-5V Differential ECL to TTL Translator

The MC10ELT/100ELT25 is a differential ECL to TTL translator. Because ECL levels are used, a +5 V, -5.2 V (or -4.5 V) and ground are required. The small outline 8-lead package and the single gate of the ELT25 makes it ideal for those applications where space, performance and low power are at a premium.

The V_{BB} pin, an internally generated voltage supply, is available to this device only. For single-ended input conditions, the unused differential input is connected to V_{BB} as a switching reference voltage. V_{BB} may also rebias AC coupled inputs. When used, decouple V_{BB} and V_{CC} via a 0.01 μ F capacitor and limit current sourcing or sinking to 0.5 mA. When not used, V_{BB} should be left open.

The 100 Series contains temperature compensation.

- 2.6 ns Typical Propagation Delay
- 100 MHz FMAX CLK
- 24 mA TTL Outputs
- Flow Through Pinouts
- Operating Range: $V_{CC} = 4.5 \text{ V}$ to 5.5 V with GND = 0 V; $V_{EE} = -4.2 \text{ V}$ to -5.7 V with GND = 0 V
- Internal Input Pulldown Resistors
- Q Output will default HIGH with inputs open or < 1.3 V

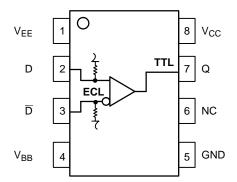


Figure 1. 8-Lead Pinout and Logic Diagram (Top View)

PIN DESCRIPTION

PIN	FUNCTION
D, D	ECL Differential Inputs
Q	TTL Output
V _{BB}	Reference Voltage Output
V _{CC}	Positive Supply
V _{EE}	Negative Supply
GND	Ground
NC	No Connect

ON Semiconductor®

http://onsemi.com

	MARKING DIAGRAMS*						
8 1 SO-8 D SUFFIX CASE 751	8 A A A A HLT25 ALYW 1 U U U	8 A A A A KLT25 ALYW 1 U U U U					
8 1 TSSOP-8 DT SUFFIX CASE 948R	8 H H H H HT25 ALYW 1 H H H H H H H H	8 KT25 ALYW 1 1 1 1 1 1 1 1 1 1 1 1 1					
H = MC10 K = MC100 A = Assembly Lo	Y =	Wafer Lot Year Work Week					

*For additional marking information, refer to Application Note AND8002/D.

ORDERING INFORMATION

Device	Package	Shipping [†]
MC10ELT25D	SO-8	98 Units/Rail
MC10ELT25DR2	SO-8	2500 Tape & Reel
MC100ELT25D	SO-8	98 Units/Rail
MC100ELT25DR2	SO-8	2500 Tape & Reel
MC10ELT25DT	TSSOP-8	98 Units/Rail
MC10ELT25DTR2	TSSOP-8	2500 Tape & Reel
MC100ELT25DT	TSSOP-8	98 Units/Rail
MC100ELT25DTR2	TSSOP-8	2500 Tape & Reel

+For additional tape and reel information, refer to Brochure BRD8011/D.

ATTRIBUTES

Characteristics		Value
Internal Input Pulldown Resistors		75 kΩ
Internal Input Pullup Resistors		N/A
ESD Protection	Human Body Model Machine Model	> 1 KV > 400 V
Moisture Sensitivity (Note 1)		Level 1
Flammability Rating Oxygen Index		UL-94 code V-0 @ 1/8" 28 to 34
Transistor Count		38 Devices
Meets or Exceeds JEDEC Spec EIA/JES	D78 IC Latchup Test	

1. Refer to Application Note AND8003/D for additional information.

MAXIMUM RATINGS (Note 2)

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit
V _{CC}	Positive Power Supply	GND = 0 V	V _{EE} = -5.0 V	7	V
V_{EE}	Negative Power Supply	GND = 0 V	$V_{CC} = +5.0 V$	-8	V
V _{IN}	Input Voltage	GND = 0 V		0 to V _{EE}	V
I _{BB}	V _{BB} Sink/Source			± 0.5	mA
T _A	Operating Temperature Range			-40 to +85	°C
T _{stg}	Storage Temperature Range			-65 to +150	°C
θ_{JA}	Thermal Resistance (Junction-to-Ambient)	0 LFPM 500 LFPM	SO-8 SO-8	190 130	°C/W °C/W
θ_{JC}	Thermal Resistance (Junction-to-Case)	Standard Board	SO-8	41 to 44	°C/W
θ_{JA}	Thermal Resistance (Junction-to-Ambient)	0 LFPM 500 LFPM	TSSOP-8 TSSOP-8	185 140	°C/W °C/W
θ_{JC}	Thermal Resistance (Junction-to-Case)	Standard Board	TSSOP-8	41 to $44 \pm 5\%$	°C/W
T _{sol}	Wave Solder	< 2 to 3 sec @ 248°C		265	°C

2. Maximum Ratings are those values beyond which device damage may occur.

10ELT SERIES NECL INPUT DC CHARACTERISTICS V_{CC} = 5.0 V; V_{EE} = -5.0 V; GND = 0 V (Note 3)

			-40 °C		25°C			85°C			
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
VIH	Input HIGH Voltage (Single-Ended) (Note 4)	-1230		-890	-1 130		-810	-1060		-720	mV
V _{IL}	Input LOW Voltage (Single-Ended) (Note 4)	-1950		-1500	-1950		-1480	-1950		-1445	mV
V_{BB}	Output Voltage Reference	-1.43		-1.30	-1.35		-1.25	-1.31		-1.19	V
VIHCMR	Input HIGH Voltage Common Mode Range (Differential) (Notes 4 and 5)	-2.8		0.0	-2.8		0.0	-2.8		0.0	V
I _{IH}	Input HIGH Current			150			150			150	μΑ
IIL	Input LOW Current	0.5			0.5			0.3			μΑ

NOTE: Devices are designed to meet the DC specifications shown in the above table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained.

3. Input parameters vary 1:1 with GND. V_{EE} can vary +0.06 V / -0.5 V.

4. TTL output $R_L = 500 \Omega$ to GND

5. V_{IHCMR} min varies 1:1 with V_{EE} , V_{IHCMR} max varies 1:1 with GND.

|--|

		-40 °C		25°C			85°C				
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
V _{IH}	Input HIGH Voltage (Single-Ended) (Note 7)	-1 165		-880	-1 165		-880	-1 165		-880	mV
V _{IL}	Input LOW Voltage (Single-Ended) (Note 7)	-1810		-1475	-1810		-1475	-1810		-1475	mV
V _{BB}	Output Voltage Reference	-1.38		-1.26	-1.38		-1.26	-1.38		-1.26	V
VIHCMR	Input HIGH Voltage Common Mode Range (Differential) (Notes 7 and 8)	-2.8		0.0	-2.8		0.0	-2.8		0.0	V
I _{IH}	Input HIGH Current			150			150			150	μΑ
I _{IL}	Input LOW Current	0.5			0.5			0.5			μΑ

NOTE: Devices are designed to meet the DC specifications shown in the above table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained.

6. Input parameters vary 1:1 with GND. V_{EE} can vary +0.8 V / -0.5 V.

7. TTL output $R_L = 500 \Omega$ to GND 8. V_{IHCMR} min varies 1:1 with V_{EE} , V_{IHCMR} max varies 1:1 with GND.

TTL OUTPUT DC CHARACTERISTICS V_{CC} = 4.5 V to 5.5 V; T_A = -40°C to +85°C

Symbol	Characteristic	Condition	Min	Тур	Max	Unit
V _{OH}	Output HIGH Voltage (Note 9)	I _{OH} = -3.0 mA	2.4			V
V _{OL}	Output LOW Voltage (Note 9)	I _{OL} = 24 mA			0.5	V
I _{CCH}	Power Supply Current			11	16	mA
I _{CCL}	Power Supply Current			13	18	mA
I _{EE}	Negative Power Supply Current			15	21	mA
I _{OS}	Output Short Circuit Current		-150		-60	mA

9. TTL output $R_L = 500 \Omega$ to GND

			-40 °C 25°C		85°C						
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
f _{max}	Maximum Toggle Frequency					100					MHz
t _{PLH}	Propagation Delay @ 1.5 V	1.7		3.6	1.7		3.6	1.7		3.6	ns
t _{PHL}	Propagation Delay @ 1.5 V	2.6		4.1	2.6		4.1	2.6		4.1	ns
t _{JITTER}	Random Clock Jitter (RMS)					35					ps
t _r t _f	Output Rise/Fall Times QTTL 10% - 90%					1.9 2.3					ns
V _{PP}	Input Swing (Note 12)	200		1000	200		1000	200		1000	mV

AC CHARACTERISTICS V_{CC}= 5.0 V; V_{EE}= -5.0 V; GND= 0 V (Note 10 and Note 11)

10. V_{CC} can vary \pm 0.25 V.

V_{EE} can vary +0.06 V / -0.5 V for 10ELT; V_{EE} can vary +0.8 V / -0.5 V for 100ELT. 11. $R_L = 500 \Omega$ to GND and $C_L = 20 \text{ pF}$ to GND. Refer to Figure 2. 12. $V_{PP}(min)$ is the minimum input swing for which AC parameters are guaranteed. The device has a DC gain of ≈ 40 .

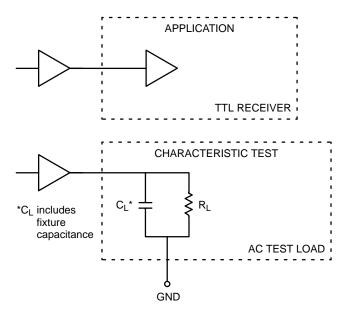
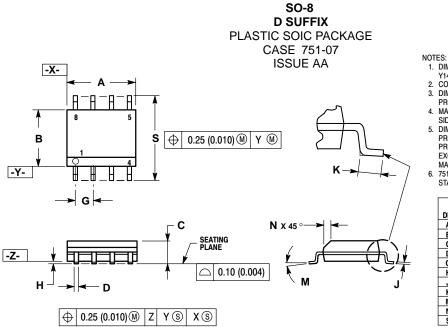



Figure 2. TTL Output Loading Used for Device Evaluation

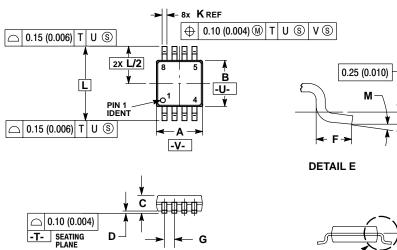
Resource Reference of Application Notes

AN1404	-	ECLinPS Circuit Performance at Non-Standard V_{IH} Levels
AN1405	-	ECL Clock Distribution Techniques
AN1406	-	Designing with PECL (ECL at +5.0 V)
AN1503	-	ECLinPS I/O SPICE Modeling Kit
AN1504	-	Metastability and the ECLinPS Family
AN1560	-	Low Voltage ECLinPS SPICE Modeling Kit
AN1568	-	Interfacing Between LVDS and ECL
AN1596	-	ECLinPS Lite Translator ELT Family SPICE I/O Model Kit
AN1650	-	Using Wire-OR Ties in ECLinPS Designs
AN1672	-	The ECL Translator Guide
AND8001	-	Odd Number Counters Design
AND8002	-	Marking and Date Codes
AND8020	-	Termination of ECL Logic Devices
AND8090	-	AC Characteristics of ECL Devices

PACKAGE DIMENSIONS

VOIES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A AND B DO NOT INCLUDE MOLD DEPOTDUSION

PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER


MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
 DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.
 751-01 THRU 751-06 ARE OBSOLETE. NEW STANDAARD IS 751-07

	MILLIN	IETERS	INCHES			
DIM	MIN	MAX	MIN	MAX		
Α	4.80	5.00	0.189	0.197		
В	3.80	4.00	0.150	0.157		
C	1.35	1.75	0.053	0.069		
D	0.33	0.51	0.013	0.020		
G	1.27	7 BSC	0.05	0 BSC		
Н	0.10	0.25	0.004	0.010		
J	0.19	0.25	0.007	0.010		
K	0.40	1.27	0.016	0.050		
M	0 °	8 °	0 °	8 °		
N	0.25	0.50	0.010	0.020		
S	5.80	6.20	0.228	0.244		

PACKAGE DIMENSIONS

TSSOP-8 DT SUFFIX PLASTIC TSSOP PACKAGE CASE 948R-02 **ISSUE A**

DETAIL E

NOTES:

-W-

- DTES:

 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

 2. CONTROLLING DIMENSION: MILLIMETER.

 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.

 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.

 5. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.

- REFERENCE ONLY.
 DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-.

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
Α	2.90	3.10	0.114	0.122
В	2.90	3.10	0.114	0.122
C	0.80	1.10	0.031	0.043
D	0.05	0.15	0.002	0.006
F	0.40	0.70	0.016	0.028
G	0.65 BSC		0.026 BSC	
K	0.25	0.40	0.010	0.016
L	4.90 BSC		0.193 BSC	
М	0°	6 °	0°	6°

ON Semiconductor and **W** are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death wits such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: ONlit@hibbertco.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

JAPAN: ON Semiconductor, Japan Customer Focus Center 2-9-1 Kamimeguro, Meguro-ku, Tokyo, Japan 153-0051 Phone: 81-3-5773-3850

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative.