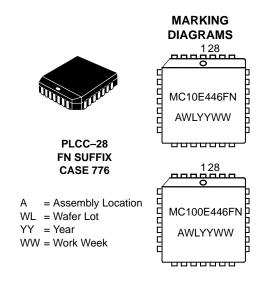
5V ECL 4-Bit Parallel/Serial Converter

The MC10E/100E446 is an integrated 4-bit parallel to serial data converter. The device is designed to operate for NRZ data rates of up to 1.3 Gb/s. The chip generates a divide by 4 and a divide by 8 clock for both 4-bit conversion and a two chip 8-bit conversion function. The conversion sequence was chosen to convert the parallel data into a serial stream from bit D0 to D3. A serial input is provided to cascade two E446 devices for 8 bit conversion applications. Note that the serial output data clocks off of the negative input clock transition.

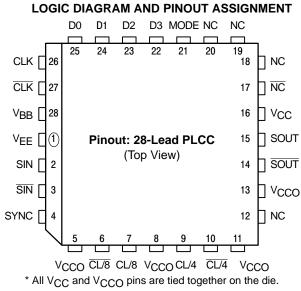
The SYNC input will asynchronously reset the internal clock circuitry. This pin allows the user to reset the internal clock conversion unit and thus select the start of the conversion process.

The MODE input is used to select the conversion mode of the device. With the MODE input LOW, or open, the device will function as a 4-bit converter. When the mode input is driven HIGH the internal load clock will change on every eighth clock cycle thus allowing for an 8-bit conversion scheme using two E446's. When cascaded in an 8-bit conversion scheme the devices will not operate at the 1.3 Gb/s data rate of a single device. Refer to the applications section of this data sheet for more information on cascading the E446.

The V_{BB} pin, an internally generated voltage supply, is available to this device only. For single-ended input conditions, the unused differential input is connected to V_{BB} as a switching reference voltage. V_{BB} may also rebias AC coupled inputs. When used, decouple V_{BB} and V_{CC} via a 0.01 μ F capacitor and limit current sourcing or sinking to 0.5 mA. When not used, V_{BB} should be left open.


The 100 Series contains temperature compensation.

- On Chip Clock ÷4 and ÷8
- 1.5 Gb/s Typical Data Rate Capability
- Differential Clock and Serial Inputs
- VBB Output for Single-ended Input Applications
- Asynchronous Data Synchronization
- Mode Select to Expand to 8 Bits
- PECL Mode Operating Range: V_{CC}= 4.2 V to 5.7 V with V_{EE}= 0 V
- NECL Mode Operating Range: V_{CC}= 0 V with V_{EE}= -4.2 V to -5.7 V
- Internal Input Pulldown Resistors
- ESD Protection: > 2 KV HBM, > 100 V MM
- Meets or Exceeds JEDEC Spec EIA/JESD78 IC Latchup Test
- Moisture Sensitivity Level 1 For Additional Information, see Application Note AND8003/D
- Flammability Rating: UL–94 code V–0 @ 1/8", Oxygen Index 28 to 34
- Transistor Count = 525 devices

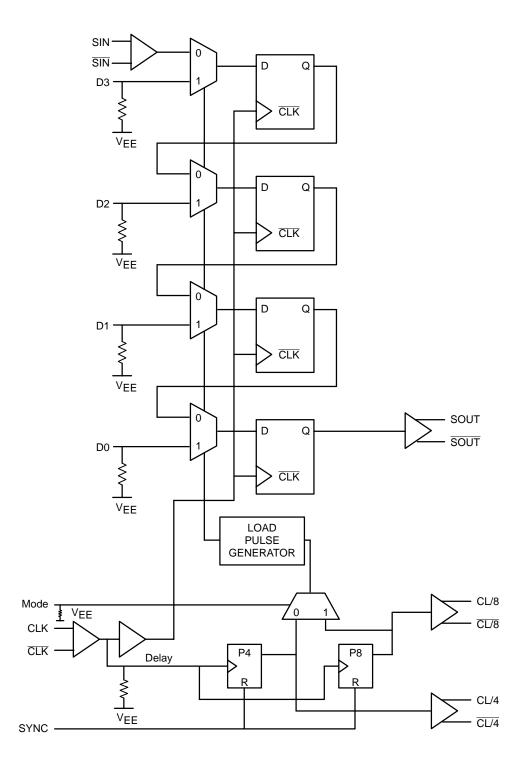

ON Semiconductor®

http://onsemi.com

ORDERING INFORMATION

Device	Package	Shipping
MC10E446FN	PLCC-28	37 Units/Rail
MC10E446FNR2	PLCC-28	500 Units/Reel
MC100E446FN	PLCC-28	37 Units/Rail
MC100E446FNR2	PLCC-28	500 Units/Reel

Warning: All V_CC, V_CCO, and V_EE pins must be externally connected to Power Supply to guarantee proper operation.


