DATA SHEET

TDA3604Q; TDA3604TH Multiple voltage regulators with external reset delay and switch

Product specification
Supersedes data of 1997 Aug 15
File under Integrated Circuits, IC01

PHILIPS

Multiple voltage regulators with external reset delay and switch

FEATURES

General

- One V_{P}-state controlled regulator (regulator 2)
- Regulator 2, reset and ignition buffer operate during load dump and thermal shutdown
- Separate control pins for switching regulator 1 and the power switch
- Supply voltage range of -18 to +50 V (operating from 9.75 V)
- Low reverse current of regulator 2
- Low quiescent current (when regulator 1, power switch and ignition buffer are switched off)
- Ignition input/output
- Reset output
- Adjustable reset delay time
- High ripple rejection
- Power switch
- Separate supply for the power switch.

Protections

- Reverse polarity safe (down to -18 V without high reverse current)
- Able to withstand voltages up to 18 V at the outputs (supply line may be short-circuited)
- ESD protected on all pins
- Thermal protection
- Load dump protection
- Foldback current limit protection for regulators 1 and 2
- Delayed second current limit protection for the power switch
- The regulator outputs and the power switch are DC short-circuited safe to ground and V_{P}.

GENERAL DESCRIPTION

The TDA3604Q and TDA3604TH are multiple output voltage regulators with a power switch, intended for use in car radios with or without a microcontroller.

It contains one fixed voltage regulator with a foldback current protection (regulator 1) and one fixed voltage regulator (regulator 2), intended to supply a microcontroller, that also operates during load dump and thermal shutdown.

There is a power switch with protections, operated by an enable input.

The reset and ignition outputs can be used to interface by the microcontroller. The reset signal can be used to call up the microcontroller and the ignition output indicates ignition voltage available.

Both supply pins can withstand load dump pulses and negative supply voltages.

Regulator 2 will be switched on at a supply voltage $>6.5 \mathrm{~V}$ and off at a voltage of regulator $2<1.9 \mathrm{~V}$.

ORDERING INFORMATION

TYPE NUMBER	PACKAGE		
	NAME	DESCRIPTION	VERSION
TDA3604Q	DBS13P	plastic DIL-bent-SIL power package; 13 leads (lead length 12 mm)	SOT141-6
TDA3604TH	HSOP20	plastic heat-dissipating small outline package; 20 leads; low stand-off	SOT418-2

Multiple voltage regulators with external reset delay and switch

QUICK REFERENCE DATA

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Supply						
V_{P}	supply voltage operating regulator 2 on jump start load dump protection	note 1 $\mathrm{t} \leq 10$ minutes during 50 ms ; $\mathrm{t}_{\mathrm{r}} \geq 2.5 \mathrm{~ms}$	$\begin{aligned} & 9.75 \\ & 2.4 \\ & - \\ & - \end{aligned}$	$\begin{array}{\|l} 14.4 \\ 14.4 \\ - \\ - \end{array}$	$\begin{aligned} & 25 \\ & 25 \\ & 30 \\ & 50 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
I_{q}	total quiescent current	standby mode	-	400	500	$\mu \mathrm{A}$
T_{vj}	operating virtual junction temperature		-	-	150	${ }^{\circ} \mathrm{C}$
Voltage regulators						
$\mathrm{V}_{\text {REG1 }}$	output voltage regulator 1	$0.5 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{REG} 1} \leq 300 \mathrm{~mA}$	8.65	9.0	9.35	V
$\mathrm{V}_{\text {REG2 }}$	output voltage regulator 2	$0.5 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{REG} 2} \leq 50 \mathrm{~mA} ; \mathrm{V}_{\mathrm{P}}=14.4 \mathrm{~V}$	4.8	5.0	5.2	V
$\mathrm{V}_{\text {REGd1 }}$	drop-out voltage regulator 1	$\mathrm{I}_{\text {REG1 }}=0.3 \mathrm{~A}$; note 2	-	-	0.5	V
Power switch						
$\mathrm{V}_{\text {swd }}$	drop-out voltage	$\mathrm{I}_{\mathrm{sw}}=0.5 \mathrm{~A}$; note 3	-	-	1.4	V
$\mathrm{I}_{\text {swM }}$	peak current	$\mathrm{t} \leq 10 \mathrm{~ms}$	1.4	-	-	A

Notes

1. Minimum operating voltage, only if V_{P} has exceeded 6.5 V .
2. The drop-out voltage of regulator 1 is measured between V_{P} and $\mathrm{V}_{\text {REG1 }}$.
3. The drop-out voltage of the power switch is measured between $\mathrm{V}_{\mathrm{I}(\mathrm{sw})}$ and $\mathrm{V}_{\mathrm{O}(\mathrm{sw})}$.

Multiple voltage regulators with external reset delay and switch

BLOCK DIAGRAM

Fig. 1 Block diagram (for DBS13P package; SOT141-6).

Multiple voltage regulators with external reset delay and switch

PINNING

SYMBOL	PIN		DESCRIPTION
	SOT141-6	SOT418-2	
n.c.	1	1, 2, 6, 9, 13, 18, 19 and 20	not connected
$\mathrm{V}_{\text {l(sw) }}$	2	3	power switch input
V_{P}	3	4	supply voltage
REG1	4	5	regulator 1 output
RES	5	7	reset output (+5 V)
$\mathrm{V}_{\text {en(REG1) }}$	6	8	regulator 1 enable input
$\mathrm{V}_{\text {en(sw) }}$	7	10	power switch enable input
$\mathrm{V}_{\text {O(ig) }}$	8	11	ignition output
$\mathrm{C}_{\text {RES }}$	9	12	reset delay capacitor
GND	10	14	ground (0 V)
REG2	11	15	regulator 2 output
$\mathrm{V}_{\text {l(ig) }}$	12	16	ignition input
$\mathrm{V}_{\text {O(sw) }}$	13	17	power switch output

Multiple voltage regulators with external reset delay and switch

FUNCTIONAL DESCRIPTION

The TDA3604Q and TDA3604TH are multiple output voltage regulators with a power switch, intended for use in car radios with or without a microcontroller. Because of low-voltage operation of the car radio, low-voltage drop regulators are used.

Regulator 2 will switch on when the supply voltage exceeds 6.5 V for the first time and will switch off again when the output voltage of regulator 2 drops below 1.9 V (this is below an engine start). When regulator 2 is switched on and the output voltage of this regulator is within its voltage range, the reset output will be enabled (reset will go HIGH via a pull-up resistor) to generate a reset to the microcontroller. The reset cycles can be extended by an external capacitor at $\mathrm{C}_{\text {RES }}$ (pin of the reset delay capacitor). The above mentioned start-up feature is built-in to secure a smooth start-up of the microcontroller at first connection, without uncontrolled switching of regulator 2 during the start-up sequence.

When both regulator 2 and the supply voltage ($\mathrm{V}_{\mathrm{P}}>4.5 \mathrm{~V}$) are available, regulator 1 and the power switch can be operated by the enable inputs $\mathrm{V}_{\text {en (REG1) }}$ and $\mathrm{V}_{\text {en(sw) }}$ respectively.

All output pins are fully protected. The regulators are protected against load dump (regulator 1 will switch off at supply voltages higher than 25 V) and short-circuit (foldback current protection).
The power switch contains a current protection which is delayed for $\geq 10 \mathrm{~ms}$ (in short-circuit condition). During this time the current is limited to $1.4 \mathrm{~A}\left(\mathrm{~V}_{\mathrm{P}} \leq 18 \mathrm{~V}\right)$.

At supply voltages over 16.9 V the power switch is clamped at 15.0 V (to avoid externally connected circuitry being damaged by an overvoltage) and the power switch will switch off at load dump.

Interfacing with the microcontroller can be accomplished by an ignition Schmitt trigger and ignition output buffer, (simple full/semi on/off logic applications).
The total timing of a semi on/off logic set is shown in Fig.4.

Multiple voltage regulators with external reset delay and switch

Fig. 4 Timing diagrams.

Multiple voltage regulators with external reset delay and switch

LIMITING VALUES
In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V_{P}	supply voltage operating reverse polarity jump start load dump protection	non-operating $\mathrm{t} \leq 10$ minutes during 50 ms ; $\mathrm{t}_{\mathrm{r}} \geq 2.5 \mathrm{~ms}$		$\begin{array}{\|l} 25 \\ -18 \\ 30 \\ 50 \end{array}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
$\mathrm{V}_{\text {ppi }}$	positive pulse voltage at ignition buffer	$\mathrm{V}_{\mathrm{P}}=14.4 \mathrm{~V} ; \mathrm{R}_{\mathrm{l}}=1 \mathrm{k} \Omega$	-	50	V
$\mathrm{V}_{\text {npi }}$	negative pulse voltage at ignition buffer	$\mathrm{V}_{\mathrm{P}}=14.4 \mathrm{~V} ; \mathrm{R}_{\mathrm{I}}=1 \mathrm{k} \Omega$	-	-100	V
$\mathrm{T}_{\text {stg }}$	storage temperature	non-operating	-55	+150	${ }^{\circ} \mathrm{C}$
T_{vj}	operating virtual junction temperature		-40	+150	${ }^{\circ} \mathrm{C}$
$\mathrm{P}_{\text {tot }}$	total power dissipation		-	15.6	W

THERMAL CHARACTERISTICS

SYMBOL	PARAMETER	VALUE	UNIT
$\mathrm{R}_{\mathrm{th} j-\mathrm{c}}$	thermal resistance from junction to case	8	K/W
$\mathrm{R}_{\mathrm{th} j-\mathrm{a}}$	thermal resistance from junction to ambient in free air	50	K/W

Multiple voltage regulators with external reset delay and switch

CHARACTERISTICS

$\mathrm{V}_{\mathrm{P}}=\mathrm{V}_{\mathrm{I}(\mathrm{sw})}=14.4 \mathrm{~V}$; $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; see Fig.7; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Supply						
V_{P}	supply voltage operating regulator 2 on jump start load dump protection	note 1 $\mathrm{t} \leq 10$ minutes during 50 ms ; $\mathrm{t}_{\mathrm{r}} \geq 2.5 \mathrm{~ms}$	$\begin{aligned} & 9.75 \\ & 2.4 \end{aligned}$	$\begin{aligned} & 14.4 \\ & 14.4 \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \\ & 30 \\ & 50 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
I_{a}	quiescent supply current	$\mathrm{V}_{\mathrm{P}}=12.4 \mathrm{~V}$; note 2	-	400	500	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{P}}=14.4 \mathrm{~V}$; note 2	-	420	-	$\mu \mathrm{A}$

Schmitt trigger power supply for the power switch

$\mathrm{V}_{\text {thr }}$	rising threshold voltage		4.0	4.5	5.0	V
$\mathrm{~V}_{\text {thf }}$	falling threshold voltage		3.5	4.0	4.5	V
$\mathrm{~V}_{\text {hys }}$	hysteresis voltage		-	0.5	-	V

Schmitt trigger power supply for regulator 1

$V_{\text {thr }}$	rising threshold voltage		4.0	4.5	5.0	V
$\mathrm{~V}_{\text {thf }}$	falling threshold voltage		3.5	4.0	4.5	V
$\mathrm{~V}_{\text {hys }}$	hysteresis voltage		-	0.5	-	V

Schmitt trigger for regulator 2

$\mathrm{V}_{\text {thr }}$	rising threshold voltage		6.0	6.5	7.1	V
$\mathrm{~V}_{\text {thf }}$	falling threshold voltage		1.7	1.9	2.2	V
$\mathrm{~V}_{\text {hys }}$	hysteresis voltage		-	4.7	-	V

Schmitt trigger for enable input (of regulator 1 and power switch)

$\mathrm{V}_{\text {thr }}$	rising threshold voltage		1.7	2.2	2.7	V
$\mathrm{~V}_{\text {thf }}$	falling threshold voltage		1.5	2.0	2.5	V
$\mathrm{~V}_{\text {hys }}$	hysteresis voltage		-	0.2	-	V

Schmitt trigger for reset buffer

$\mathrm{V}_{\mathrm{r}(\text { REG2) }}$	rising voltage of regulator 2	note 3	-	$\mathrm{V}_{\text {REG2 }}-0.15$	-	V
$\mathrm{V}_{\mathrm{f}(\mathrm{REG} 2)}$	falling voltage of regulator 2	note 3	-	$\mathrm{V}_{\mathrm{REG} 2}-0.25$	-	V
$\mathrm{V}_{\text {spread }}$	voltage spread on tracking	note 4	-	10	-	mV

Schmitt trigger for ignition buffer

$\mathrm{V}_{\text {thr }}$	rising threshold voltage		1.7	2.2	2.7	V
$\mathrm{~V}_{\text {thf }}$	falling threshold voltage		1.5	2.0	2.5	V
$\mathrm{~V}_{\text {hys }}$	hysteresis voltage		-	0.2	-	V

Reset buffer

$\mathrm{I}_{\text {sink }}$	LOW-level sink current	$\mathrm{V}_{\text {RES }} \leq 0.8 \mathrm{~V}$	15	20	-	mA
$\mathrm{I}_{\text {leak }}$	leakage current	$\mathrm{V}_{\mathrm{P}}=14.4 \mathrm{~V} ; \mathrm{V}_{\text {RES }}=5 \mathrm{~V}$	25	50	100	$\mu \mathrm{~A}$

Multiple voltage regulators with external reset delay and switch

| SYMBOL | PARAMETER | CONDITIONS | MIN. | TYP. | MAX. | UNIT |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Ignition buffer | | | | | | |
| V_{OL} | LOW-level output voltage | $\mathrm{I}_{\mathrm{OL}}=0$ | 0 | 0.2 | 0.8 | V |
| $\mathrm{~V}_{\mathrm{OH}}$ | HIGH-level output voltage | note 5 | - | 5.0 | 5.2 | V |
| I_{OL} | LOW-level output current | $\mathrm{V}_{\mathrm{OL}} \leq 0.8 \mathrm{~V}$ | 0.3 | 0.8 | - | mA |
| I_{OH} | HIGH-level output current | $\mathrm{V}_{\mathrm{OH}} \geq 3 \mathrm{~V}$ | 0.3 | 2.0 | - | mA |

Regulator 1; note 6

$\mathrm{V}_{\text {REG1 }}$	output voltage off		-	1	400	mV
$\mathrm{V}_{\text {REG1 }}$	output voltage	$0.5 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{REG} 1} \leq 300 \mathrm{~mA}$	8.65	9.0	9.35	V
		$10 \mathrm{~V} \leq \mathrm{V}_{\mathrm{P}} \leq 18 \mathrm{~V}$	8.65	9.0	9.35	V
$\Delta \mathrm{~V}_{\text {REG1 }}$	line regulation	$10 \mathrm{~V} \leq \mathrm{V}_{\mathrm{P}} \leq 18 \mathrm{~V}$	-	-	50	mV
$\Delta \mathrm{V}_{\text {REGL1 }}$	load regulation	$0.5 \mathrm{~mA} \leq \mathrm{I}_{\text {REG1 }} \leq 300 \mathrm{~mA}$	-	-	70	mV
SVRR1	supply voltage ripple rejection	$\mathrm{f}_{\mathrm{i}}=200 \mathrm{~Hz} ; \mathrm{V}_{\mathrm{I}}=2 \mathrm{~V}(\mathrm{p-p})$	60	-	-	dB
$\mathrm{V}_{\text {REGd1 }}$	drop-out voltage	$\mathrm{I}_{\text {REG1 }}=300 \mathrm{~mA} ;$ note 7	-	0.4	0.5	V
$\mathrm{I}_{\text {REGm1 }}$	current limit	$\mathrm{V}_{\text {REG1 }}>7 \mathrm{~V} ;$ note 8	0.45	-	1.2	A
$\mathrm{I}_{\text {REGsc1 }}$	short-circuit current	$\mathrm{R}_{\mathrm{L}} \leq 0.5 \Omega ;$ note 9	50	300	-	mA
$\alpha_{\text {ct }}$	cross talk	note 10	-	50	-	dB

