

VHF power LDMOS transistor Rev. 01 — 13 April 2006

Objective data sheet

Product profile

1.1 General description

A 500 W LDMOS RF Power transistor for broadcast transmitter applications and industrial applications in the HF/VHF band.

Typical performance Table 1:

Typical RF performance at V_{DS} = 32 V and T_h = 25 °C in a common-source 225 MHz test circuit.[1]

Mode of operation	f	P _L	P _{L(PEP)}	Gp	η _D	IMD3
	(MHz)	(W)	(W)	(dB)	(%)	(dBc)
CW, class AB	225	500	-	18	60	-
2-tone, class AB	$f_1 = 225$; $f_2 = 225.1$	-	500	19	47	-28

^[1] T_h is the heatsink temperature.

CAUTION

This device is sensitive to ElectroStatic Discharge (ESD). Therefore care should be taken during transport and handling.

1.2 Features

- Typical CW performance at 225 MHz, a drain-source voltage V_{DS} of 32 V and a quiescent drain current $I_{Dq} = 2 \times 1.0 \text{ A}$:
 - ◆ Load power P_L = 500 W
 - ◆ Gain G_p ≥ 18 dB
 - Drain efficiency η_D = 60 %
- Advanced flange material for optimum thermal behavior and reliability
- Excellent ruggedness
- High power gain
- Designed for broadband operation (HF/VHF band)
- Source on underside eliminates DC isolators, reducing common-mode inductance
- Easy power control

1.3 Applications

- Communication transmitter applications in the UHF band
- Industrial applications in the UHF band

VHF power LDMOS transistor

2. Pinning information

Table 2. Pinning

Table 2.	i iiiiiiig				
Pin	Description		Simplified outline	Symbol	
1	gate1		4		
2	gate2		1 2	اً_ا	
3	drain1		0 05	3	
4	drain2				5
5	source	<u>[1]</u>	3 4	4	
				2	
				_ sym117	

^[1] Connected to flange.

3. Ordering information

Table 3: Ordering information

Type number	Package		
	Name	Description	Version
BLF369	-	flanged LDMOST ceramic package; 2 mounting holes; 4 leads	SOT800-2

4. Limiting values

Table 4: Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
V_{DS}	drain-source voltage		-	65	V
V_{GS}	gate-source voltage		-	±13	V
T _{stg}	storage temperature		-65	+150	°C
Tj	junction temperature		-	200	°C

5. Thermal characteristics

Table 5: Thermal characteristics

Symbol	Parameter	Conditions	Тур	Unit
$R_{th(j-c)}$	thermal resistance from junction to case	$T_j = 200 ^{\circ}C$	[1][2] 0.26	K/W
$R_{th(j-h)}$	thermal resistance from junction to heatsink	$T_j = 200 ^{\circ}C$	[1][2][3] 0.35	K/W

^[1] T_j is the junction temperature.

^[2] $R_{th(j-c)}$ and $R_{th(j-h)}$ are measured under RF conditions

^[3] R_{th(j-h)} is dependent on the applied thermal compound and clamping/mounting of the device.

VHF power LDMOS transistor

6. Characteristics

Table 6: Characteristics

 $T_i = 25 \,^{\circ}C$ unless otherwise specified.

Symbol	Parameter	Conditions ^[1]	Min	Тур	Max	Unit
$V_{(BR)DSS}$	drain-source breakdown voltage	$V_{GS} = 0 \text{ V}; I_D = 6 \text{ mA}$	65	-	-	V
V_{GSth}	gate-source threshold voltage	$V_{DS} = 20 \text{ V}; I_{D} = 600 \text{ mA}$	4	-	5.5	V
I _{DSS}	drain leakage current	$V_{GS} = 0 \text{ V}; V_{DS} = 32 \text{ V}$	-	-	4.2	μΑ
I _{DSX}	drain cut-off current	$V_{GS} = V_{GSth} + 9 \text{ V}; V_{DS} = 10 \text{ V}$	-	100	-	Α
I_{GSS}	gate leakage current	$V_{GS} = 20 \text{ V}; V_{DS} = 0 \text{ V}$	-	-	60	nΑ
9 _{fs}	forward transconductance	$V_{GS} = 20 \text{ V}; I_D = 13 \text{ A}$	-	15	-	S
R_{DSon}	drain-source on-state resistance	$V_{GS} = V_{GSth} + 9 \text{ V}; I_D = 13 \text{ A}$	-	40	-	$m\Omega$
C _{iss}	input capacitance	$V_{GS} = 0 \text{ V}; V_{DS} = 32 \text{ V}; f = 1 \text{ MHz}$	[2] _	400	-	pF
Coss	output capacitance	$V_{GS} = 0 \text{ V}; V_{DS} = 32 \text{ V}; f = 1 \text{ MHz}$	[2] _	230	-	pF
C _{rss}	reverse transfer capacitance	$V_{GS} = 0 \text{ V}; V_{DS} = 32 \text{ V}; f = 1 \text{ MHz}$	-	15	-	pF

^[1] I_D is the drain current.