PIN DESCRIPTION

PIN	FUNCTION
SIN	ECL Differential Serial Data Input
D0 – D3	ECL Parallel Data Inputs
SOUT, SOUT	ECL Differential Serial Data Output
CLK, CLK	ECL Differential Clock Inputs
CL/4, CL/4	ECL Differential +4 Clock Output
CL/8, CL/8	ECL Differential +8 Clock Output
MODE	Conversion Mode 4-Bit/8-Bit
SYNC	ECL Conversion Synchronizing Input
V _{BB}	Reference Voltage Output
V _{CC} , V _{CCO}	Positive Supply
VEE	Negative Supply
NC	No Connect

FUNCTION TABLES

Mode	Conversion
L	4-Bit 8-Bit

LOGIC DIAGRAM

MAXIMUM RATINGS (Note 1)

Symbol	Parameter	Condition 1	Condition 2	Rating	Units
VCC	PECL Mode Power Supply	V _{EE} = 0 V		8	V
VEE	NECL Mode Power Supply	V _{CC} = 0 V		-8	V
VI	PECL Mode Input Voltage NECL Mode Input Voltage	VEE = 0 V VCC = 0 V	$V_{I} \leq V_{CC}$ $V_{I} \geq V_{EE}$	6 —6	V V
lout	Output Current	Continuous Surge		50 100	mA mA
I _{BB}	V _{BB} Sink/Source			± 0.5	mA
TA	Operating Temperature Range			0 to +85	°C
T _{stg}	Storage Temperature Range			-65 to +150	°C
θJA	Thermal Resistance (Junction to Ambient)	0 LFPM 500 LFPM	28 PLCC 28 PLCC	63.5 43.5	°C/W °C/W
θJC	Thermal Resistance (Junction to Case)	std bd	28 PLCC	22 to 26	°C/W
VEE	PECL Operating Range NECL Operating Range			4.2 to 5.7 -5.7 to -4.2	V V
T _{sol}	Wave Solder	<2 to 3 sec @ 248°C		265	°C

1. Maximum Ratings are those values beyond which device damage may occur.

10E SERIES PECL DC CHARACTERISTICS V_{CCx} = 5.0 V; V_{EE} = 0.0 V (Note 1)

			0°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
IEE	Power Supply Current		126	151		126	151		126	151	mA
VOH	Output HIGH Voltage (Note 2)	3980	4070	4160	4020	4105	4190	4090	4185	4280	mV
VOH _{sout}	Output HIGH Voltage sout/sout	3975		4170	3975		4170	3975		4170	mV
VOL	Output LOW Voltage (Note 2)	3050	3210	3370	3050	3210	3370	3050	3227	3405	mV
VIH	Input HIGH Voltage	3830	3995	4160	3870	4030	4190	3940	4110	4280	mV
VIL	Input LOW Voltage	3050	3285	3520	3050	3285	3520	3050	3302	3555	mV
V _{BB}	Output Voltage Reference	3.62		3.63	3.65		3.75	3.69		3.81	V
Iн	Input HIGH Current			150			150			150	μA
۱ _{IL}	Input LOW Current	0.5	0.3		0.5	0.25		0.3	0.2		μA

NOTE: Devices are designed to meet the DC specifications shown in the above table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained.

1. Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary +0.46 V / –0.06 V. 2. Outputs are terminated through a 50 ohm resistor to V_{CC}–2 volts.

10E SERIES NECL DC CHARACTERISTICS V_{CCx}= 0.0 V; V_{EE}= -5.0 V (Note 1)

			0°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
IEE	Power Supply Current		126	151		126	151		126	151	mA
VOH	Output HIGH Voltage (Note 2)	-1020	-930	-840	-980	-895	-810	-910	-815	-720	mV
VOH _{sout}	Output HIGH Voltage sout/sout	-1025		-830	-1025		-830	-1025		-830	mV
V _{OL}	Output LOW Voltage (Note 2)	-1950	-1790	-1630	-1950	-1790	-1630	-1950	-1773	-1595	mV
VIH	Input HIGH Voltage	-1170	-1005	-840	-1130	-970	-810	-1060	-890	-720	mV
VIL	Input LOW Voltage	-1950	-1715	-1480	-1950	-1715	-1480	-1950	-1698	-1445	mV
V _{BB}	Output Voltage Reference	-1.38		-1.37	-1.35		-1.25	-1.31		-1.19	V
Ιн	Input HIGH Current			150			150			150	μA
۱ _{IL}	Input LOW Current	0.5	0.3		0.5	0.065		0.3	0.2		μA

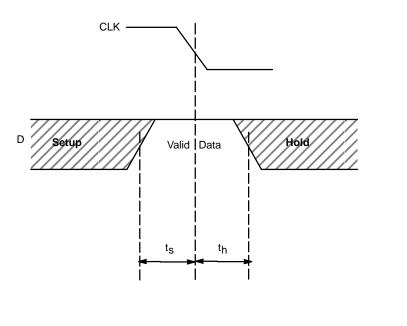
NOTE: Devices are designed to meet the DC specifications shown in the above table, after thermal equilibrium has been established. The Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary +0.46 V / -0.06 V.
 Outputs are terminated through a 50 ohm resistor to V_{CC}-2 volts.

100E SERIES PECL DC CHARACTERISTICS V_{CCx}= 5.0 V; V_{EE}= 0.0 V (Note 1)

			0°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
IEE	Power Supply Current		126	151		126	151		145	174	mA
VOH	Output HIGH Voltage (Note 2)	3975	4050	4120	3975	4050	4120	3975	4050	4120	mV
VOH _{sout}	Output HIGH Voltage sout/sout	3980		4210	4020		4240	4090		4330	mV
VOL	Output LOW Voltage (Note 2)	3190	3295	3380	3190	3255	3380	3190	3260	3380	mV
VIH	Input HIGH Voltage	3835	4050	4120	3835	4120	4120	3835	4120	4120	mV
V _{IL}	Input LOW Voltage	3190	3300	3525	3190	3525	3525	3190	3525	3525	mV
V _{BB}	Output Voltage Reference	3.62		3.73	3.62		3.74	3.62		3.74	V
Iн	Input HIGH Current			150			150			150	μΑ
۱ _{IL}	Input LOW Current	0.5	0.3		0.5	0.25		0.5	0.2		μA

NOTE: Devices are designed to meet the DC specifications shown in the above table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained.
1. Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary +0.46 V / -0.8 V.
2. Outputs are terminated through a 50 ohm resistor to V_{CC}-2 volts.

100E SERIES NECL DC CHARACTERISTICS $~\rm V_{CCx^{=}}$ 0.0 V; $\rm V_{EE^{=}}$ –5.0 V (Note 1)


			0°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
IEE	Power Supply Current		126	151		126	151		145	174	mA
VOH	Output HIGH Voltage (Note 2)	-1025	-950	-880	-1025	-950	-880	-1025	-950	-880	mV
VOH _{sout}	Output HIGH Voltage sout/sout	-1020		-790	-980		-760	-910		-670	mV
VOL	Output LOW Voltage (Note 2)	-1810	-1705	-1620	-1810	-1745	-1620	-1810	-1740	-1620	mV
VIH	Input HIGH Voltage	-1165	-950	-880	-1165	-880	-880	-1165	-880	-880	mV
VIL	Input LOW Voltage	-1810	-1700	-1475	-1810	-1475	-1475	-1810	-1475	-1475	mV
V _{BB}	Output Voltage Reference	-1.38		-1.27	-1.38		-1.26	-1.38		-1.26	V
ЧΗ	Input HIGH Current			150			150			150	μA
۱ _{IL}	Input LOW Current	0.5	0.3		0.5	0.25		0.5	0.2		μA

NOTE: Devices are designed to meet the DC specifications shown in the above table, after thermal equilibrium has been established. The Devices are designed to meet the DC specifications shown in the above table, after thermal equilibrium has been establish circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained.
 Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary +0.46 V / -0.8 V.
 Outputs are terminated through a 50 ohm resistor to V_{CC}-2 volts.