Regulator 2; note 11

$\mathrm{V}_{\text {REG2 }}$	output voltage	$0.5 \mathrm{~mA} \leq \mathrm{I}_{\text {REG2 }} \leq 50 \mathrm{~mA}$	4.8	5.0	5.2	V
		$7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{P}} \leq 18 \mathrm{~V}$	4.8	5.0	5.2	V
		$18 \mathrm{~V} \leq \mathrm{V}_{\mathrm{P}} \leq 50 \mathrm{~V}$	4.75	5.0	5.25	V
$\Delta \mathrm{V}_{\text {REG2 }}$	line regulation	$7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{P}} \leq 18 \mathrm{~V}$	-	-	50	mV
$\Delta \mathrm{V}_{\text {REGL2 }}$	load regulation	$0.5 \mathrm{~mA} \leq \mathrm{I}_{\text {REG } 1} \leq 30 \mathrm{~mA}$	-	-	50	mV
SVRR2	supply voltage ripple rejection	$\mathrm{f}_{\mathrm{i}}=200 \mathrm{~Hz} ; \mathrm{V}_{\mathrm{l}}=2 \mathrm{~V}(\mathrm{p}-\mathrm{p})$	60	-	-	dB
$\mathrm{V}_{\text {REGd2 }}$	drop-out voltage	$\mathrm{I}_{\text {REG2 }}=30 \mathrm{~mA}$; note 12	-	0.3	0.4	V
$\mathrm{I}_{\text {REGm2 }}$	current limit	$\mathrm{V}_{\text {REG2 }}>4.5 \mathrm{~V}$; note 8	0.1	-	0.5	A
$\mathrm{I}_{\text {REGsc2 }}$	short-circuit current	$\mathrm{R}_{\mathrm{L}} \leq 0.5 \Omega$; note 9	20	50	-	mA
α_{ct}	cross talk	note 13	-	50	-	dB

Power switch

$\mathrm{V}_{\text {swd }}$	drop-out voltage	$\mathrm{I}_{\mathrm{sw}}=0.5 \mathrm{~A} ;$ note 14	-	0.8	1.4	V
$\mathrm{I}_{\text {swcc }}$	continuous current		0.5	-	-	A
$\mathrm{V}_{\mathrm{swcl}}$	clamping voltage	$\mathrm{V}_{\mathrm{P}} \geq 16.9 \mathrm{~V}$	-	15.0	16.2	V
$\mathrm{I}_{\mathrm{swM}}$	peak current	$\mathrm{t} \leq 10 \mathrm{~ms}$	1.4	-	-	A
$\mathrm{V}_{\mathrm{swfb}}$	fly back voltage behaviour	$\mathrm{I}_{\mathrm{sw}}=-200 \mathrm{~mA} ; \mathrm{V}_{\mathrm{P}}=9 \mathrm{~V}$	-	-	20	V
$\mathrm{I}_{\text {lim(sw })}$	current limit	$\mathrm{V}_{\mathrm{P}}=14.4 \mathrm{~V} ; \mathrm{V}_{\mathrm{sw}}<1.5 \mathrm{~V} ;$ note 8	0.6	0.9	-	A

Reset delay

I_{O}	output current		-	3	-	$\mu \mathrm{A}$
$\mathrm{V}_{\text {thr }}$	rising threshold voltage		2.7	3.0	3.3	V
t_{d}	delay time	$\mathrm{C}_{\mathrm{l}}=47 \mathrm{nF} ;$ note 15	25	50	100	ms

Multiple voltage regulators with external reset delay and switch

Notes to the characteristics

1. Minimum operating voltage, only if V_{P} has exceeded 6.5 V .
2. Enable inputs of regulator 1, ignition and power switch are low. Regulator 2 is unloaded.
3. Voltage drop due to load condition.
4. The spread on tracking is one sigma value.
5. Ignition output voltage will be less than or equal to the output voltage of regulator 2 .
6. $I_{\text {REG1 }}=5 \mathrm{~mA}$ unless otherwise specified.
7. The drop-out voltage of regulator 1 is measured between V_{P} and $V_{R E G 1}$.
8. At current limit, $\mathrm{I}_{\mathrm{REGm}}$ is held constant (see Fig.5).
9. The foldback current protection limits the dissipated power at short-circuit (see Figs 5 and 6).
10. The cross talk of regulator 1 is measured with an $I_{\text {REG } 2}=0.5 \mathrm{~mA}$ up to 30 mA and input frequency of $f_{i}=100 \mathrm{kHz}$.
11. $\mathrm{I}_{\text {REG2 }}=5 \mathrm{~mA}$ unless otherwise specified.
12. The drop-out voltage of regulator 2 is measured between V_{P} and $V_{\text {REG2 }}$.
13. The cross talk of regulator 2 is measured with an $I_{R E G 1}=0.5 \mathrm{~mA}$ up to 100 mA and input frequency of $f_{\mathrm{i}}=100 \mathrm{kHz}$.
14. The drop-out voltage of the power switch is measured between $V_{I(s w)}$ and $V_{O(s w)}$.
15. The delay time depends on the value of the capacitor: $t_{d}=\frac{C}{l} \times V_{\text {thrC }}=C \times 2.5 \times 10^{6}$

