is active), and must therefore be latched and incremented by four for subsequent data transfers.
Usr_WrReq	0	This signal will be active for the duration of a target Write transaction, and may be used by back-end logic to turn on output-enables for transmitting the data off-chip.
Usr_RdDecode	Ι	Active when a user Read command has been decoded from the Usr_CBE[3:0] bus. This command may be mapped from any of the PCI Read commands, such as Memory Read, Memory Read Line, Memory Read Multiple, I/O Read, etc.
Usr_WrDecode	Ι	Active when a user Write command has been decoded from the Usr_CBE[3:0] bus. This command may be mapped from any of the PCI Write commands, such as Memory Write or I/O Write.
Usr_Select	Ι	The address on Usr_Addr_WrData[31:0] has been decoded and determined to be within the address space of the device. Usr_Addr_WrData[31:0] must be compared to each of the valid Base Address Registers in the PCI configuration space. Also, this signal must be gated by the Memory Access Enable or I/O Access Enable registers in the PCI configuration space (Command Register bits 1 or 0 at offset 04h).
Usr_Write	0	Write enable for data on Usr_Addr_WrData[31:0] during PCI writes.
Cfg_Write	0	Write enable for data on Usr_Addr_WrData[31:0] during PCI configuration Write transactions.
Cfg_RdData[31:0]	Ι	Data from the PCI configuration registers, required to be presented during PCI configuration reads.
Usr_RdData[31:0]	Ι	Data from the back-end user logic (and/or DMA configuration registers), required to be presented during PCI reads.

Preliminary

Cfg_CmdReg8 Cfg_CmdReg6	Ι	Bits 6 and 8 from the Command Register in the PCI configuration space (offset 04h).
Cfg_PERR_Det	0	Parity error detected on the PCI bus . When this signal is active, bit 15 of the Status Register must be set in the PCI configuration space (offset 04h).
Cfg_SERR_Sig	0	System error asserted on the PCI bus . When this signal is active, the Signalled System Error bit, bit 14 of the Status Register, must be set in the PCI configuration space (offset 04h).
Usr_TRDYN	0	Copy of the TRDYN signal as driven by the PCI target interface.
Usr_STOPN	0	Copy of the STOPN signal as driven by the PCI target interface.
Usr_Devsel	0	Inverted copy of the DEVSELN signal as driven by the PCI target interface.
Usr_Last_Cycle_D1	0	Last transfer in a PCI transaction is occurring.
Usr_Rdy	Ι	Used to delay (add wait states to) a PCI transaction when the back end needs additional time. Subject to PCI latency restrictions.
Usr_Stop	Ι	Used to prematurely stop a PCI target access on the next PCI clock.

Table 1: PCI Target Interface Signals (Continued)

PCI Internal Signals

Table 2: PCI Internal Signals

Signal	I/O	Description
PCI_clock	0	PCI clock.
PCI_reset	0	PCI reset signal.
PCI_IRDYN_D1	0	Copy of the IRDYN signal from the PCI bus, delayed by one clock.
PCI_FRAMEN_D1	0	Copy of the FRAMEN signal from the PCI bus, delayed by one clock.
PCI_DEVSELN_D1	0	Copy of the DEVSELN signal from the PCI bus, delayed by one clock.
PCI_TRDYN_D1	0	Copy of the TRDYN signal from the PCI bus, delayed by one clock.
PCI_STOPN_D1	0	Copy of the STOPN signal from the PCI bus, delayed by one clock.
PCI_IDSEL_D1	0	Copy of the IDSEL signal from the PCI bus, delayed by one clock.

JTAG Support

JTAG pins support IEEE standard 1149.1a to provide boundary scan capability for the QL5020 device. Six pins are dedicated to JTAG and programming functions on each QL5020 device, and are unavailable for general design input and output signals. TDI, TDO, TCK, TMS, and TRSTB are JTAG pins. A sixth pin, STM, is used only for programming.

Preliminary

Development Tool Support

Software support for the QL5020 device is available through the Quick*Works*[®] development package. This turnkey PC-based Quick*Works* package, shown in **Figure 3**, provides a complete ESP software solution with design entry, logic synthesis, place and route, and simulation. Quick*Works* includes VHDL, Verilog[®], schematic, and mixed-mode entry with fast and efficient logic synthesis provided by the integrated Synplicity Synplify Lite[™] tool, specially tuned to take advantage of the QL5020 architecture. Quick*Works* also provides functional and timing simulation for guaranteed timing and source-level debugging.