			0°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Мах	Min	Тур	Мах	Min	Тур	Max	Unit
FMAX	Max Conversion Frequency	1.3	1.6		1.3	1.6		1.3	1.6		Gb/s NRZ
^t PLH ^t PHL	Propagation Delay to Output CLK to SOUT (Note 1 CLK to CL/ CLK to CL/ SYNC to CL/4, CL/	4 650 8 800	1200 850 1050 850	1480 1050 1300 1100	1020 650 800 650	1200 850 1050 850	1480 1050 1300 1100	1020 650 800 650	1200 850 1050 850	1480 1050 1300 1100	ps
t _S	Setup Time (Note 2.) SIN, D	n -200	-450		-200	-450		-200	-450		ps
t _h	Hold Time (Note 2.) SIN, D	n 900	650		900	650		900	650		ps
^t RR	Reset Recovery Time SYN	C 500	300		500	300		500	300		ps
tPW	Min Pulse Width CLK, M	۶ 300			300			300			ps
^t JITTER	Cycle-to-Cycle Jitter		TBD			TBD			TBD		ps
t _r t _f	Rise/Fall Times (20% - 80%) SOU Othe		225 425	350 650	100 200	225 425	350 650	100 200	225 425	350 650	ps

AC CHARACTERISTICS $~V_{CCx}{=}~5.0$ V; $V_{EE}{=}~0.0$ V $~or~~V_{CCx}{=}~0.0$ V; $V_{EE}{=}~-5.0$ V (Note 1)

10 Series: VEE can vary +0.46 V / -0.06 V. 100 Series: VEE can vary +0.46 V / -0.8 V.
 Propagation delays measured from negative going clock edge.
 Relative to negative clock edge.

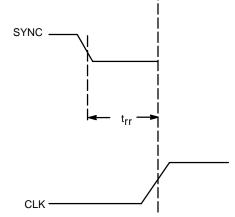
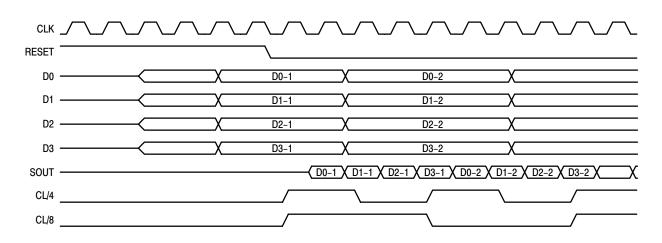
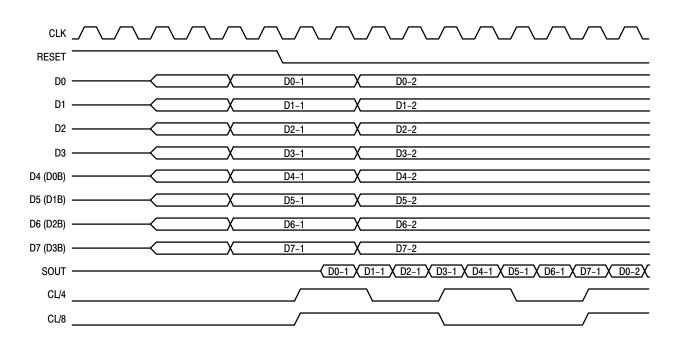




Figure 1.

Timing Diagram B. 8:1 Parallel to Serial Conversion

Figure 2. Timing Diagrams

Applications Information

The MC10E/100E446 is an integrated 4:1 parallel to serial converter. The chip is designed to work with the E445 device to provide both transmission and receiving of a high speed serial data path. The E446 can convert 4 bits of data into a 1.3Gb/s NRZ data stream. The device features a SYNC input which allows the user to reset the internal clock circuitry and restart the conversion sequence (see timing diagram A).