Multiple voltage regulators with external reset delay and switch

Fig. 5 Foldback current protection of the regulators.

Fig. 6 Foldback current protection of the power switch.

Multiple voltage regulators with external reset delay and switch

TEST AND APPLICATION INFORMATION

(1) Capacitor not required for stability.

Fig. 7 Test circuit (for DBS13P package; SOT141-6).

Noise information

The noise at the output of the regulators depends on the bandwidth of the regulators, which can be adjusted by the output capacitors. Table 1 shows the noise figures.

Although stability is guaranteed when C_{L} is higher than $10 \mu \mathrm{~F}$ (over temperature range) with $\tan (\phi)=1$ in the frequency range 1 to 10 kHz , however, for low noise, a $47 \mu \mathrm{~F}$ load capacitor is required.

The noise on the supply line depends on the value of the supply capacitor and is caused by a current noise (output noise of the regulators is translated into a current noise by the output capacitors). When a high frequency capacitor of 220 nF with an electrolytic capacitor of $100 \mu \mathrm{~F}$ in parallel is placed directly over V_{P} and GND (pins of supply voltage and ground) the noise is minimized.

Table 1 Noise figures

REGULATOR	NOISE $(\mu \mathrm{V})^{(1)}$	OUTPUT CAPACITOR $(\mu \mathrm{F})$
1	180	10
	100	47
	80	100
2	120	10
	70	47
	70	100

Note

1. Bandwidth of 100 kHz .

Multiple voltage regulators with external reset delay and switch

SHORT CIRCUIT BEHAVIOUR OF POWER SWITCH

The short circuit behaviour of the switch with large inductive loads (switch output goes out of the radio) can be improved by replacing C2 (see Fig.7) by a larger electrolytic capacitor of $10 \mu \mathrm{~F} / 16 \mathrm{~V}$. When the temperature protection of the switch becomes active, due to a short circuit of the switch, the behaviour will be improved.

When the switch is clamped an minimum output capacitor of $10 \mu \mathrm{~F}$ is needed.
The power switch is not protected against 'loss of ground' condition (= short of the switch to ground with floating ground pin of the TDA3604 itself). A 'loss of ground' situation can in practice only occur when the switch output goes outside the car-radio box.

There is an application solution to protect against 'loss of ground' (see Fig.8).

It is advisable to limit the dissipation at short circuit condition by monitoring the output of the power switch. The microprocessor can switch of the power switch when the switch was enabled and the switch output remains low due to a short circuit condition.

Fig. 8 'Loss of ground' protection.

Multiple voltage regulators with external reset delay and switch

PACKAGE OUTLINES

DBS13P: plastic DIL-bent-SIL power package; 13 leads (lead length 12 mm)

DIMENSIONS (mm are the original dimensions)