^[2] C_{iss} and C_{oss} include reverse transfer capacitance (C_{rss}).

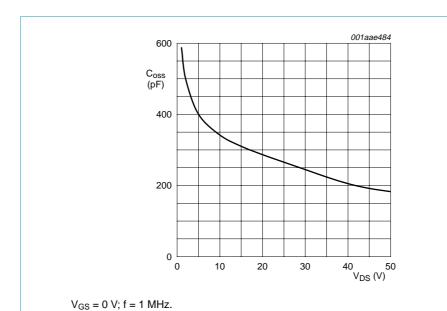
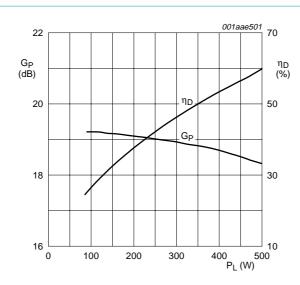


Fig 1. Output capacitance C_{oss} as a function of drain-source voltage V_{DS} ; typical values per section

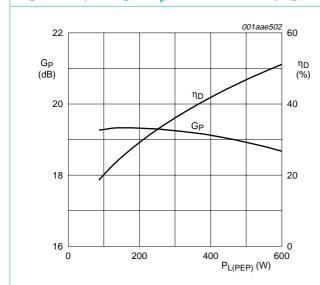
7. Application information

Table 7: RF performance in a common-source 225 MHz test circuit


 $T_h = 25 \,^{\circ}C$ unless otherwise specified.

Mode of operation	f	V _{DS}	I _{Dq}	P _{L(PEP)}	Gp	η _D	IMD3	$\Delta \mathbf{G_p}$
	(MHz)	(V)	(A)	(W)	(dB)	(%)	(dBc)	(dB)
2-tone, class AB	$f_1 = 225$; $f_2 = 225.1$	32	2×1.0	300	> 18	> 43	< -24	1

BLF369_1


© Koninklijke Philips Electronics N.V. 2006. All rights reserved.

VHF power LDMOS transistor

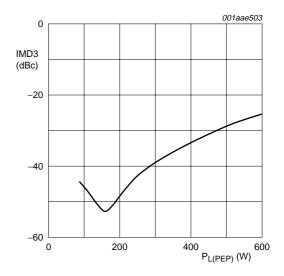

 V_{DS} = 32 V; f = 225 MHz; I_{Dq} = 2 × 1.0 A; T_h = 25 °C.

Fig 2. CW power gain G_p and drain efficiency η_D as a function of output power P_L ; typical values

 $V_{DS} = 32 \text{ V}; f_1 = 225 \text{ MHz}; f_2 = 225.1 \text{ MHz}; I_{Dq} = 2 \times 1.0 \text{ A}; T_h = 25 ^{\circ}\text{C}.$

Fig 3. 2-tone power gain \textbf{G}_{p} and drain efficiency η_{D} as a function of peak envelope power $\textbf{P}_{L(PEP)};$ typical values

 $V_{DS} = 32 \text{ V}; f_1 = 225 \text{ MHz}; f_2 = 225.1 \text{ MHz}; I_{Dq} = 2 \times 1.0 \text{ A}; T_h = 25 ^{\circ}\text{C}.$

Fig 4. 2-tone third order intermodulation distortion IMD3 as a function of peak envelope power $P_{L(PEP)}$; typical values

7.1 Ruggedness in class-AB operation

The BLF369 is capable of withstanding a load mismatch corresponding to VSWR = 10 : 1 through all phases under the following conditions: V_{DS} = 32 V; f = 225 MHz at rated load power ($P_{L(PEP)}$ = 500 W).

