INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

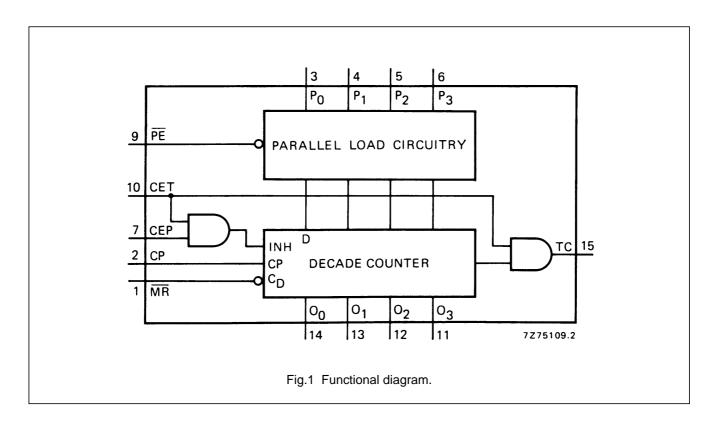
- The IC04 LOCMOS HE4000B Logic Family Specifications HEF, HEC
- The IC04 LOCMOS HE4000B Logic Package Outlines/Information HEF, HEC

HEF40160B MSI

4-bit synchronous decade counter with asynchronous reset

Product specification
File under Integrated Circuits, IC04

January 1995


HEF40160B MSI

DESCRIPTION

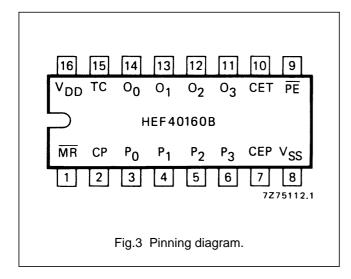
The HEF40160B is a fully synchronous edge-triggered 4-bit decade counter with a clock input (CP), an overriding asynchronous master reset ($\overline{\text{MR}}$), four parallel data inputs (P₀ to P₃), three synchronous mode control inputs (parallel enable ($\overline{\text{PE}}$), count enable parallel (CEP) and count enable trickle (CET)), buffered outputs from all four bit positions (O₀ to O₃) and a terminal count output (TC).

Operation is fully synchronous (except for the \overline{MR} input) and occurs on the LOW to HIGH transition of CP. When \overline{PE} is LOW, the next LOW to HIGH transition of CP loads data into the counter from P_0 to P_3 regardless of the levels of CEP and CET inputs.

When $\overline{\text{PE}}$ is HIGH, the next LOW to HIGH transition of CP advances the counter to its next state only if both CEP and CET are HIGH; otherwise, no change occurs in the state of the counter. TC is HIGH when the state of the counter is 9 (O₀ = O₃ = HIGH, O₁ = O₂ = LOW) and when CET is HIGH. A LOW on $\overline{\text{MR}}$ sets all outputs (O₀ to O₃ and TC) LOW, independent of the state of all other inputs. Multistage synchronous counting is possible without additional components by using a carry look-ahead counting technique; in this case, TC is used to enable successive cascaded stages. CEP, CET and $\overline{\text{PE}}$ must be stable only during the set-up time before the LOW to HIGH transition of CP.

FAMILY DATA, I_{DD} LIMITS category MSI

See Family Specifications


 $\frac{N}{N}$

Product specification

Philips Semiconductors

 P_0 P₁ P_2 P_3 CET . ω FF c_D TC 7275085.1 Fig.2 Logic diagram.

HEF40160B MSI

PINNING

PE parallel enable input
Po to P3 parallel data inputs
CER count onable parallel in

CEP count enable parallel input
CET count enable trickle input

CP clock input (LOW to HIGH, edge-triggered)

MR master reset input (active LOW)

 O_0 to O_3 parallel outputs TC terminal count output

HEF40160BP(N): 16-lead DIL; plastic

(SOT38-1)

HEF40160BD(F): 16-lead DIL; ceramic (cerdip)

(SOT74)

HEF40160BT(D): 16-lead SO; plastic

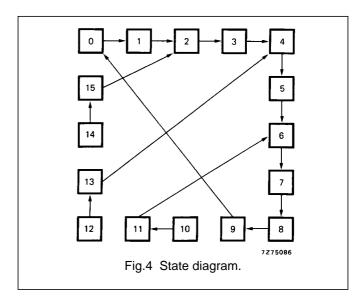
(SOT109-1)

(): Package Designator North America

SYNCHRONOUS MODE SELECTION

PE	CEP	CET	MODE		
L	Х	Х	preset		
Н	L	Х	no change		
Н	Х	L	no change		
Н	Н	Н	count		

Notes


- 1. $\overline{MR} = HIGH$
- 2. H = HIGH state (the more positive voltage)
- 3. L = LOW state (the less positive voltage)
- 4. X = state is immaterial

TERMINAL COUNT GENERATION

CET	$(O_0 \cdot \overline{O}_1 \cdot \overline{O}_2 \cdot O_3)$	TC
L	L	L
L	н	L
Н	L	L
Н	н	Н

Note

1. $TC = CET \cdot O_0 \cdot \overline{O}_1 \cdot \overline{O}_2 \cdot O_3$

4-bit synchronous decade counter with asynchronous reset

HEF40160B MSI

AC CHARACTERISTICS

 V_{SS} = 0 V; T_{amb} = 25 °C; input transition times \leq 20 ns

	V _{DD}	TYPICAL FORMULA FOR P (μW)	
Dynamic power	5	1 200 $f_i + \sum (f_o C_L) \times V_{DD}^2$	where
dissipation per	10	5 600 $f_i + \sum (f_o C_L) \times V_{DD}^2$	f _i = input freq. (MHz)
package (P)	15	16 000 $f_i + \sum (f_o C_L) \times V_{DD}^2$	f _o = output freq. (MHz)
			C _L = load capacitance (pF)
			$\sum (f_o C_L) = \text{sum of outputs}$
			V _{DD} = supply voltage (V)

AC CHARACTERISTICS

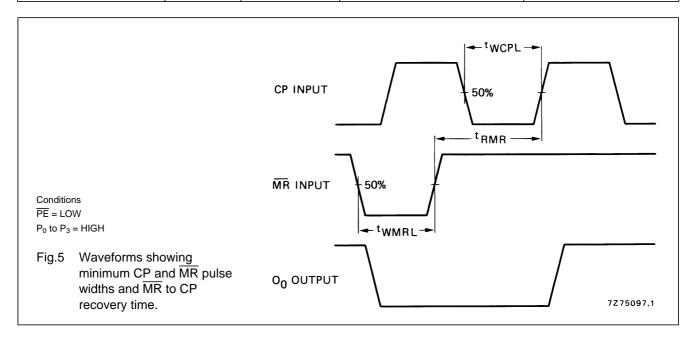
 V_{SS} = 0 V; T_{amb} = 25 °C; C_L = 50 pF; input transition times \leq 20 ns

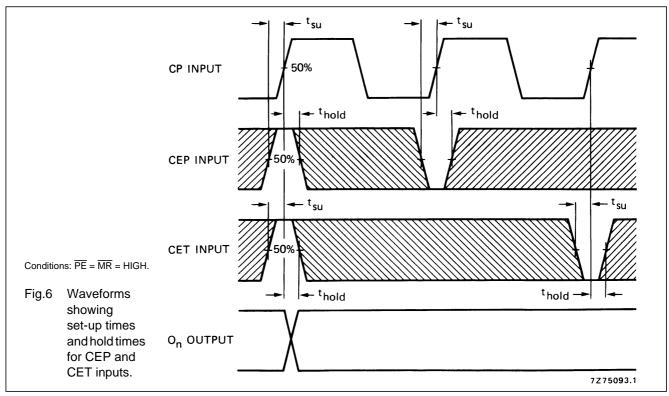
	V _{DD}	SYMBOL	MIN. TYF	. MA	X.		TYPICAL EXTRAPOLATION FORMULA
Propagation delays							
$CP \to O_n$	5		11	0 2	20	ns	83 ns + (0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL}	4	5	90	ns	34 ns + (0,23 ns/pF) C _L
	15		3	0	60	ns	22 ns + (0,16 ns/pF) C _L
	5		11	5 2	30	ns	88 ns + (0,55 ns/pF) C _L
LOW to HIGH	10	t _{PLH}	4	5	95	ns	34 ns + (0,23 ns/pF) C _L
	15		3	5	65	ns	27 ns + (0,16 ns/pF) C _L
$CP \to TC$	5		13	0 2	60	ns	103 ns + (0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL}	5	5 1	05	ns	44 ns + (0,23 ns/pF) C _L
	15		3	5	75	ns	27 ns + (0,16 ns/pF) C _L
	5		14	0 2	80	ns	113 ns + (0,55 ns/pF) C _L
LOW to HIGH	10	t _{PLH}	5	5 1	15	ns	44 ns + (0,23 ns/pF) C _L
	15		4	0	80	ns	32 ns + (0,16 ns/pF) C _L
$CET \to TC$	5		10	5 2	10	ns	78 ns + (0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL}	5	0 1	00	ns	39 ns + (0,23 ns/pF) C _L
	15		3	5	75	ns	27 ns + (0,16 ns/pF) C _L
	5		9	0 1	85	ns	63 ns + (0,55 ns/pF) C _L
LOW to HIGH	10	t _{PLH}	3	5	70	ns	24 ns + (0,23 ns/pF) C _L
	15		2	5	50	ns	17 ns + (0,16 ns/pF) C _L
$\overline{MR} \to O_n$	5		12	0 2	45	ns	93 ns + (0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL}	5	0 1	00	ns	39 ns + (0,23 ns/pF) C _L
	15		3	5	70	ns	27 ns + (0,16 ns/pF) C _L
$\overline{MR} \to TC$	5		14	5 2	95	ns	118 ns + (0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL}	6	0 1	20	ns	49 ns + (0,23 ns/pF) C _L
	15		4	5	85	ns	37 ns + (0,16 ns/pF) C _L