UNIT	A	A_{2}	b_{p}	c	$D^{(1)}$	d	D_{h}	$E^{(1)}$	e	e_{1}	e_{2}	E_{h}	j	L	L_{3}	m	Q	v	w	x	$Z^{(1)}$
mm	$\begin{aligned} & 17.0 \\ & 15.5 \end{aligned}$	$\begin{aligned} & 4.6 \\ & 4.2 \end{aligned}$	$\begin{aligned} & 0.75 \\ & 0.60 \end{aligned}$	$\begin{aligned} & 0.48 \\ & 0.38 \end{aligned}$	$\begin{aligned} & 24.0 \\ & 23.6 \end{aligned}$	$\begin{aligned} & 20.0 \\ & 19.6 \end{aligned}$	10	$\begin{aligned} & 12.2 \\ & 11.8 \end{aligned}$	3.4	1.7	5.08	6	$\begin{aligned} & 3.4 \\ & 3.1 \end{aligned}$	$\begin{aligned} & 12.4 \\ & 11.0 \end{aligned}$	$\begin{aligned} & 2.4 \\ & 1.6 \end{aligned}$	4.3	$\begin{aligned} & 2.1 \\ & 1.8 \end{aligned}$	0.8	0.25	0.03	$\begin{aligned} & 2.00 \\ & 1.45 \end{aligned}$

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ		
SOT141-6				\square +	$\begin{aligned} & -92-11-17 \\ & 95-03-11 \end{aligned}$

Multiple voltage regulators with external reset delay and switch

DIMENSIONS (mm are the original dimensions)

UNIT	$\begin{gathered} \mathrm{A} \\ \max . \end{gathered}$	A_{2}	A_{3}	A4	b_{p}	c	$D^{(1)}$	D_{1}	D_{2}	$E^{(1)}$	E_{1}	E_{2}	e	H_{E}	L_{p}	Q	v	w	x	y	Z	θ
mm	3.4	3.4	0.35	+0.13	0.53	0.32	16.0	13.0	1.1	11.1	6.2	2.9	1.27	14.5	1.1	1.7	0.25	0.25	0.03	0.07	2.5	8°
		3.1		-0.04	0.40	0.23	15.8	12.6	0.9	10.9	5.8	2.5		13.9	0.8	1.5					2.0	0°

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES				EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ			
SOT418-2					-	

Multiple voltage regulators with external reset delay and switch

SOLDERING

Introduction

There is no soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and surface mounted components are mixed on one printed-circuit board. However, wave soldering is not always suitable for surface mounted ICs, or for printed-circuits with high population densities. In these situations reflow soldering is often used.

This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our "IC Package Databook" (order code 9398652 90011).

DBS

Soldering by dipping or by wave
The maximum permissible temperature of the solder is $260^{\circ} \mathrm{C}$; solder at this temperature must not be in contact with the joint for more than 5 seconds. The total contact
time of successive solder waves must not exceed 5 seconds.

The device may be mounted up to the seating plane, but the temperature of the plastic body must not exceed the specified maximum storage temperature ($\mathrm{T}_{\text {stg max }}$). If the printed-circuit board has been pre-heated, forced cooling may be necessary immediately after soldering to keep the temperature within the permissible limit.

Repairing soldered Joints

Apply a low voltage soldering iron (less than 24 V) to the lead(s) of the package, below the seating plane or not more than 2 mm above it. If the temperature of the soldering iron bit is less than $300^{\circ} \mathrm{C}$ it may remain in contact for up to 10 seconds. If the bit temperature is between 300 and $400^{\circ} \mathrm{C}$, contact may be up to 5 seconds.

HSOP

No information available at the moment.

DEFINITIONS

Data sheet status	
Objective specification	This data sheet contains target or goal specifications for product development.
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.
Product specification	This data sheet contains final product specifications.
Limiting values	Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.
Application information	
Where application information is given, it is advisory and does not form part of the specification.	

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.

Multiple voltage regulators with external reset delay and switch

Multiple voltage regulators with external reset delay and switch

Philips Semiconductors - a worldwide company

Argentina: see South America
Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113,
Tel. +61 29805 4455, Fax. +61 298054466
Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213, Tel. +43 160 1010, Fax. +43160101 1210
Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6, 220050 MINSK, Tel. +375 172200 733, Fax. +375 172200773
Belgium: see The Netherlands
Brazil: see South America
Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor, 51 James Bourchier Blvd., 1407 SOFIA,
Tel. +3592689 211, Fax. +3592689102
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS, Tel. +1 8002347381
China/Hong Kong: 501 Hong Kong Industrial Technology Centre, 72 Tat Chee Avenue, Kowloon Tong, HONG KONG,
Tel. +852 2319 7888, Fax. +852 23197700
Colombia: see South America
Czech Republic: see Austria
Denmark: Prags Boulevard 80, PB 1919, DK-2300 COPENHAGEN S, Tel. +45 3288 2636, Fax. +45 31570044
Finland: Sinikalliontie 3, FIN-02630 ESPOO,
Tel. +3589615800, Fax. +358961580920
France: 4 Rue du Port-aux-Vins, BP317, 92156 SURESNES Cedex, Tel. +33 14099 6161, Fax. +33 140996427
Germany: Hammerbrookstraße 69, D-20097 HAMBURG,
Tel. +49 402353 60, Fax. +49 4023536300
Greece: No. 15, 25th March Street, GR 17778 TAVROS/ATHENS,
Tel. +30 14894 339/239, Fax. +30 14814240
Hungary: see Austria
India: Philips INDIA Ltd, Band Box Building, 2nd floor,
254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025,
Tel. +91 22493 8541, Fax. +91 224930966
Indonesia: see Singapore
Ireland: Newstead, Clonskeagh, DUBLIN 14,
Tel. +353 17640 000, Fax. +353 17640200
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053,
TEL AVIV 61180, Tel. +972 3645 0444, Fax. +972 36491007
Italy: PHILIPS SEMICONDUCTORS, Piazza IV Novembre 3,
20124 MILANO, Tel. +39 26752 2531, Fax. +39 267522557
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku, TOKYO 108,
Tel. +81 33740 5130, Fax. +81 337405077
Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL,
Tel. +82 2709 1412, Fax. +82 27091415
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR, Tel. +60 3750 5214, Fax. +60 37574880
Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905,
Tel. +9-5 8002347381
Middle East: see Italy

Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,
Tel. +31 4027 82785, Fax. +31 402788399
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND, Tel. +64 9849 4160, Fax. +64 98497811
Norway: Box 1, Manglerud 0612, OSLO,
Tel. +472274 8000, Fax. +4722748341
Philippines: Philips Semiconductors Philippines Inc., 106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI, Metro MANILA, Tel. +63 2816 6380, Fax. +63 28173474
Poland: UI. Lukiska 10, PL 04-123 WARSZAWA,
Tel. +48 22612 2831, Fax. +48 226122327
Portugal: see Spain
Romania: see Italy
Russia: Philips Russia, UI. Usatcheva 35A, 119048 MOSCOW, Tel. +7 095755 6918, Fax. +70957556919
Singapore: Lorong 1, Toa Payoh, SINGAPORE 1231,
Tel. +65 350 2538, Fax. +65 2516500
Slovakia: see Austria
Slovenia: see Italy
South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale, 2092 JOHANNESBURG, P.O. Box 7430 Johannesburg 2000,
Tel. +27 11470 5911, Fax. +27 114705494
South America: Rua do Rocio 220, 5th floor, Suite 51, 04552-903 São Paulo, SÃO PAULO - SP, Brazil,
Tel. +55 11821 2333, Fax. +55 118291849
Spain: Balmes 22, 08007 BARCELONA,
Tel. +34 3301 6312, Fax. +34 33014107
Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,
Tel. +46 8632 2000, Fax. +46 86322745
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,
Tel. +41 1488 2686, Fax. +41 14817730
Taiwan: Philips Semiconductors, 6F, No. 96, Chien Kuo N. Rd., Sec. 1, TAIPEI, Taiwan Tel. +886 22134 2865, Fax. +886 221342874
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,
209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260,
Tel. +66 2745 4090, Fax. +66 23980793
Turkey: Talatpasa Cad. No. 5, 80640 GÜLTEPE/ISTANBUL, Tel. +90 212279 2770, Fax. +90 2122826707
Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7, 252042 KIEV, Tel. +380 44264 2776, Fax. +380442680461
United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes, MIDDLESEX UB3 5BX, Tel. +44 181730 5000, Fax. +44 1817548421
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409, Tel. +1 8002347381
Uruguay: see South America
Vietnam: see Singapore
Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,
Tel. +381 11625 344, Fax.+381 11635777

For all other countries apply to: Philips Semiconductors, Marketing \& Sales Communications, Building BE-p, P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands, Fax. +31 402724825
© Philips Electronics N.V. 1997
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

