

Complementary Silicon Plastic Power Transistors

 \dots designed for use in general–purpose amplifier and switching applications.

• DC Current Gain Specified to 7.0 Amperes

• Collector–Emitter Sustaining Voltage —

• High Current Gain — Bandwidth Product

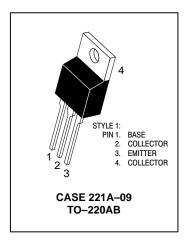
$$f_T = 4.0 \text{ MHz (Min)} @ I_C = 500 \text{ mAdc} - 2\text{N}6288, 90, 92$$

= 10 MHz (Min) @ $I_C = 500 \text{ mAdc} - 2\text{N}6107, 09, 11$

• TO-220AB Compact Package

*MAXIMUM RATINGS

Rating	Symbol	2N6111 2N6288	2N6109	2N6107 2N6292	Unit
Collector–Emitter Voltage	VCEO	30	50	70	Vdc
Collector-Base Voltage	V _{CB}	40	60	80	Vdc
Emitter–Base Voltage	VEB	5.0			Vdc
Collector Current — Continuous Peak	IC	7.0 10		Adc	
Base Current	ΙΒ	3.0		Adc	
Total Power Dissipation @ T _C = 25°C Derate above 25°C	PD	40 0.32		Watts W/°C	
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +150			°C


THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{ heta JC}$	3.125	°C/W
*Indicates JEDEC Registered Data.	-		

2N6107 2N6109* 2N6111 2N6288 2N6292*

*ON Semiconductor Preferred Device

7 AMPERE
POWER TRANSISTORS
COMPLEMENTARY
SILICON
30-50-70 VOLTS
40 WATTS

Preferred devices are ON Semiconductor recommended choices for future use and best overall value.

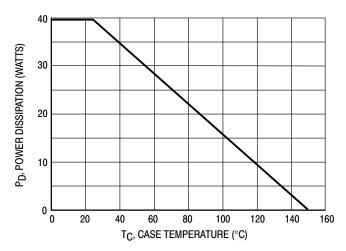


Figure 1. Power Derating

*ELECTRICAL CHARACTERISTICS ($T_C = 25^{\circ}C$ unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit	
OFF CHARACTERISTICS		Į.			
Collector–Emitter Sustaining Voltage (1) (I _C = 100 mAdc, I _B = 0)	2N6111, 2N6288 2N6109 2N6107, 2N6292	VCEO(sus)	30 50 70	_ _ _	Vdc
Collector Cutoff Current (VCE = 20 Vdc, IB = 0) (VCE = 40 Vdc, IB = 0) (VCE = 60 Vdc, IB = 0)	2N6111, 2N6288 2N6109 2N6107, 2N6292	ICEO	_ _ _	1.0 1.0 1.0	mAdc
Collector Cutoff Current (VCE = 40 Vdc, VEB(off) = 1.5 Vdc) (VCE = 60 Vdc, VEB(off) = 1.5 Vdc) (VCE = 80 Vdc, VEB(off) = 1.5 Vdc) (VCE = 30 Vdc, VEB(off) = 1.5 Vdc, TC = 150°C) (VCE = 50 Vdc, VEB(off) = 1.5 Vdc, TC = 150°C) (VCE = 70 Vdc, VEB(off) = 1.5 Vdc, TC = 150°C)	2N6111, 2N6288 2N6109 2N6107, 2N6292 2N6111, 2N6288 2N6109 2N6107, 2N6292	ICEX		100 100 100 2.0 2.0 2.0	μAdc mAdc
Emitter Cutoff Current (VBE = 5.0 Vdc, I _C = 0)		IEBO	_	1.0	mAdc
ON CHARACTERISTICS (1)					•
DC Current Gain ($I_C = 2.0 \text{ Adc}$, $V_{CE} = 4.0 \text{ Vdc}$) ($I_C = 2.5 \text{ Adc}$, $V_{CE} = 4.0 \text{ Vdc}$) ($I_C = 3.0 \text{ Adc}$, $V_{CE} = 4.0 \text{ Vdc}$) ($I_C = 7.0 \text{ Adc}$, $V_{CE} = 4.0 \text{ Vdc}$)	2N6107, 2N6292 2N6109 2N6111, 2N6288 All Devices	hFE	30 30 30 2.3	150 150 150 —	
Collector–Emitter Saturation Voltage (I _C = 7.0 Adc, I _B = 3.0 Adc)		VCE(sat)	_	3.5	Vdc
Base–Emitter On Voltage (I _C = 7.0 Adc, V _{CE} = 4.0 Vdc)		VBE(on)	_	3.0	Vdc
DYNAMIC CHARACTERISTICS					
Current Gain — Bandwidth Product (2) (I _C = 500 mAdc, V _{CE} = 4.0 Vdc, f _{test} = 1.0 MHz)	2N6288, 92 2N6107, 09, 11	fT	4.0 10	_	MHz
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 1.0 MHz)		C _{ob}	_	250	pF
Small–Signal Current Gain (I _C = 0.5 Adc, V _{CE} = 4.0 Vdc, f = 50 kHz)		h _{fe}	20	_	_

^{*}Indicates JEDEC Registered Data. (1) Pulse Test: Pulse Width $\leq 300 \, \mu s$, Duty Cycle $\leq 2.0\%$. (2) $f_T = |h_{fe}| \cdot f_{test}$.