4-bit synchronous decade counter with asynchronous reset

HEF40160B MSI

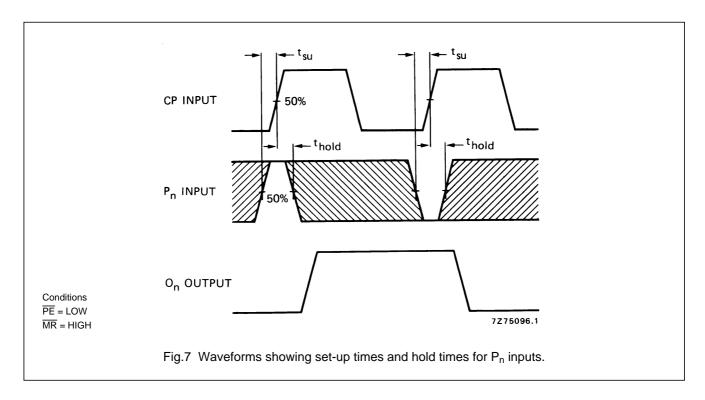
	V _{DD}	SYMBOL	MIN.	TYP.	MAX.		TYPICAL EXTRAPOLATION FORMULA
Output transition times	5			60	120	ns	10 ns + (1,0 ns/pF) C _L
HIGH to LOW	10	t _{THL}		30	60	ns	9 ns + (0,42 ns/pF) C _L
	15			20	40	ns	6 ns + (0,28 ns/pF) C _L
	5			60	120	ns	10 ns + (1,0 ns/pF) C _L
LOW to HIGH	10	t _{TLH}		30	60	ns	9 ns + (0,42 ns/pF) C _L
	15			20	40	ns	6 ns + (0,28 ns/pF) C _L

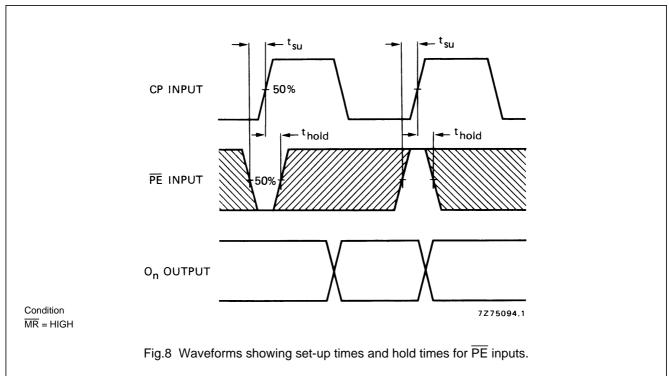

AC CHARACTERISTICS


 V_{SS} = 0 V; T_{amb} = 25 °C; C_L = 50 pF; input transition times \leq 20 ns

	V _{DD}	SYMBOL	MIN.	TYP.	MAX.	
Minimum clock	5		100	50	ns	
pulse width; LOW	10	t _{WCPL}	40	20	ns	
	15		30	15	ns	
Minimum MR	5		100	50	ns	
pulse width; LOW	10	t _{WMRL}	40	20	ns	
	15		30	15	ns	
Recovery time	5		25	0	ns	
for MR	10	t _{RMR}	15	0	ns	
	15		10	0	ns	
Set-up times	5		110	55	ns	
$P_n \to CP$	10	t _{su}	40	20	ns	
	15		30	15	ns	
	5		120	60	ns	see also waveforms
$\overline{PE} o CP$	10	t _{su}	40	20	ns	Figs 5, 6, 7 and 8
	15		25	10	ns	
	5		260	130	ns	
CEP, CET \rightarrow CP	10	t _{su}	100	50	ns	
	15		70	35	ns	
Hold times	5		20	-35	ns	
$P_n \to CP$	10	t _{hold}	10	-10	ns	
	15		5	-10	ns	
	5		15	-45	ns	
$\overline{PE} o CP$	10	t _{hold}	5	-15	ns	
	15		5	-10	ns	
	5		25	-105	ns	
$CEP, CET \to CP$	10	t _{hold}	15	-35	ns	
	15		10	-25	ns	

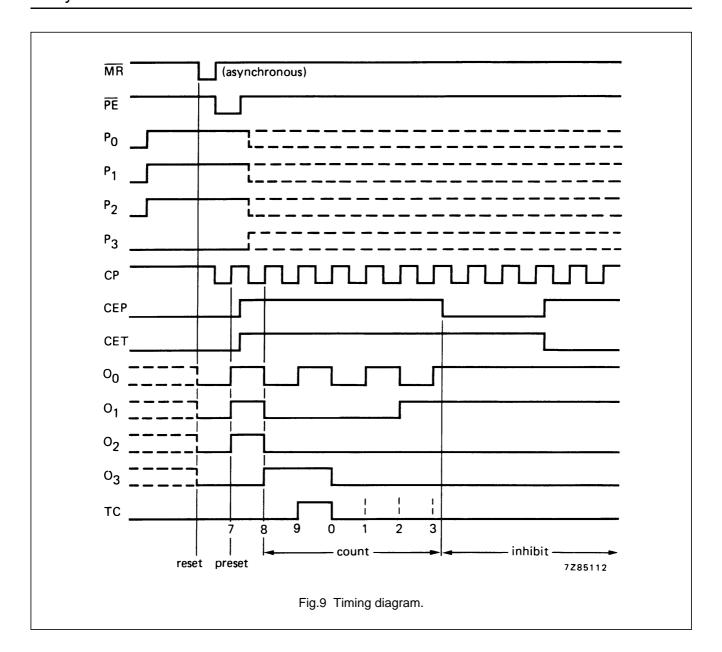
HEF40160B MSI


	V _{DD} V	SYMBOL	MIN.	TYP.	MAX.	
Maximum clock	5		2,5	5	MHz	
pulse frequency	10	f _{max}	7	14	MHz	
	15		9	18	MHz	



4-bit synchronous decade counter with asynchronous reset

HEF40160B MSI

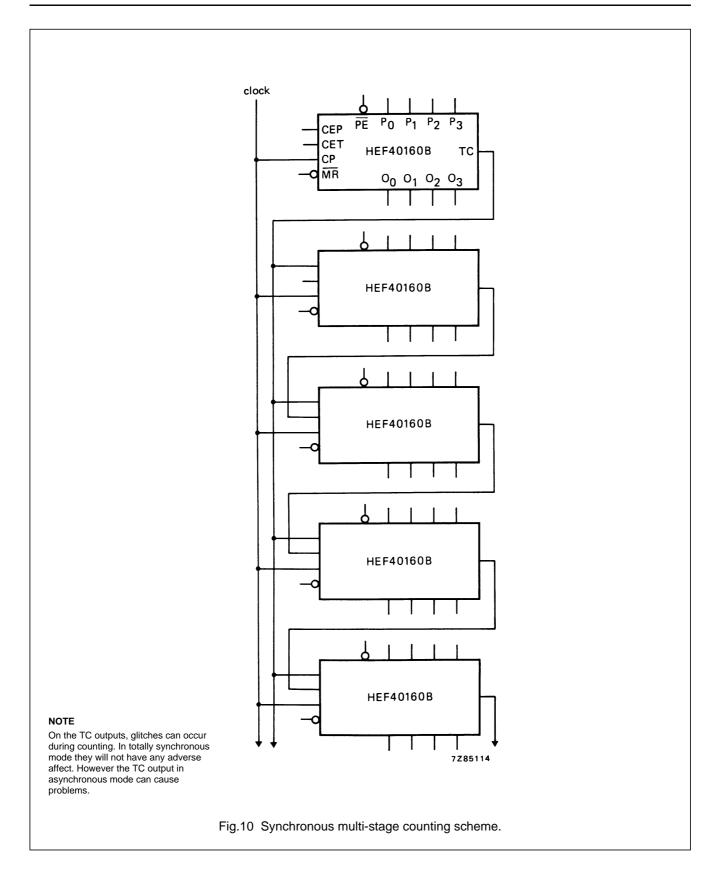


Note

Set-up and hold times are shown as positive values but may be specified as negative values.

4-bit synchronous decade counter with asynchronous reset

HEF40160B MSI



APPLICATION INFORMATION

An example of an application for the HEF40160B is:

• Programmable decade counter.

HEF40160B MSI

