
DISCRETE SEMICONDUCTORS

Preliminary specification Supersedes data of 1998 Mar 26 2000 Apr 18

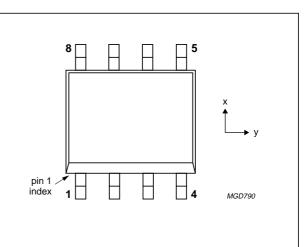
KMZ41

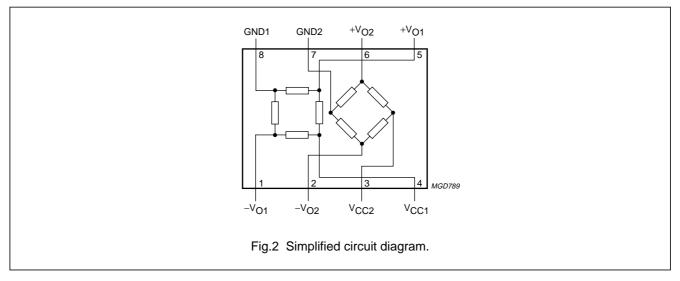
DESCRIPTION

The KMZ41 is a sensitive magnetic field sensor, employing the magnetoresistive effect of thin-film permalloy. The sensor contains two galvanic separated Wheatstone bridges. Its properties enable this sensor to be used in angle measurement applications under strong field conditions. A rotating magnetic field strength > 40 kA/m (recommended field strength > 100 kA/m) in the x-y plane will deliver a sinusoidal output signal. The sensor can be operated at any frequency between DC and 1 MHz.

PINNING

PIN	SYMBOL	DESCRIPTION
1	-V _{O1}	output voltage bridge 1
2	-V _{O2}	output voltage bridge 2
3	V _{CC2}	supply voltage bridge 2
4	V _{CC1}	supply voltage bridge 1
5	+V _{O1}	output voltage bridge 1
6	+V _{O2}	output voltage bridge 2
7	GND2 ground 2	
8	GND1	ground 1




Fig.1 Simplified outline SOT96-1.

QUICK REFERENCE DATA

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT
V _{CC1}	bridge supply voltage	_	5	9	V
V _{CC2}	bridge supply voltage	_	5	9	V
S	sensitivity ($\alpha_1 = 45^\circ$; $\alpha_2 = 0^\circ$)	2.44	2.72	3.00	mV/°
R _{bridge}	bridge resistance	2	2.5	3	kΩ
V _{offset1}	offset voltage	-2	_	+2	mV/V
V _{offset2}	offset voltage	-2	_	+2	mV/V

KMZ41

CIRCUIT DIAGRAM

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 60134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V _{CC}	bridge supply voltage		_	9	V
P _{tot}	total power dissipation		-	90	mW
T _{stg}	storage temperature		-65	+150	°C
T _{bridge}	bridge operating temperature		-40	+150	°C

THERMAL CHARACTERISTICS

SYMBOL	PARAMETER	VALUE	UNIT
R _{th j-a}	thermal resistance from junction to ambient	resistance from junction to ambient 155 K/V	

KMZ41

CHARACTERISTICS

 T_{amb} = 25 °C; $H_{rotation}$ = 100 kA/m; V_{CC1} = 5 V; V_{CC2} = 5 V unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V _{CC1}	bridge supply voltage		_	5	9	V
V _{CC2}	bridge supply voltage		-	5	9	V
S	sensitivity	open circuit, note 1; $\alpha = 0^{\circ}$ (bridge 2); $\alpha = 45^{\circ}$ (bridge 1)	2.44	2.72	3.00	mV/°
V _{peak 1}	peak voltage	note 2; see Fig.4	70	78	86	mV
V _{peak 2}	peak voltage	note 2; see Fig.4	70	78	86	mV
TCV _{peak}	temperature coefficient of peak voltage	$T_{amb} = -40$ to +150 °C; note 3	-0.25	-0.31	-0.37	%/K
R _{bridge}	bridge resistance	note 4	2	2.5	3	kΩ
TCR _{bridge}	temperature coefficient of bridge resistance	T _{bridge} = -40 to +150 °C note 5	0.3	0.32	0.34	%/K
V _{offset}	offset voltage	see Fig.4	-2	_	+2	mV/V
TCV _{offset}	temperature coefficient of offset voltage	T _{bridge} = -40 to +150 °C note 6; see Fig.4	-2	-	+2	$\frac{\mu V/V}{K}$
ΔV_{offset}	maximum change of offset voltage within temperature	$T_{amb} = -40$ to +100 °C; note 7; see Fig.3	-0.2	0	+0.14	mV/V
ra	range	$T_{amb} = -40$ to +150 °C; note 7; see Fig.3	-0.28	0	+0.22	mV/V
FH	hysteresis of output voltage	note 8	0	0.01	0.04	%FS
ω	amplitude angular velocity	note 9	0	25000	t.b.f	°/s
k	amplitude synchronism	note 10	99.5	100	100.5	%
TCk	temperature coefficient of amplitude synchronism	$T_{amb} = -40$ to +150 °C note 11	-0.002	0	0.002	%/K
Δα	angular inaccuracy	note 12	0	0.1	0.25	deg

Notes

- 1. Sensitivity changes with angle due to sinusoidal output.
- 2. $V_{\text{peak}} = |(V_{\text{out max}} V_{\text{offset}})|$.

3.
$$TCV_{peak} = 100 \frac{V_{peak}(T_2) - V_{peak}(T_1)}{V_{peak}(T_1) (T_2 - T_1)}$$
 Where $T_1 = -40^{\circ}C$; $T_2 = 150^{\circ}C$

4. Bridge resistance between pins 8 and 4, pins 7 and 3, pins 5 and 1, pins 6 and 2.

5.
$$TCR_{bridge} = 100 \frac{R_{bridge(T_2)} - R_{bridge(T_1)}}{R_{bridge(T_1)}(T_2 - T_1)}$$
 Where $T_1 = -40^{\circ}C$; $T_2 = 150^{\circ}C$.

6.
$$TCV_{offset} = \frac{V_{offset(T_2)} - V_{offset(T_1)}}{(T_2 - T_1)}$$
 Where $T_1 = -40^{\circ}C$; $T_2 = 150^{\circ}C \cdot$

7. $\Delta V_{offset} = (V_{offset} (T) - V_{offset} (T = 25 \ ^{\circ}C).$

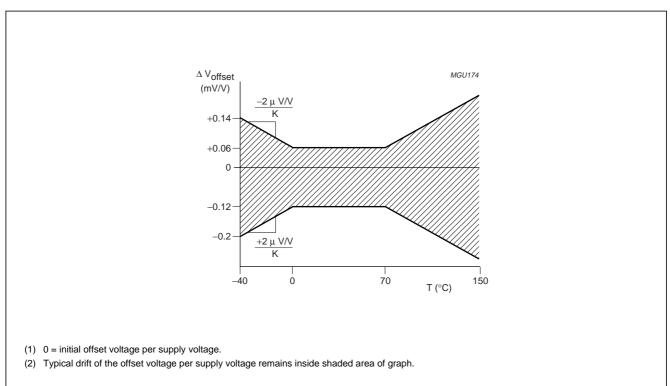
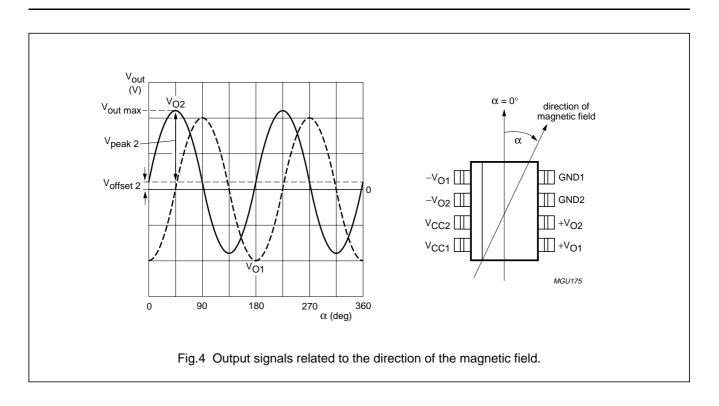
KMZ41

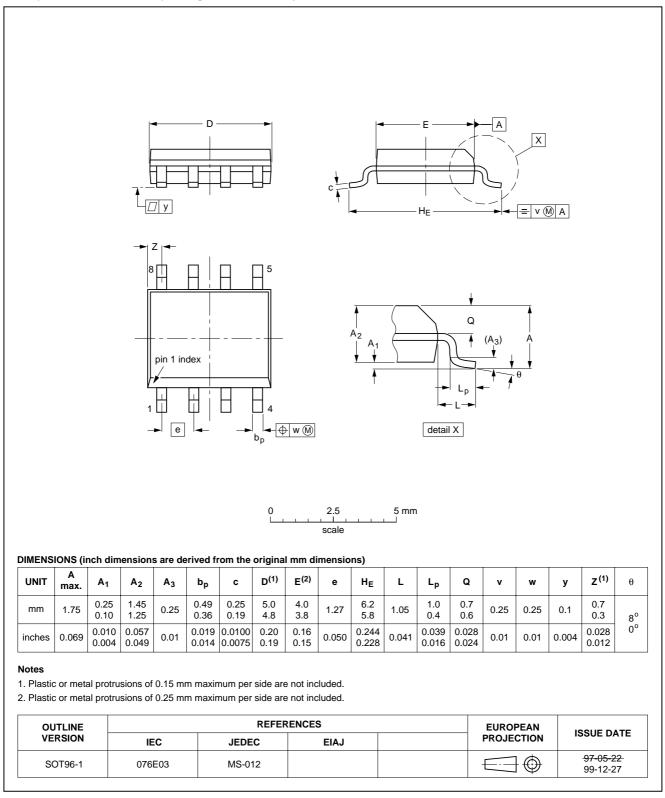
8.
$$FH_{1} = 100 \left| \frac{V_{O1(67.5^{\circ})135^{\circ} \Rightarrow 45^{\circ}} - V_{O1(67.5^{\circ})45^{\circ} \Rightarrow 135^{\circ}}}{2 \times V_{peak1}} \right|$$
$$FH_{2} = 100 \left| \frac{V_{O2(22.5^{\circ})90^{\circ} \Rightarrow 0^{\circ}} - V_{O2(22.5^{\circ})0^{\circ} \Rightarrow 90^{\circ}}}{2 \times V_{peak2}} \right|$$

9. No change in V_0 ; no distortion of sinusoidal output; tested up to 25000 °/s maximum.

$$\begin{split} &10. \ k = \frac{V_{peak1}}{V_{peak2}} \cdot 100 \ . \\ &11. \ TCk = 100 \ \frac{(k_{T2} - k_{T1})}{k_{T1}(T_2 - T_1)} \qquad \text{Where} \ T_1 = -40^\circ\text{C}; \ T_2 = 150^\circ\text{C} \ . \end{split}$$

12. $\Delta \alpha = |\alpha_{real} - \alpha_{measured}|$ without offset voltage influences.


Fig.3 Supply voltage offset voltage as a function of temperature.

KMZ41

PACKAGE OUTLINE

SO8: plastic small outline package; 8 leads; body width 3.9 mm

SOT96-1

KMZ41

KMZ41

DATA SHEET STATUS

DATA SHEET STATUS	PRODUCT STATUS	DEFINITIONS (1)
Objective specification	Development	This data sheet contains the design target or goal specifications for product development. Specification may change in any manner without notice.
Preliminary specification	Qualification	This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.
Product specification	Production	This data sheet contains final specifications. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.

Note

1. Please consult the most recently issued data sheet before initiating or completing a design.

DEFINITIONS

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

DISCLAIMERS

Life support applications — These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no licence or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