BLF369 Philips Semiconductors

VHF power LDMOS transistor

7.2 Reliability

- (1) $T_i = 100 \,^{\circ}C$
- (2) $T_j = 110 \,^{\circ}\text{C}$
- (3) $T_j = 120 \, ^{\circ}C$
- (4) $T_i = 130 \,^{\circ}C$
- (5) $T_i = 140 \,^{\circ}\text{C}$
- (6) $T_i = 150 \,^{\circ}\text{C}$
- (7) $T_i = 160 \, ^{\circ}C$
- (8) $T_j = 170 \,^{\circ}\text{C}$
- (9) $T_j = 180 \,^{\circ}\text{C}$
- (10) T_j = 190 °C
- (11) $T_j = 200 \,^{\circ}C$

Fig 5. BLF369 electromigration (I_D, total device)

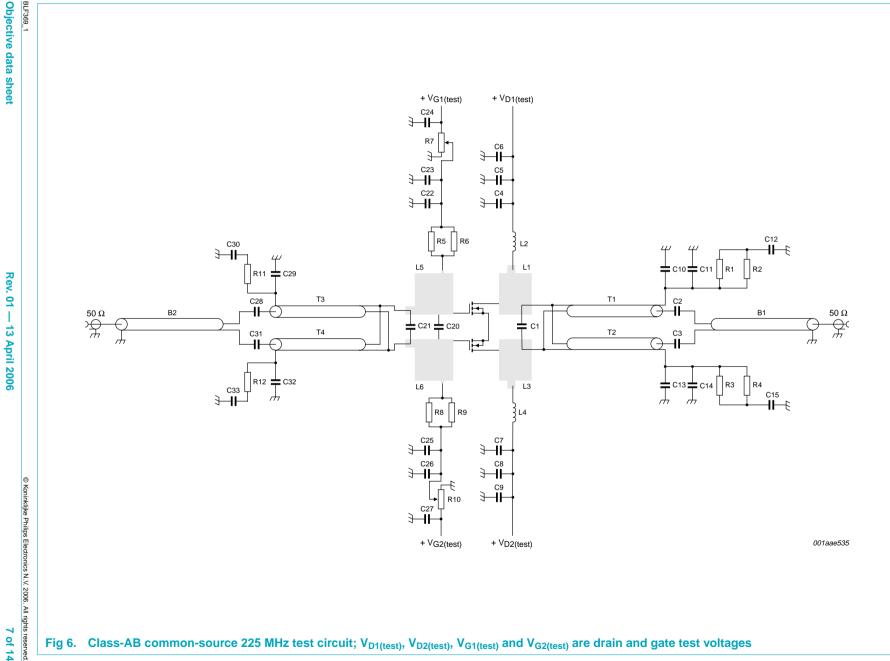
Test information

Table 8: **List of components** For test circuit, see Figure 6, 7 and 8.

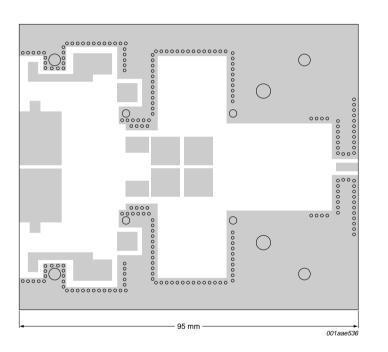
Component	Description	Value	Remarks
B1	semi rigid coax	25 Ω ; 120 mm	EZ90-25-TP
B2	semi rigid coax	25 Ω ; 56 mm	EZ90-25-TP
C1	multilayer ceramic chip capacitor	91 pF <u>[1</u>	
C2, C3	multilayer ceramic chip capacitor	56 pF <u>[1</u>	
C4, C7	multilayer ceramic chip capacitor	100 pF [1	
C5, C8	ceramic capacitor	15 nF	
C6, C9	electrolytic capacitor	220 μF	
C10, C11, C13, C14	multilayer ceramic chip capacitor	220 pF [1	
C12, C15	ceramic capacitor	15 nF <u>[1</u>	

© Koninklijke Philips Electronics N.V. 2006. All rights reserved.

VHF power LDMOS transistor


Table 8: List of components ...continued For test circuit, see <u>Figure 6</u>, <u>7</u> and <u>8</u>.

Component	Description	Value	Remarks
C20	multilayer ceramic chip capacitor	100 pF [1	
C21	multilayer ceramic chip capacitor	20 pF [1	
C22, C25	multilayer ceramic chip capacitor	100 pF [1	
C23, C26	ceramic capacitor	15 nF	
C24, C27	electrolytic capacitor	10 μF	
C28, C31	multilayer ceramic chip capacitor	100 pF [1	
C29, C32	multilayer ceramic chip capacitor	220 pF	
C30, C33	ceramic capacitor	15 nF	
L1, L3	stripline	[2	$(W \times L)$ 12 mm \times 15 mm
L2, L4	air coil		4 windings; $D = 8 \text{ mm}$; $d = 1 \text{ mm}$
L5, L6	stripline	[2	$(W \times L)$ 14 mm \times 15 mm
R1, R2, R3, R4	resistor	0.25 W; 4 Ω	
R5, R6, R8, R9	resistor	0.25 W; 10 Ω	
R7, R10	potentiometer	10 kΩ	
R11, R12	resistor	0.25 W; 1 Ω	
T1, T2	semi rigid coax	25 $Ω$; 68 mm	EZ90-25-TP
T3, T4	semi rigid coax	25 Ω ; 60 mm	EZ90-25-TP


^[1] American technical ceramics type 100B or capacitor of same quality.