RB and RC ARE VARIED TO OBTAIN DESIRED CURRENT LEVELS

D1 MUST BE FAST RECOVERY TYPE, eg: 1N5825 USED ABOVE IB \approx 100 mA MSD6100 USED BELOW IB \approx 100 mA

2.0 T_J = 25°C 1.0 VCC = 30 V 0.7 $I_C/I_B = 10$ 0.5 t, TIME (µs) 0.3 0.2 0.1 0.07 $t_d @ V_{BE(off)} \approx 5.0 V$ 0.05 0.03 0.07 0.1 0.3 0.5 1.0 2.0 3.0 5.0 7.0 IC, COLLECTOR CURRENT (AMP)

Figure 3. Turn-On Time

Figure 2. Switching Time Test Circuit

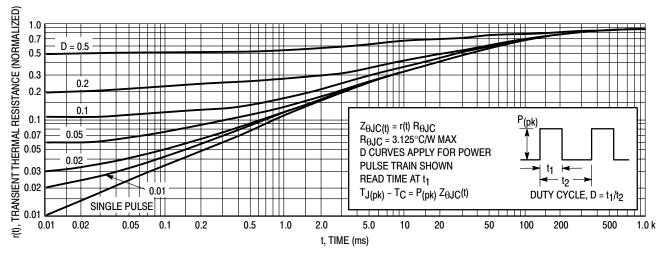


Figure 4. Thermal Response

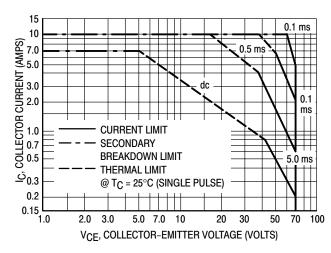
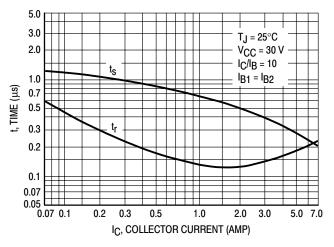



Figure 5. Active-Region Safe Operating Area

There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate I_C – V_{CE} limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate.

The data of Figure 5 is based on $T_{J(pk)} = 150^{\circ}C$; T_{C} is variable depending on conditions. Second breakdown pulse limits are valid for duty cycles to 10% provided $T_{J(pk)} \le 150^{\circ}C$. $T_{J(pk)}$ may be calculated from the data in Figure 4. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown.

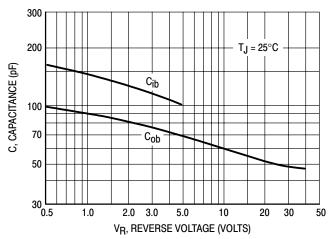
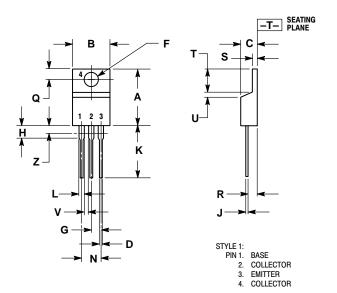



Figure 7. Capacitance

PACKAGE DIMENSIONS

TO-220AB **CASE 221A-09 ISSUE AA**

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.
 3. DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED.

	INCHES		MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
Α	0.570	0.620	14.48	15.75	
В	0.380	0.405	9.66	10.28	
С	0.160	0.190	4.07	4.82	
D	0.025	0.035	0.64	0.88	
F	0.142	0.147	3.61	3.73	
G	0.095	0.105	2.42	2.66	
Н	0.110	0.155	2.80	3.93	
J	0.018	0.025	0.46	0.64	
K	0.500	0.562	12.70	14.27	
L	0.045	0.060	1.15	1.52	
N	0.190	0.210	4.83	5.33	
Q	0.100	0.120	2.54	3.04	
R	0.080	0.110	2.04	2.79	
S	0.045	0.055	1.15	1.39	
T	0.235	0.255	5.97	6.47	
U	0.000	0.050	0.00	1.27	
٧	0.045		1.15		
Z		0.080		2.04	

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada **Fax**: 303–675–2176 or 800–344–3867 Toll Free USA/Canada

Email: ONlit@hibbertco.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031

Phone: 81–3–5740–2700 Email: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local

Sales Representative.