The UNIX-based Quick*Tools*[™] and PC-based Quick*Works-Lite* packages are a subset of Quick*Works* and provide a solution for designers who use schematic-only design flow third-party tools for design entry, synthesis, or simulation. Quick*Tools* and Quick*Works-Lite* read EDIF netlists and provide support for all QuickLogic devices. Quick*Tools* and Quick*Works-Lite* also support a wide range of third-party modeling and simulation tools. In addition, the PC-based package combines all the features of Quick*Works-Lite* with the SCS schematic capture environment, providing a low-cost design entry and compilation solution.

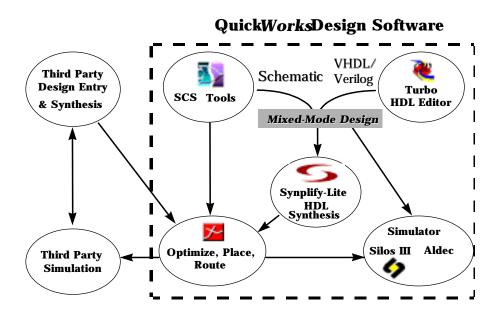


Figure 3: QuickWorks Tool Suite

Electrical Specifications

AC Characteristics at V_{CC} = 3.3 V, TA = 25°C (K = 1.00)

To calculate delays, multiply the appropriate K factor from **Table 9** by the numbers provided in **Table 3** through **Table 7**.

Symbol	Parameter	Propagation Delays (ns) Fanout ^a				
		1	2	3	4	8
t _{PD}	Combinatorial Delay ^b	1.4	1.7	1.9	2.2	3.2
t _{SU}	Setup Time ^b	1.7	1.7	1.7	1.7	1.7
t _H	Hold Time	0.0	0.0	0.0	0.0	0.0
t _{CLK}	Clock to Q Delay	0.7	1.0	1.2	1.5	2.5
t _{CWHI}	Clock High Time	1.2	1.2	1.2	1.2	1.2
t _{CWLO}	Clock Low Time	1.2	1.2	1.2	1.2	1.2
t _{SET}	Set Delay	1.0	1.3	1.5	1.8	2.8
t _{RESET}	Reset Delay	0.8	1.1	1.3	1.6	2.6
t _{SW}	Set Width	1.9	1.9	1.9	1.9	1.9
t _{RW}	Reset Width	1.8	1.8	1.8	1.8	1.8

Tab	le 3:	Logic	Cells
iuo	0.0.	Logio	CONC

a. Stated timing for worst case Propagation Delay over process variation at $V_{CC} = 3.3$ V and TA = 25°C. Multiply by the appropriate Delay Factor, K, for speed grade, voltage, and temperature settings as specified in **Table 9**.

b. These limits are derived from a representative selection of the slowest paths through the QL5020 3 logic cell including typical net delays. Worst case delay values for specific paths should be determined from timing analysis of your particular design.

Preliminary

Symbol	Parameter	Propagation Delays (ns) Fanout ^a					t ^a	
		1	2	3	4	8	12	24
t _{IN}	High Drive Input Delay	1.5	1.6	1.8	1.9	2.4	2.9	4.4
t _{INI}	High Drive Input, Inverting Delay	1.6	1.7	1.9	2.0	2.5	3.0	4.5
t _{ISU}	Input Register Set-Up Time	3.1	3.1	3.1	3.1	3.1	3.1	3.1
t _{IH}	Input Register Hold Time	0.0	0.0	0.0	0.0	0.0	0.0	0.0
t _{lCLK}	Input Register Clock To Q	0.7	0.8	1.0	1.1	1.6	2.1	3.6
t _{IRST}	Input Register Reset Delay	0.6	0.7	0.9	1.0	1.5	2.0	3.5
t _{lESU}	Input Register clock Enable Set-Up Time	2.3	2.3	2.3	2.3	2.3	2.3	2.3
t _{lEH}	Input Register Clock Enable Hold Time	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Table 4: Input-Only/Clock Cells

a. Stated timing for worst case Propagation Delay over process variation at V_{CC} = 3.3 V and TA = 25°C. Multiply by the appropriate Delay Factor, K, for speed grade, voltage, and temperature settings as specified in **Table 9**.

Symbol	Parameter	Propagation Delays (ns) Loads per Half Column ^a						
		1	2	3	4	8	10	11
t _{ACK}	Array Clock Delay	1.2	1.2	1.3	1.3	1.5	1.6	1.7
t _{GCKP}	Global Clock Pin Delay	0.7	0.7	0.7	0.7	0.7	0.7	0.7
t _{GCKB}	Global Clock Buffer Delay	0.8	0.8	0.9	0.9	1.1	1.2	1.3

Table 5: Clock Cells

a. The array distributed networks consist of 28 half columns and the global distributed networks consist of 32 half columns, each driven by an independent buffer. The number of half columns used does not affect clock buffer delay. The array clock has up to eight loads per half column. The global clock has up to 11 loads per half column.

Preliminary

Symbol	Parameter	Propagation Delays (ns) Fanout ^a							
		1	2	3	4	8	10		
t _{I/O}	Input Delay (bidirectional pad)	1.3	1.6	1.8	2.1	3.1	3.6		
t _{ISU}	Input Register Set-Up Time	3.1	3.1	3.1	3.1	3.1	3.1		
t _{IH}	Input Register Hold Time	0.0	0.0	0.0	0.0	0.0	0.0		
t _{lOCLK}	Input Register Clock To Q	0.7	1.0	1.2	1.5	2.5	3.0		
t _{lORST}	Input Register Reset Delay	0.6	0.9	1.1	1.4	2.4	2.9		
t _{lESU}	Input Register clock Enable Set-Up Time	2.3	2.3	2.3	2.3	2.3	2.3		
t _{lEH}	Input Register Clock Enable Hold Time	0.0	0.0	0.0	0.0	0.0	0.0		

Table 6: Input-Only I/O Cells

a. Stated timing for worst case Propagation Delay over process variation at V_{CC} = 3.3 V and TA = 25°C. Multiply by the appropriate Delay Factor, K, for speed grade, voltage, and temperature settings as specified in **Table 9**.

Symbol	Parameter	Propagation Delays (ns) Output Load Capacitance (pF)					
		30	50	75	100	150	
t _{OUTLH}	Output Delay Low to High	2.1	2.5	3.1	3.6	4.7	
t _{OUTHL}	Output Delay High to Low	2.2	2.6	3.2	3.7	4.8	
t _{PZH}	Output Delay Tri-state to High	1.2	1.7	2.2	2.8	3.9	
t _{PZL}	Output Delay Tri-state to Low	1.6	2.0	2.6	3.1	4.2	
t _{PHZ}	Output Delay High to Tri-State ^a	2.0	-	-	-	-	
t _{PLZ}	Output Delay Low to Tri-State	1.2	-	-	-	-	

Table 7: Output-Only I/O Cells

a. The following loads presented in Figure 4 are used for t_{PXZ} :

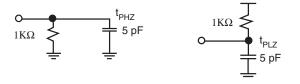


Figure 4: Loads used for t_{PXZ}

Preliminary

DC Characteristics

The DC specifications are provided in Table 8 through Table 10.

Table	8:	Absolute	Maximum	Ratings
	<u> </u>			

Parameter	Value	Parameter	Value
V _{CC} Voltage	-0.5 V to 4.6 V	DC Input Current	±20 mA
V _{CCIO} Voltage	-0.5 V to 7.0 V	ESD Pad Protection	±2000 V
Input Voltage	-0.5 V to V _{CCIO} +0.5 V	Storage Temperature	-65°C to +150°C
Latch-up Immunity	±200 mA	Lead Temperature	300°C

Table 9: Operating Range

Symbol		Parameter	Comr	Unit	
			Min	Max	
V _{CC}	Supply Voltage		3.0	3.6	V
V _{CCIO}	I/O Input Toler	ance Voltage	3.0	5.25	V
TA	Ambient Tempe	erature	0	70	°C
TC	Case Temperate	-	-	°C	
K	Delay Factor	-33B Speed Grade	0.46	1.25	n/a
K		-33C Speed Grade	0.46	0.88	n/a

Table 10: DC Characteristics

Symbol	Parameter	Conditions	Min	Мах	Units
V _{IH}	Input HIGH Voltage		$0.5 V_{CC}$	$V_{CCIO} + 0.5$	V
V _{IL}	Input LOW Voltage		-0.5	0.3 V _{CC}	V
V _{OH}	Output HIGH Voltage	$I_{OH} = -12 \text{ mA}$	2.4		V
• OH	output more voltage	$I_{OH} = -500 \ \mu A$	0.9 V _{CC}		V
V _{OL}	Output LOW Voltage	$I_{OL} = 16 \text{ mA}$		0.45	V
• OL	Output LOW Voltage	$I_{OL} = 1.5 \text{ mA}$		0.1 V _{CC}	V
II	I or I/O Input Leakage Current	$V_{I} = V_{CCIO}$ or GND	-10	10	μA
I _{OZ}	3-State Output Leakage Current	$V_{I} = V_{CCIO}$ or GND	-10	10	μA
CI	Input Capacitance ^a			10	pF
т	Output Short Circuit Current ^b	$V_{O} = GND$	-15	-180	mA
I _{OS}	Sulput Short Circuit Current	$V_{O} = V_{CC}$	40	210	mA
I _{CC}	D.C. Supply Current	V_{I} , $V_{IO} = V_{CCIO}$ or GND	0.50 (typ)	2	mA
I _{CCIO}	D.C. Supply Current on V_{CCIO}		0	100	μΑ

a. Capacitance is sample tested only. Clock pins are 12 pF maximum.

b. Only one output at a time. Duration should not exceed 30 seconds.

Kv and Kt Graphs

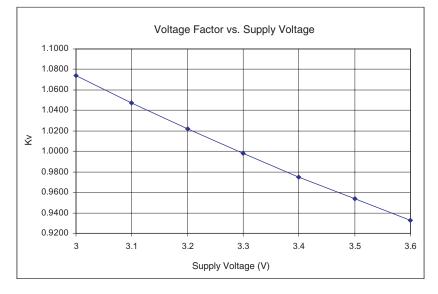


Figure 5: Voltage Factor vs. Supply Voltage

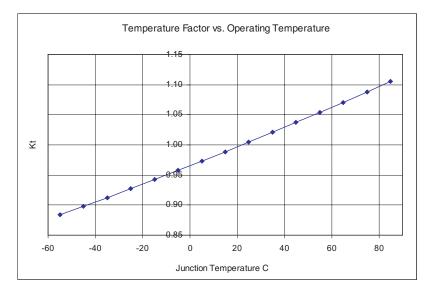


Figure 6: Temperature Factor vs. Operating Temperature

Preliminary

Pin Descriptions

Pin	Function	Description
TDI	Test Data In for JTAG	Hold HIGH during normal operation. Connect to V_{CC} if not used for JTAG.
TRSTB	Active low Reset for JTAG	Hold LOW during normal operation. Connect to ground if not used for JTAG.
TMS	Test Mode Select for JTAG	Hold HIGH during normal operation. Connect to V_{CC} if not used for JTAG.
ТСК	Test Clock for JTAG	Hold HIGH or LOW during normal operation. Connect to $V_{\rm CC}$ or ground if not used for JTAG.
TDO	Test data out for JTAG	Output that must be left unconnected if not used for JTAG.
STM	Special Test Mode	Must be grounded during normal operation.
I/ACLK	High-drive input and/or array network driver	Can be configured as either or both.
I/GCLK	High-drive input and/or global network driver	Can be configured as either or both.
Ι	High-drive input	Use for input signals with high fanout.
I/O	Input/Output pin	Can be configured as an input and/or output.
V _{CC}	Power supply pin	Connect to 3.3 V supply.
V _{CCIO}	Input voltage tolerance pin	Connect to 5.0 V supply if 5 V input tolerance is required, otherwise connect to 3.3 V supply.
GND	Ground pin	Connect to ground.

Table 11: Pin Descriptions

QL5020 External Device Pins

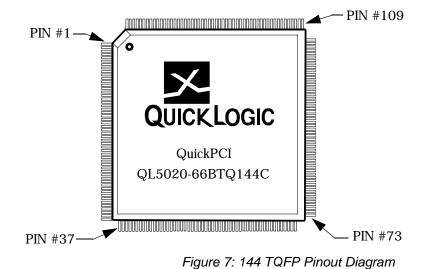
The definitions for the QL5020 PCI pin types are indicated in Table 12. The names of all QL5020 device pins are indicated in Table 13 and Table 14. These are pins on the device, some of which connect to the PCI bus, and others that are programmable as user I/O.

Туре	Description
IN	Input. A standard input-only signal
OUT	Totem pole output. A standard active output driver
T/S	Tri-state. A bi-directional, tri-state input/output pin
S/T/S	Sustained Tri-state. An active low tri-state signal driven by one PCI agent at a time. It must be driven high for at least one clock before being disabled (set to Hi-Z). A pull-up needs to be provided by the PCI system central resource to sustain the inactive state once the active driver has released the signal.
O/D	Open Drain. Allows multiple devices to share this pin as a wired-or.

Table 12: QL5020 External Device Pins

Table 13: QL5020 External Device Pins

Pin/Bus Name	Туре	Function
VCC	IN	Supply pin. Tie to 3.3 V supply.
VCCIO	IN	Supply pin for I/O. Set to 3.3 V for 3.3 V I/O, 5 V for 5.0 V compliant I/O
GND	IN	Ground pin. Tie to GND on the PCB.
I/O	T/S	Programmable Input/Output/Tri-State/Bi-directional Pin.
GLCK/I	IN	Programmable Global Network or Input-only pin. Tie to V_{CC} or GND if unused.
ACLK/I	IN	Programmable Array Network or Input-only pin. Tie to V_{CC} or GND if unused.
TDI/RSI*	IN	JTAG Data In/Ram Init. Serial Data In. Tie to $\rm V_{\rm CC}$ if unused. Connect to Serial EPROM data for RAM init.
TDO/RCO*	OUT	JTAG Data Out/Ram Init Clock. Leave unconnected if unused. Connect to Serial EPROM clock for RAM init.
ТСК	IN	JTAG Clock. Tie to GND if unused.
TMS	IN	JTAG Test Mode Select. Tie to V_{CC} if unused.
TRSTB/RRO*	IN	JTAG Reset/RAM Init. Reset Out. Tie to GND if unused. Connect to Serial EPROM reset for RAM init.
STM	IN	QuickLogic Reserved pin. Tie to GND on the PCB.

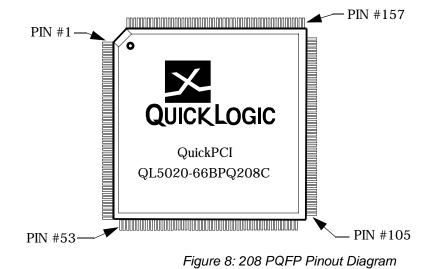

Preliminary

Pin/Bus Name	Tuno	Function
FIII/DUS Maille	Туре	Function
AD[31:0]	T/S	PCI Address and Data 32 bit multiplexed address/data bus.
CBEN[3:0]	T/S	PCI Bus Command and Byte Enables Multiplexed bus which contains byte enables for AD[31:0] or the Bus Command during the address phase of a PCI transaction.
PAR	T/S	PCI Parity Even Parity across AD[31:0] and C/BEN[3:0] busses. Driven one clock after address or data phases. The Target drives PAR on PCI reads.
FRAMEN	S/T/S	PCI Cycle Frame Driven active by current PCI Master during a PCI transaction. Driven low to indicate the address cycle, driven high at the end of the transaction.
DEVSELN	S/T/S	PCI Device Select Driven by a Target that has decoded a valid base address.
CLK	IN	PCI System Clock Input
RSTN	IN	PCI System Reset Input
PERRN	S/T/S	PCI Data Parity Error Driven active by the initiator or target two clock cycles after a data parity error is detected on the AD and C/BEN busses.
SERRN	O/D	PCI System Error Driven active when an address cycle parity error, data parity error during a special cycle, or other catastrophic error is detected.
IDSEL	IN	PCI Initialization Device Select Use to select a specific PCI Agent during System Initialization.
IRDYN	S/T/S	PCI Initiator Ready Indicates the Initiator's ability to complete a read or write transaction. Data transfer occurs only on clock cycles where both IRDYN and TRDYN are active.
TRDYN	S/T/S	PCI Target Ready Indicates the Target's ability to complete a read or write transaction. Data transfer occurs only on clock cycles where both IRDYN and TRDYN are active.
STOPN	S/T/S	PCI Stop Used by a PCI Target to end a burst transaction.

Table 14: QL5020 External Device Pins

144 TQFP Pinout Diagram

144 TQFP Pinout Table


Pin	Function	Pin	Function	Pin	Function	Pin	Function
1	I/O	37	AD[21]	73	AD[4]	109	TCK
2	I/O	38	TDI/RSI	74	AD[3]	110	STM
3	I/O	39	AD[20]	75	AD[2]	111	I/O
4	I/O	40	AD[19]	76	AD[1]	112	I/O
5	I/O	41	AD[18]	77	AD[0]	113	I/O
6	I/O	42	VCC	78	I/O	114	VCC
7	VCC	43	AD[17]	79	VCC	115	I/O
8	I/O	44	AD[16]	80	I/O	116	I/O
9	I/O	45	CBEN[2]	81	I/O	117	I/O
10	I/O	46	FRAMEN	82	I/O	118	I/O
11	I/O	47	IRDYN	83	I/O	119	I/O
12	I/O	48	TRDYN	84	I/O	120	I/O
13	I/O	49	DEVSELN	85	I/O	121	I/O
14	I/O	50	GND	86	I/O	122	GND
15	GND	51	STOPN	87	GND	123	I/O
16	I/O	52	PERRN	88	I/O	124	I/O
17	1	53	SERRN	89	I	125	I/O
18	ACLK/I	54	GND	90	ACLK/I	126	GND
19	VCC	55	PAR	91	VCC	127	I/O
20	RSTN	56	CBEN[1]	92	1	128	I/O
21	CLK	57	AD[15]	93	GCLK/I	129	I/O
22	VCC	58	VCCIO	94	VCC	130	VCCIO
23	I/O	59	AD[14]	95	I/O	131	I/O
24	AD[31]	60	AD[13]	96	I/O	132	I/O
25	AD[30]	61	AD[12]	97	I/O	133	I/O
26	AD[29]	62	AD[11]	98	I/O	134	I/O
27	AD[28]	63	AD[10]	99	I/O	135	I/O
28	AD[27]	64	AD[9]	100	I/O	136	I/O
29	AD[26]	65	AD[8]	101	I/O	137	I/O
30	GND	66	GND	102	GND	138	GND
31	AD[25]	67	CBEN[0]	103	I/O	139	I/O
32	AD[24]	68	AD[7]	104	I/O	140	I/O
33	CBEN[3]	69	AD[6]	105	I/O	141	I/O
34	IDSEL	70	AD[5]	106	I/O	142	I/O
35	AD[23]	71	TRSTB/RRO	107	I/O	143	TDO/RCO
36	AD[22]	72	TMS	108	I/O	144	I/O

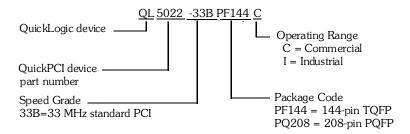
Preliminary

Table 15: 144 TQFP Pinout Table

Summary: 47 PCI pins, 65 user I/O, 3 CLK/I, and 3 I.

208 PQFP Pinout Diagram

208 PQFP Pinout Diagram


Pin	Function										
1	I/O	37	AD[27]	73	GND	109	I/O	145	VCC	181	I/O
2	I/O	38	AD[26]	74	AD[11]	110	I/O	146	I/O	182	GND
3	I/O	39	AD[25]	75	AD[10]	111	I/O	147	GND	183	I/O
4	I/O	40	AD[24]	76	AD[9]	112	I/O	148	I/O	184	I/O
5	I/O	41	VCC	77	AD[8]	113	I/O	149	I/O	185	I/O
6	I/O	42	CBEN[3]	78	GND	114	VCC	150	I/O	186	I/O
7	I/O	43	GND	79	CBEN[0]	115	I/O	151	I/O	187	VCCIO
8	I/O	44	IDSEL	80	AD[7]	116	GND	152	I/O	188	I/O
9	I/O	45	AD[23]	81	AD[6]	117	I/O	153	I/O	189	I/O
10	VCC	46	AD[22]	82	AD[5]	118	I/O	154	I/O	190	I/O
11	I/O	47	AD[21]	83	VCCIO	119	I/O	155	I/O	191	I/O
12	GND	48	AD[20]	84	AD[4]	120	I/O	156	I/O	192	I/O
13	I/O	49	AD[19]	85	AD[3]	121	I/O	157	TCK	193	I/O
14	I/O	50	AD[18]	86	AD[2]	122	I/O	158	STM	194	I/O
15	I/O	51	AD[17]	87	AD[1]	123	I/O	159	I/O	195	I/O
16	I/O	52	AD[16]	88	AD[0]	124	I/O	160	I/O	196	I/O
17	I/O	53	CBEN[2]	89	I/O	125	I/O	161	I/O	197	I/O
18	I/O	54	TDI	90	I/O	126	I/O	162	I/O	198	I/O
19	I/O	55	FRAMEN	91	I/O	127	GND	163	GND	199	GND
20	I/O	56	IRDYN	92	I/O	128	I/O	164	I/O	200	I/O
21	I/O	57	TRDYN	93	I/O	129	I	165	VCC	201	VCC
22	I/O	58	DEVSELN	94	I/O	130	ACLK/I	166	I/O	202	I/O
23	GND	59	GND	95	GND	131	VCC	167	I/O	203	I/O
24	I/O	60	STOPN	96	I/O	132	I	168	I/O	204	I/O
25	RSTN	61	VCC	97	VCC	133	GCLK/I	169	I/O	205	I/O
26	ACLK/I	62	I/O	98	I/O	134	VCC	170	I/O	206	I/O
27	VCC	63	I/O	99	I/O	135	I/O	171	I/O	207	TDO
28	1	64	PERRN	100	I/O	136	I/O	172	I/O	208	I/O
29	CLK	65	I/O	101	I/O	137	I/O	173	I/O		
30	VCC	66	SERRN	102	I/O	138	I/O	174	I/O		
31	I/O	67	PAR	103	TRSTB	139	I/O	175	I/O		
32	I/O	68	CBEN[1]	104	TMS	140	I/O	176	I/O		
33	AD[31]	69	AD[15]	105	I/O	141	I/O	177	GND		
34	AD[30]	70	AD[14]	106	I/O	142	I/O	178	I/O		
35	AD[29]	71	AD[13]	107	I/O	143	I/O	179	I/O		
36	AD[28]	72	AD[12]	108	I/O	144	I/O	180	I/O		

Preliminary

Table 16: 208 PQFP Pin Table

Summary: 47 PCI pins, 121 user I/O, 3 CLK/I, and 3 I.

Ordering Information

Note: PCI bus runs with up to 50 MHz for embedde applications

Revision History

Table 17: Revision History

Revision	Date	Comments
А	November 2002	Preliminary release
В	May 2003	Bernhard Andretzky and Kathleen Murchek
С	July 2003	David Shih and Kathleen Murchek Added Pin Description table and updated summary for pinout tables.

Contact Information

Telephone:	(408) 990 4000 (US)
	(416) 497 8884 (Canada)
	+(44) 1932 57 9011 (Rest of Europe)
	+(49) 89 930 86 170 (Germany & Benelux)
	+(8621) 2890 3029 (Asia)
	+(81) 45 470 5525 (Japan)
E-mail:	info@quicklogic.com
Support:	http://www.quicklogic.com/support
Web site:	http://www.quicklogic.com/

Copyright and Trademark Information

Copyright © 2003 QuickLogic Corporation. All Rights Reserved.

The information contained in this document and the accompanying software programs is protected by copyright. All rights are reserved by QuickLogic Corporation. QuickLogic Corporation reserves the right to modify this document without any obligation to notify any person or entity of such revision. Copying, duplicating, selling, or otherwise distributing any part of this product without the prior written consent of an authorized representative of QuickLogic is prohibited.

QuickLogic, pASIC, ViaLink, DeskFab, and Quick*Works* are registered trademarks of QuickLogic Corporation. QuickFC, QuickDSP, QuickSD, QuickDR, Eclipse, QuickTools, QuickCore, SpDE, and QuickPro are trademarks of QuickLogic Corporation.