^[2] PCB: Rogers 5880; ε_r = 2.2 F/m; height = 0.79 mm; Cu (top/bottom metallization); thickness copper plating = 35 μ m.

BLF369

7 of 14

BLF369

C1 mounted on top of transformers T1 and T2; C20 mounted on top of transformers T3 and T4

VHF power LDMOS transistor

9. Package outline

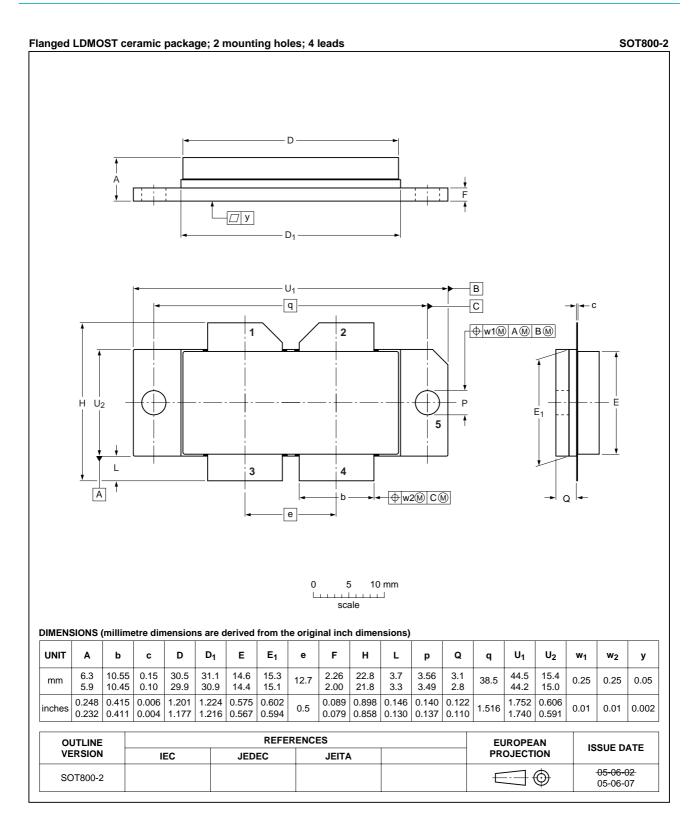


Fig 9. Package outline SOT800-2

VHF power LDMOS transistor

10. Abbreviations

Table 9: Abbreviations

Acronym	Description
CW	Continuous Wave
GSM	Global System for Mobile communications
LDMOS	Laterally Diffused Metal Oxide Semiconductor
PCB	Printed-Circuit Board
PEP	Peak Envelope Power
RF	Radio Frequency
TTF	Time To Failure
VSWR	Voltage Standing Wave Ratio

VHF power LDMOS transistor

11. Revision history

Table 10. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
BLF369_1	20060413	Objective data sheet	-	-

VHF power LDMOS transistor

12. Legal information

12.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.semiconductors.philips.com.

12.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Philips Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Philips Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

12.3 Disclaimers

General — Information in this document is believed to be accurate and reliable. However, Philips Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes — Philips Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — Philips Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or

malfunction of a Philips Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Philips Semiconductors accepts no liability for inclusion and/or use of Philips Semiconductors products in such equipment or applications and therefore such inclusion and/or use is for the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

Terms and conditions of sale — Philips Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.semiconductors.philips.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by Philips Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

12.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

13. Contact information

For additional information, please visit: http://www.semiconductors.philips.com

For sales office addresses, send an email to: sales.addresses@www.semiconductors.philips.com

VHF power LDMOS transistor

14. Contents

1	Product profile
1.1	General description
1.2	Features
1.3	Applications
2	Pinning information 2
3	Ordering information 2
4	Limiting values 2
5	Thermal characteristics 2
6	Characteristics 3
7	Application information 3
7.1	Ruggedness in class-AB operation 4
7.2	Reliability 5
8	Test information 5
9	Package outline 10
10	Abbreviations11
11	Revision history
12	Legal information
12.1	Data sheet status
12.2	Definitions
12.3	Disclaimers
12.4	Trademarks
13	Contact information
14	Contents 14

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

Document identifier: BLF369_1