KMZ41

NOTES

KMZ41

NOTES

KMZ41

NOTES

Philips Semiconductors – a worldwide company

Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB, Argentina: see South America Tel. +31 40 27 82785, Fax. +31 40 27 88399 Australia: 3 Figtree Drive, HOMEBUSH, NSW 2140, New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND, Tel. +61 2 9704 8141, Fax. +61 2 9704 8139 Tel. +64 9 849 4160, Fax. +64 9 849 7811 Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213, Tel. +43 1 60 101 1248. Fax. +43 1 60 101 1210 Norway: Box 1, Manglerud 0612, OSLO, Tel. +47 22 74 8000, Fax. +47 22 74 8341 Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6, 220050 MINSK, Tel. +375 172 20 0733, Fax. +375 172 20 0773 Pakistan: see Singapore Belgium: see The Netherlands Philippines: Philips Semiconductors Philippines Inc., 106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI, Brazil: see South America Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474 Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor, Poland: Al.Jerozolimskie 195 B, 02-222 WARSAW, 51 James Bourchier Blvd., 1407 SOFIA, Tel. +359 2 68 9211, Fax. +359 2 68 9102 Tel. +48 22 5710 000, Fax. +48 22 5710 001 Portugal: see Spain Canada: PHILIPS SEMICONDUCTORS/COMPONENTS, Tel. +1 800 234 7381, Fax. +1 800 943 0087 Romania: see Italy China/Hong Kong: 501 Hong Kong Industrial Technology Centre, Russia: Philips Russia, UI. Usatcheva 35A, 119048 MOSCOW, 72 Tat Chee Avenue, Kowloon Tong, HONG KONG, Tel. +7 095 755 6918, Fax. +7 095 755 6919 Tel. +852 2319 7888, Fax. +852 2319 7700 Singapore: Lorong 1, Toa Payoh, SINGAPORE 319762, Tel. +65 350 2538, Fax. +65 251 6500 Colombia: see South America Czech Republic: see Austria Slovakia: see Austria Denmark: Sydhavnsgade 23, 1780 COPENHAGEN V, Slovenia: see Italy Tel. +45 33 29 3333, Fax. +45 33 29 3905 South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale, Finland: Sinikalliontie 3, FIN-02630 ESPOO, 2092 JOHANNESBURG, P.O. Box 58088 Newville 2114, Tel. +358 9 615 800, Fax. +358 9 6158 0920 Tel. +27 11 471 5401, Fax. +27 11 471 5398 France: 51 Rue Carnot, BP317, 92156 SURESNES Cedex, South America: Al. Vicente Pinzon, 173, 6th floor, 04547-130 SÃO PAULO, SP, Brazil Tel. +33 1 4099 6161, Fax. +33 1 4099 6427 Tel. +55 11 821 2333. Fax. +55 11 821 2382 Germany: Hammerbrookstraße 69, D-20097 HAMBURG, Tel. +49 40 2353 60, Fax. +49 40 2353 6300 Spain: Balmes 22, 08007 BARCELONA Tel. +34 93 301 6312, Fax. +34 93 301 4107 Hungary: see Austria Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM, India: Philips INDIA Ltd, Band Box Building, 2nd floor, Tel. +46 8 5985 2000, Fax. +46 8 5985 2745 254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025, Tel. +91 22 493 8541, Fax. +91 22 493 0966 Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH, Tel. +41 1 488 2741 Fax. +41 1 488 3263 Indonesia: PT Philips Development Corporation, Semiconductors Division, Taiwan: Philips Semiconductors, 6F, No. 96, Chien Kuo N. Rd., Sec. 1, Gedung Philips, Jl. Buncit Raya Kav.99-100, JAKARTA 12510, TAIPEI, Taiwan Tel. +886 2 2134 2886, Fax. +886 2 2134 2874 Tel. +62 21 794 0040 ext. 2501, Fax. +62 21 794 0080 Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd. Ireland: Newstead, Clonskeagh, DUBLIN 14, Tel. +353 1 7640 000, Fax. +353 1 7640 200 209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260, Tel. +66 2 745 4090, Fax. +66 2 398 0793 Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053, TEL AVIV 61180, Tel. +972 3 645 0444, Fax. +972 3 649 1007 Turkey: Yukari Dudullu, Org. San. Blg., 2.Cad. Nr. 28 81260 Umraniye, Italy: PHILIPS SEMICONDUCTORS, Via Casati, 23 - 20052 MONZA (MI), ISTANBUL, Tel. +90 216 522 1500, Fax. +90 216 522 1813 Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7, Tel. +39 039 203 6838. Fax +39 039 203 6800 252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461 Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku, TOKYO 108-8507, Tel. +81 3 3740 5130, Fax. +81 3 3740 5057 United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes, MIDDLESEX UB3 5BX, Tel. +44 208 730 5000, Fax. +44 208 754 8421 Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL, Tel. +82 2 709 1412, Fax. +82 2 709 1415 United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409, Tel. +1 800 234 7381, Fax. +1 800 943 0087 Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR, Tel. +60 3 750 5214, Fax. +60 3 757 4880 Uruguay: see South America Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905, Vietnam: see Singapore Tel. +9-5 800 234 7381, Fax +9-5 800 943 0087 Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD, Tel. +381 11 3341 299, Fax.+381 11 3342 553

Middle East: see Italy

For all other countries apply to: Philips Semiconductors, International Marketing & Sales Communications, Building BE-p, P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

Printed in The Netherlands

© Philips Electronics N.V. 2000

603512/500/04/pp12

Date of release: 2000 Apr 18

Document order number: 9397 750 07014

SCA 69

Let's make things better.

Internet: http://www.semiconductors.philips.com

