TOPSwitc $h^{\mathbb{B}-I I}$

PC Standby Reference Design Board 90 to 375 VDC Input, 3.5 W Output

Product Highlights

Low Cost Production Worthy Reference Design

- Up to 3.5 W of output power
- Meets Blue Angel requirements (5 W)
- Single sided board
- Low cost through-hole components
- Fully assembled and tested
- Easy to evaluate and modify
- Extensive performance data
- Light weight - no heat sink required for TOPSwitch-II
- Non-isolated +12 V output option

Fully Protected by TOPSwitch-II

- Primary safety current limit
- Output short circuit protection
- Thermal shutdown protects entire supply

Designed for World Wide Operation

- Designed for IEC/UL safety requirements
- Designed for wide range of input voltage

Typical Applications

- Desktop PC stand-by power supply (PS98, ATX, NLX, SFX, Micro ATX)
- Consumer stand-by supply (e.g. TV, VCR, DVD)

Description

The RD7 reference design board is an example of a very low cost production worthy DC input standby power supply design using the TOPSwitch-II family of Three-terminal Off-line PWM switchers. The reference design board is intended to help TOPSwitch-II users quickly develop their products. It provides a basic design that can be easily modified to fit a particular application. The RD7 operates from a rectified and filtered AC mains voltage and provides 3.5 W output at 5 V . Features such as a 12 V non-isolated output or tighter output voltage tolerance may be implemented by changing only a few components (See Figure 4).

Figure 1. RD7 Overall Physical Dimensions.

PARAMETER	LIMITS
Input Voltage Range	90 to 375 VDC
Temperature Range	0 to $50^{\circ} \mathrm{C}$
Output Voltage ($\mathrm{I}_{\mathrm{o}}=0.7 \mathrm{~A}$)	$5 \mathrm{~V} \pm 5 \%$
Output Power (continuous)	3.5 W
Line Regulation (90-375VDC)	$\pm 1.0 \%$
Load Regulation (10\%-100\%)	$\pm 1.0 \%$
Efficiency (At full load)	72%
Output Ripple Voltage	$\pm 50 \mathrm{mV}$
Safety	IEC950/UL1950

Table 1. Table of Key Electrical Parameters.

Figure 2. Schematic diagram of the RD7.

Figure 3. RD7 Pinout and Component Legend.

CAUTION

The RD7 is designed for DC input. Please observe the proper polarity when applying power to this board. Applying reverse polarity or AC power to the input terminals of the board can damage the TOPSwitch.

Component Listing

Reference	Value	Part Number	Manufacturer
C1	$10 \mathrm{nF}, 1 \mathrm{KV}$, Disc	5GAS10	Cera-Mite
C2	2.2 nF 1 KV , Disc	DD222	Philips
C3	$270 \mu \mathrm{~F} 25 \mathrm{~V}$	ECA-1EFQ271	Panasonic
C4	$100 \mu \mathrm{~F} 25 \mathrm{~V}$	ECE-A1EGE101	Panasonic
C5	$47 \mu \mathrm{~F}, 10 \mathrm{~V}$	ECE-A1AGE470	Panasonic
C6	$0.1 \mu \mathrm{~F}, 50 \mathrm{~V}$	ECU-S1H104MEA	Panasonic
C_{c} *	$0.1 \mu \mathrm{~F}, 50 \mathrm{~V}$	ECU-S1H104MEA	Panasonic
$\mathrm{C}_{\mathrm{ss}}{ }^{*} *$			
D1	600 V, 1A, UFR	UF4005	General Instrument
D2	40 V, 3 A, Schottky	1N5822	General Instrument
D3	75 V, Switching	1N4148	Liteon
L1	$3.3 \mu \mathrm{H}, 5 \mathrm{~A}$	622LY-3R3M	Toko
RF1	1Ω Fuse Resistor $1 / 2 \mathrm{~W}$	BW1/2F $1 \Omega 5 \%$	RCD
R1	$47 \mathrm{~K}, 1 / 2 \mathrm{~W}$	5053CX47K00J	Philips
R2	$10 \Omega, 1 / 4 \mathrm{~W}$	5043CX10R00J	Philips
R3	$100 \Omega, 1 / 4 \mathrm{~W}$	5043CX100R0J	Philips
T1**		TRD7	Custom
U1		TOP221P or TOP221G***	Power Integrations
U2	Optocoupler, Controlled CTR	LTV817A	Liteon
VR1	3.9 V, Zener, 2\%	1N5228C	APD

Table 2. Parts List For the RD7. (* Optional, for $C_{s s}$ values see Figure 9. **T1 is available from Premier Magnetics (714) 362-4211 as P/N TDS-1185-9818, and from Coiltronics (561) 241-7876 as P/N CTX14-14193-X1. *** TOP221G can be used with layout modifications.)

General Circuit Description

The RD7 is a low-cost, flyback switching power supply using the TOP221P. The circuit shown in Figure 2 provides a nominal output power of 3.5 W at 5 VDC output. The power supply operates from a DC voltage of 90 to 375 VDC. In a typical application this DC voltage is derived from a rectified and filtered AC main voltage of 85 to 265 VAC . The 5 V output is directly sensed by optocoupler U2 and Zener diode VR1. The output voltage is determined by the Zener diode (VR1) voltage and the voltage drop across the optocoupler (U2) LED and resistor R2. Other output voltages are possible by adjusting the transformer turns ratios and the value of the Zener diode VR1.

The positive rail of the high voltage DC input is connected to one side of the primary winding of T1. Capacitor C 1 filters the high voltage supply, and is necessary only if the connections between the high voltage DC supply and the RD7 are long. The other side of the transformer primary is driven by the integrated, high-voltage MOSFET inside the TOP221. D1, R1, and C2 clamp voltage spikes caused by transformer leakage inductance to a safe value and reduce ringing at the DRAIN of U1.

The secondary winding is rectified and filtered by D2 and C3 to generate a 5 V output. L1 and C 4 provide additional filtering to reduce high frequency ripple voltage. R3 and VR1 provide a slight pre-load on the 5 V output to improve load regulation
at light loads. R3 also provides bias current for Zener VR1 to improve regulation.

Soft start can be added to eliminate turn-on overshoot. With $\mathrm{C}_{\text {ss }}$ placed across VR1, the optocoupler current is increased during turn-on time. This increased current limits the duty cycle and slows down the rising output voltage (See Figure 9). The bias winding output is rectified and filtered by D3 and C6 to provide a bias voltage for U2. C5 filters internal MOSFET gate drive charge current spikes on the CONTROL pin, determines the auto-restart frequency, and compensates the control loop. C_{c} is needed when the supply is operating in a noisy environment (e. g. when the power supply is sharing the same input rectifier and filter capacitor with another power supply). C_{c} filters high frequency noise.

The schematic of Figure 4 shows an enhanced version of the RD7. The circuit comprising R2, R3, R4, R5 and U3 improves overall output regulation to $\pm 2 \%$. Optional soft start capacitor C_{ss} is used to eliminate turn-on overshoot. The bias supply output can be used to provide $\mathrm{a}+12 \mathrm{~V}$, non-isolated output by changing C6 to $100 \mu \mathrm{~F}$ as shown in Figure 4. C6 is added to reduce output ripple to a primary load.

The circuit performance data shown in Figures 5 to 12 was

Figure 4. Schematic diagram of the RD7 with 12 V Non-isolated output.
measured with DC voltage applied to RD7.
Load Regulation (Figure 5(a) and 5(b)) - The amount of change in the DC output voltage for a given change in output current is referred to as load regulation. The 5 V output stay within $\pm 1.0 \%$ when the output current is between 0% to 100% of rated load current at the 5 V output. The TOPSwitch-II overtemperature protection circuit will safely shut down the power supply under prolonged overload conditions. When the output load is disconnected, R3 acts as a preload and the output stays in regulation.

Line Regulation (Figure 6(a) and 6(b)) - The amount of change in DC output voltage for a given change in the DC input voltage is called line regulation. The maximum change in output voltage is within $\pm 1 \%$.

Efficiency (Line Dependent). Efficiency is the ratio of output power to the input power. The curve in Figure 7 shows how the efficiency changes with input voltage using a 3.5 W load. The efficiency is greater than 72% throughout the input range.

Efficiency (Load Dependent). The curves in Figure 8 show how the efficiency changes with output power at 155 and 310 VDC inputs. The efficiency is greater than 70% for loads greater than 2.5 W .

Power Supply Turn On Sequence. An internal switched, high voltage current source provides the initial bias current for TOPSwitch when power is first applied. The waveforms shown in Figure 8 illustrates the timing relationship between the high voltage DC bus and 5 V output voltage for the RD7 circuit. Capacitor C 1 charges to the DC input voltage before TOPS witch turns on. The delay of 130 ms (typical) is caused by the time required to charge the auto-restart capacitor C 5 to 5.7 V . At this point the power supply turns on as shown.

Figure 10 shows the output voltage turn on transient as well as a family of curves associated with the additional soft-start capacitor $\mathrm{C}_{\text {ss }}$. The soft-start capacitor is placed across VR2 and can range in value from $10 \mu \mathrm{~F}$ to $47 \mu \mathrm{~F}$ as shown.

Switching frequency ripple voltage is shown in Figure 11 for the RD7 circuit at 155 VDC input and 3.5 W output. Peak to peak ripple is less than 50 mV at 3.5 W .

The RD7 power supply transient response to a step load change from 0.52 A to 0.75 A (75% to 100%) is shown in Figure 12. The response is quick and well damped.

The RD7 is designed to meet worldwide safety specifications.

Thermal Considerations

The RD7 utilizes the printed circuit copper for TOPSwitch-II heatsinking. With a copper area of approximately $0.227 \mathrm{in}^{2}$ $\left(1.46 \mathrm{~cm}^{2}\right)$ and $2 \mathrm{oz} .\left(610 \mathrm{~g} / \mathrm{m}^{2}\right)$ copper cladding, the temperature of the TOPSwitch-II rises $6^{\circ} \mathrm{C}$ at $50^{\circ} \mathrm{C}$ ambient temperature and 3.5 W load.

Transformer Specifications

The electrical specifications and construction details for transformer TRD7 are shown in Figures 13 and 14. Transformer TRD7 is supplied with the RD7 reference design board. This design utilizes anEE16 core and a triple insulated wire secondary

Figure 5 (a). Load Regulation at 155 VDC Input Voltage. (b). Load Regulation at 310 VDC Input Voltage.

(a) 5 V Load Current (mA)

(b) 5 V Load Current (mA)
-
winding. The use of triple insulated wire allows the transformer to be constructed using a smaller core and bobbin than a conventional magnet wire design due to the elimination of the creepage margins required for safety spacing in a conventional design.

If a conventional margin wound transformer is desired, the design of Figures 15 and 16 can be used. This design (TRD7-1) uses an EEL16 core and bobbin to accommodate the 6 mm creepage required to meet international safety standards when using magnet wire rather than triple insulated wire, and has the same pinout and printed circuit foot print as TRD7. The transformer is approximately 50% taller than the triple insulated wire design due to the inclusion of creepage margins required to meet international safety standards.

Figure 6 (a). Line Regulation at 3.5 W Output. (b). Line Regulation at 0.35 W Output.

Figure 7. Efficiency vs. Input Voltage, 3.5 W Output.

Figure 8. Efficiency vs. Output Power.

Figure 9. Turn on Delay.

Figure 11. Switching Frequency Ripple, 155 VDC Input, 3.5 W Output.

Figure 10. Output Voltage Turn On Transient vs. Soft Start Capacitor.

Figure 12. Transient Load Response (75\% to 100% of load).

TRIPLE INSULATED SECONDARY TRANSFORMER (TRD1)

CORE\# - PC40 EE16-Z (TDK)
GAP FOR AL OF $182 \mathrm{nH} / \mathrm{T}^{2}$
BOBBIN\# - YW-193 (Yih Hwa Enterprises)

PIN	FUNCTION
1	HIGH-VOLTAGE DC BUS
2	TOPSwitch DRAIN
3	PRIMARY-SIDE COMMON
4	VBIAS
6,7	SECONDARY RETURN
9,10	OUTPUT

ELECTRICAL SPECIFICATIONS

Electrical Strength	$60 \mathrm{~Hz}, 1$ minute, from pins 1-4 to pins $5-10$ Between pins 1-4 and pins 5-10	6000 VAC
Creepage	All windings open	$2430 \mu \mathrm{Hm}-10 \%$
Primary Inductance	All windings open	$500 \mathrm{kHz}(\mathrm{min})$
Resonant Frequency	Between pins 1-2 (pins 6-10 shorted)	$63 \mu \mathrm{H}$ (max)

NOTE: All inductance measurements should be made at 100 kHz

Figure 13. Electrical Specification of Transformer TRD7.

TRIPLE INSULATED SECONDARY TRANSFORMER CONSTRUCTION

$\begin{aligned} & \text { TAPE }\left\{\begin{array}{l} \\ \text { TAPE }\{ \end{array}\right. \end{aligned}$	
WINDING INSTRUCTIONS	
Primary Basic Insulation Bias Winding Basic Insulation Secondary Winding Outer Insulation Final Assembly	Start at Pin 2. Wind one complete layer (about 58 turns) of 37 AWG heavy nyleze wire from left to right. Insulate first layer using 1 turn of polyester film tape, 8.3 mm wide, 0.056 mm thick. Wind remaining 58 turns from right to left for a total of 116 turns. Finish at Pin 1. Apply 1 layer of tape for basic insulation. Start at Pin 4. Wind 14 turns parallel bifilar of 37 AWG wire from left to right in a single layer. Finish at Pin 3. Apply 1 layer of tape for basic insulation. Start at Pins 9, 10. Wind 6 turns parallel bifilar of 26 AWG triple insulated wire from left to right. Finish on Pin 6, 7. Apply 3 layers of tape for basic insulation. Assemble and secure core halves. Impregnate uniformly with varnish.

* Triple insulated wire sources.

P/N: T27A01TXXX-3 P/N: order by description $\quad \mathrm{P} / \mathrm{N}$: order by description
Rubudue Wire Company 5150 E. La Palma Avenue Suite 108
Anaheim Hills, CA 92807
(714) 693-5512
(714) 693-5515 FAX

Furukawa Electric America, Inc.
200 Westpark Drive
Suite 190
Peachtree City, GA 30269
(770) 487-1234
(770) 487-9910 FAX

The Furukawa Electric Co., Ltd 6-1, Marunouchi 2-chome, Chiyoda-ku, Tokyo 100, Japan
81-3-3286-3226
81-3-3286-3747 FAX

Figure 14. Construction Details of Transformer TRD7.

ELECTRICAL SPECIFICATIONS			
Electrical Strength	$60 \mathrm{~Hz}, 1$ minute, from pins 1-4 to pins 5-10	3000 VAC	
Creepage	Between pins 1-4 and pins 5-10	6.0 mm (min)	
Primary Inductance	All windings open	$2430 \mu \mathrm{H}-10 \%$	
Resonant Frequency	All windings open	300 kHz (min)	
Primary Leakage Inductance	Between pins 1-2 (pins 6-10 shorted)	$70 \mu \mathrm{H}$ (max)	

NOTE: All inductance measurements should be made at 100 kHz

Figure 15. Electrical Specification of Transformer TRD7-1.

MARGIN WOUND TRANSFORMER CONSTRUCTION

$\begin{aligned} & \text { TAPE }\left\{\begin{array}{l} \longrightarrow \\ \hline \end{array},\right. \\ & \text { TAPE }\{\longrightarrow \end{aligned}$	
WINDING INSTRUCTIONS	
Safety Margin Primary Basic Insulation Bias Winding Reinforced Insulation Safety Margin Secondary Winding Outer Insulation Final Assembly	Construct margins on each side of bobbin using 3 mm wide tape. Match height of primary plus bias winding. Start at Pin 2. Wind one complete layer (about 58 turns) of 35 AWG heavy nyleze wire from left to right between margins. Insulate first layer using 1 layer of polyester tape (polyester film $11.5 \mathrm{~mm}(0.456 \mathrm{in})$ wide and 0.056 (2.2 mil) thick) for basic insulation. Wind remaining 58 turns in second layer from right to left. Finish on Pin 1. Sleeve start and finish leads using safety approved insulating sleeving with $0.4 \mathrm{~mm}(0.016 \mathrm{in})$ minimum wall thickness. Apply 1 layer of 11.5 mm wide tape for basic insulation. Start at Pin 4. Wind 14 parallel bifilar turns of 35 AWG heavy nyleze wire from left to right in a single layer. Finish on Pin 3. Sleeve start and finish leads as above. Apply 3 layers of tape (polyester film, 17.5 mm (0.689 in) wide and $0.056 \mathrm{~mm}(2.2$ mil) thick) for reinforced insulation. Construct margins on each side of bobbin using 3 mm wide tape. Match height of secondary winding. Start at Pin 9 and 10. Wind 6 parallel bifilar turns of 26 AWG heavy nyleze wire from left to right in a single layer. Finish on Pin 6 and 7. Sleeve start and finish leads as above. Apply 3 layers of 17.5 mm tape for outer insulation. Assemble and secure core halves. Impregnate uniformly with varnish.

Figure 16. Contruction Details of Transformer TRD7-1.

Revision	Notes	Date
A	-	$9 / 98$
B	Measurement method for primary leakage inductance of TRD7 and TRD7-1 corrected.	$4 / 99$

Power Integrations reserves the right to make changes to its products at any time to improve reliability or manufacturability. Power Integrations does not assume any liability arising from the use of any device or circuit described herein, nor does it convey any license under its patent rights or the rights of others.

PI Logo and TOPSwitch \boldsymbol{h} are registered trademarks of Power Integrations, Inc.
©Copyright 1998, Power Integrations, Inc. 477 N. Mathilda Avenue, Sunnyvale, CA 94086 http://www.powerint.com

WORLD HEADQUARTERS NORTH AMERICA - WEST

Power Integrations, Inc.
477 N. Mathilda Avenue
Sunnyvale, CA 94086 USA
Main: $\quad+1 \cdot 408 \cdot 523 \cdot 9200$
Customer Service:
Phone: $+1 \cdot 408 \cdot 523 \cdot 9265$
Fax: $\quad+1 \cdot 408 \cdot 523 \cdot 9365$

NORTH AMERICA - EAST

 \& SOUTH AMERICAPower Integrations, Inc. Eastern Area Sales Office 1343 Canton Road, Suite C1 Marietta, GA 30066 USA
Phone: $+1 \cdot 770 \cdot 424 \cdot 5152$
Fax: $\quad+1 \cdot 770 \cdot 424 \cdot 6567$

EUROPE \& AFRICA
Power Integrations (Europe) Ltd.
Centennial Court
Easthampstead Road
Bracknell
Berkshire RG12 1YQ,
United Kingdom
Phone: $\quad+44 \cdot 1344 \cdot 462 \cdot 300$
Fax: $\quad+44 \bullet 1344 \cdot 311 \cdot 732$

TAIWAN

Power Integrations International
Holdings, Inc.
2F, \#508, Chung Hsiao E. Rd., Sec. 5,
Taipei 105, Taiwan
Phone: $\quad+886 \cdot 2 \cdot 2727 \cdot 1221$
Fax: $\quad+886 \cdot 2 \cdot 2727 \cdot 1223$

INDIA (Technical Support)
Innovatech
\#1, 8th Main Road
Vasanthnagar
Bangalore 560052, India
Phone: $\quad+91 \cdot 80 \cdot 226 \cdot 6023$
Fax: $\quad+91 \cdot 80 \cdot 228 \cdot 2191$

APPLICATIONS HOTLINE
World Wide
$+1 \cdot 408 \cdot 523 \cdot 9260$
APPLICATIONS FAX
World Wide $\quad+1 \bullet 408 \cdot 523 \cdot 9361$

Seoul, Korea
Phone: $\quad+82 \cdot 2 \cdot 568 \cdot 7520$
Fax: $\quad+82 \cdot 2 \cdot 568 \cdot 7474$

JAPAN
Power Integrations, K.K.
Keihin-Tatemono 1st Bldg.
12-20 Shin-Yokohama 2-Chome,
Kohoku-ku, Yokohama-shi,
Kanagawa 222, Japan
Phone: $\quad+81 \cdot(0) \cdot 45 \cdot 471 \cdot 1021$
Fax: $\quad+81 \cdot(0) \cdot 45 \cdot 471 \cdot 3717$