The E446 features a differential serial input and internal divide by 8 circuitry to facilitate the cascading of two devices to build a 8:1 multiplexer. Figure 1 illustrates the architecture for a 8:1 multiplexer using two E446's; the timing diagram for this configuration can be found on the following page. Notice the serial outputs (SOUT) of the higher order converter feed the serial inputs of the the lower order device. This feed through of the serial inputs bounds the upper end of the frequency of operation. The clock to serial output propagation delay plus the setup time of the serial input pins must fit into a single clock period for the cascade architecture to function properly. Using the worst case values for these two parameters from the data sheet, TPD CLK to SOUT = 1480ps and tS for SIN = -200ps, yields a minimum period of 1280ps or a clock frequency of 780MHz.

The clock frequency is somewhat lower than that of a single converter, to increase this frequency some games can be played with the clock input of the higher order E446. By delaying the clock feeding E446A relative to the clock of E446B the frequency of operation can be increased.

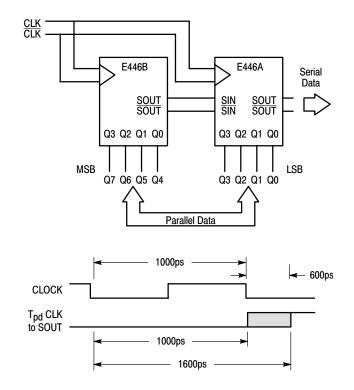
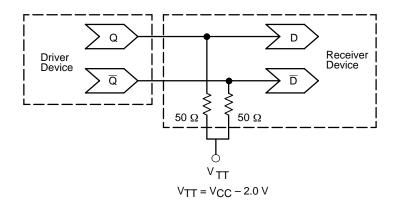
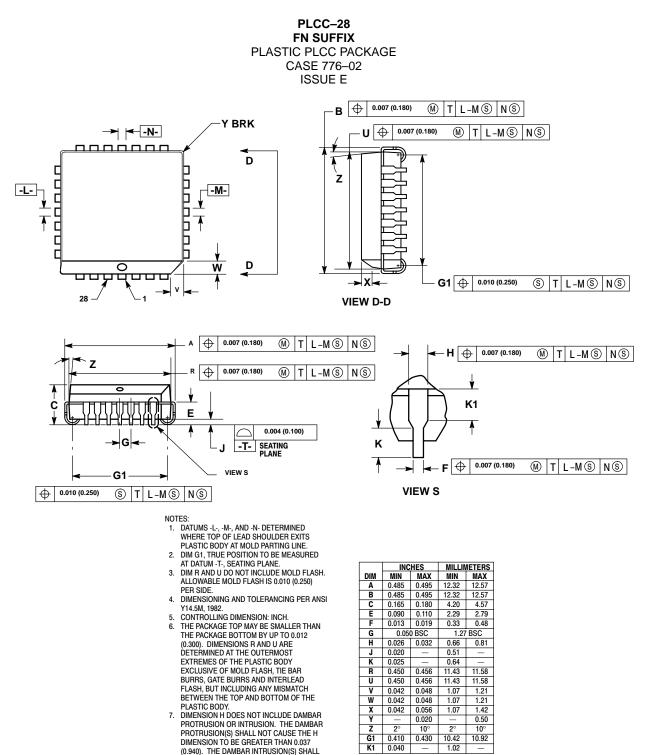


Figure 3. Cascaded 8:1 Converter Architecture




Figure 4. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020 – Termination of ECL Logic Devices.)

Resource Reference of Application Notes

AN1404	ECLinPS Circuit Performance at Non–Standard VIH Leve	els
AN1405	ECL Clock Distribution Techniques	
AN1406	Designing with PECL (ECL at +5.0 V)	
AN1503	ECLinPS I/O SPICE Modeling Kit	
AN1504	Metastability and the ECLinPS Family	
AN1568	Interfacing Between LVDS and ECL	
AN1596	ECLinPS Lite Translator ELT Family SPICE I/O Model Ki	t
AN1650	Using Wire–OR Ties in ECLinPS Designs	
AN1672	The ECL Translator Guide	
AND8001	Odd Number Counters Design	
AND8002	Marking and Date Codes	

AND8020 – Termination of ECL Logic Devices

PACKAGE DIMENSIONS

http://onsemi.com 10

NOT CAUSE THE H DIMENSION TO BE SMALLER THAN 0.025 (0.635).

<u>Notes</u>

ON Semiconductor and **W** are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death wits such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

Literature Fulfillment:

Literature Distribution Center for ON Semiconductor

P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: ONlit@hibbertco.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031 Phone: 81–3–5740–2700 Email: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative.