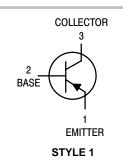
Preferred Device

# **General Purpose Transistors**

**PNP Silicon** 

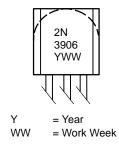


# ON Semiconductor<sup>™</sup>


#### http://onsemi.com

#### MAXIMUM RATINGS Rating Symbol Value Unit Vdc Collector-Emitter Voltage VCEO 40 Collector-Base Voltage 40 Vdc VCBO Vdc Emitter-Base Voltage VEBO 5.0 Collector Current - Continuous 200 mAdc IC Total Device Dissipation $P_D$ @ T<sub>A</sub> = 25°C 625 mW Derate above 25°C 5.0 mW/°C **Total Power Dissipation** $P_D$ 250 mW @ $T_A = 60^{\circ}C$ Total Device Dissipation PD @ $T_{C} = 25^{\circ}C$ Watts 1.5 Derate above 25°C 12 mW/°C °C Operating and Storage Junction -55 to TJ, Tstg **Temperature Range** +150

#### THERMAL CHARACTERISTICS (Note 1.)


| Characteristic                             | Symbol            | Max  | Unit |
|--------------------------------------------|-------------------|------|------|
| Thermal Resistance,<br>Junction to Ambient | $R_{	heta}JA$     | 200  | °C/W |
| Thermal Resistance,<br>Junction to Case    | R <sub>θ</sub> JC | 83.3 | °C/W |

1. Indicates Data in addition to JEDEC Requirements.





## MARKING DIAGRAMS



#### **ORDERING INFORMATION**

| Device     | Package | Shipping         |
|------------|---------|------------------|
| 2N3906     | TO-92   | 5000 Units/Box   |
| 2N3906RLRA | TO-92   | 2000/Tape & Reel |
| 2N3906RLRE | TO-92   | 2000/Tape & Reel |
| 2N3906RLRM | TO-92   | 2000/Ammo Pack   |
| 2N3906RLRP | TO-92   | 2000/Ammo Pack   |
| 2N3906RL1  | TO-92   | 2000/Tape & Reel |
| 2N3906ZL1  | TO-92   | 2000/Ammo Pack   |

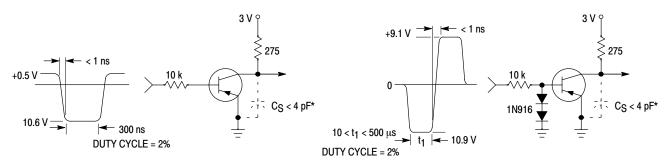
**Preferred** devices are recommended choices for future use and best overall value.

# **ELECTRICAL CHARACTERISTICS** (T<sub>A</sub> = 25°C unless otherwise noted)

| Characteristic                                                                      | Symbol                | Min | Max | Unit |
|-------------------------------------------------------------------------------------|-----------------------|-----|-----|------|
| OFF CHARACTERISTICS                                                                 |                       |     |     |      |
| Collector–Emitter Breakdown Voltage (Note 2.) ( $I_C = 1.0 \text{ mAdc}, I_B = 0$ ) | V <sub>(BR)</sub> CEO | 40  | -   | Vdc  |
| Collector–Base Breakdown Voltage ( $I_C = 10 \ \mu Adc$ , $I_E = 0$ )               | V(BR)CBO              | 40  | -   | Vdc  |
| Emitter–Base Breakdown Voltage ( $I_E = 10 \ \mu Adc$ , $I_C = 0$ )                 | V(BR)EBO              | 5.0 | -   | Vdc  |
| Base Cutoff Current (V <sub>CE</sub> = 30 Vdc, V <sub>EB</sub> = 3.0 Vdc)           | IBL                   | -   | 50  | nAdc |
| Collector Cutoff Current (V <sub>CE</sub> = 30 Vdc, V <sub>EB</sub> = 3.0 Vdc)      | ICEX                  | -   | 50  | nAdc |

#### ON CHARACTERISTICS (Note 2.)

| $ \begin{array}{l} \mbox{DC Current Gain} \\ (I_C = 0.1 \mbox{ mAdc}, V_{CE} = 1.0 \mbox{ Vdc}) \\ (I_C = 1.0 \mbox{ mAdc}, V_{CE} = 1.0 \mbox{ Vdc}) \\ (I_C = 10 \mbox{ mAdc}, V_{CE} = 1.0 \mbox{ Vdc}) \\ (I_C = 50 \mbox{ mAdc}, V_{CE} = 1.0 \mbox{ Vdc}) \\ (I_C = 100 \mbox{ mAdc}, V_{CE} = 1.0 \mbox{ Vdc}) \\ \end{array} $ | hfe                  | 60<br>80<br>100<br>60<br>30 | _<br><br>300<br><br>_ | -   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------------|-----------------------|-----|
| Collector–Emitter Saturation Voltage<br>( $I_C = 10 \text{ mAdc}, I_B = 1.0 \text{ mAdc}$ )<br>( $I_C = 50 \text{ mAdc}, I_B = 5.0 \text{ mAdc}$                                                                                                                                                                                       | V <sub>CE(sat)</sub> | -<br>-                      | 0.25<br>0.4           | Vdc |
| Base-Emitter Saturation Voltage<br>( $I_C = 10 \text{ mAdc}, I_B = 1.0 \text{ mAdc}$ )<br>( $I_C = 50 \text{ mAdc}, I_B = 5.0 \text{ mAdc}$ )                                                                                                                                                                                          | V <sub>BE(sat)</sub> | 0.65<br>-                   | 0.85<br>0.95          | Vdc |

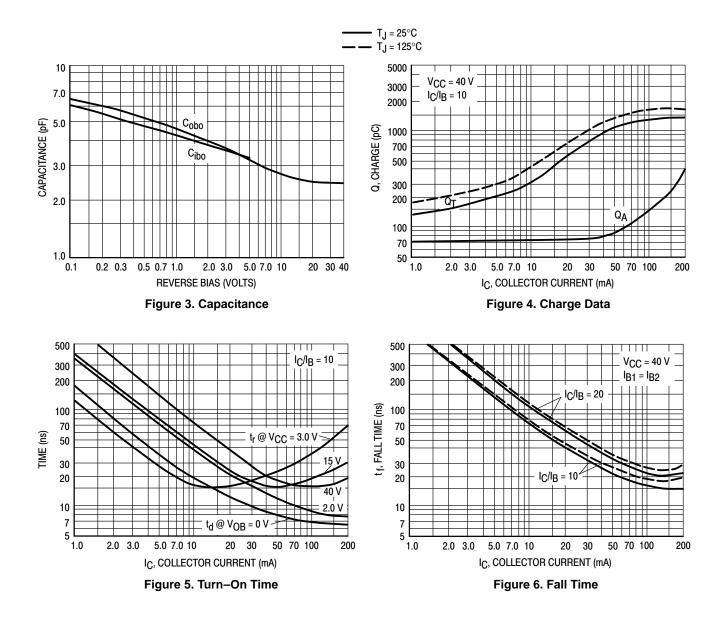

# SMALL-SIGNAL CHARACTERISTICS

| Current–Gain – Bandwidth Product                                                                                      | fT               |     |     | MHz                |
|-----------------------------------------------------------------------------------------------------------------------|------------------|-----|-----|--------------------|
| (I <sub>C</sub> = 10 mAdc, V <sub>CE</sub> = 20 Vdc, f = 100 MHz)                                                     |                  | 250 | -   |                    |
| Output Capacitance ( $V_{CB}$ = 5.0 Vdc, $I_E$ = 0, f = 1.0 MHz)                                                      | C <sub>obo</sub> | -   | 4.5 | pF                 |
| Input Capacitance ( $V_{EB} = 0.5 \text{ Vdc}$ , $I_C = 0, f = 1.0 \text{ MHz}$ )                                     | C <sub>ibo</sub> | -   | 10  | pF                 |
| Input Impedance (I <sub>C</sub> = 1.0 mAdc, $V_{CE}$ = 10 Vdc, f = 1.0 kHz)                                           | h <sub>ie</sub>  | 2.0 | 12  | kΩ                 |
| Voltage Feedback Ratio                                                                                                | h <sub>re</sub>  |     |     | X 10 <sup>-4</sup> |
| (I <sub>C</sub> = 1.0 mAdc, V <sub>CE</sub> = 10 Vdc, f = 1.0 kHz)                                                    |                  | 0.1 | 10  |                    |
| Small–Signal Current Gain                                                                                             | h <sub>fe</sub>  |     |     | -                  |
| (I <sub>C</sub> = 1.0 mAdc, V <sub>CE</sub> = 10 Vdc, f = 1.0 kHz)                                                    |                  | 100 | 400 |                    |
| Output Admittance (I <sub>C</sub> = 1.0 mAdc, $V_{CE}$ = 10 Vdc, f = 1.0 kHz)                                         | h <sub>oe</sub>  | 3.0 | 60  | μmhos              |
| Noise Figure                                                                                                          | NF               |     |     | dB                 |
| $(I_{C} = 100 \ \mu \text{Adc}, \ V_{CE} = 5.0 \ \text{Vdc}, \ R_{S} = 1.0 \ \text{k}\Omega, \ f = 1.0 \ \text{kHz})$ |                  | -   | 4.0 |                    |

#### SWITCHING CHARACTERISTICS

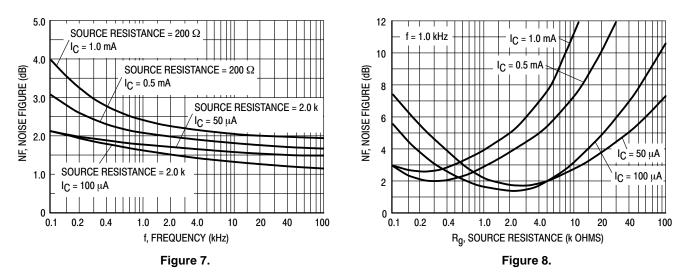
| Delay Time   | (V <sub>CC</sub> = 3.0 Vdc, V <sub>BE</sub> = 0.5 Vdc,                                    | td             | - | 35  | ns |
|--------------|-------------------------------------------------------------------------------------------|----------------|---|-----|----|
| Rise Time    | I <sub>C</sub> = 10 mAdc, I <sub>B1</sub> = 1.0 mAdc)                                     | tr             | - | 35  | ns |
| Storage Time | $(V_{CC} = 3.0 \text{ Vdc}, I_{C} = 10 \text{ mAdc}, I_{B1} = I_{B2} = 1.0 \text{ mAdc})$ | t <sub>s</sub> | _ | 225 | ns |
| Fall Time    | $(V_{CC} = 3.0 \text{ Vdc}, I_{C} = 10 \text{ mAdc}, I_{B1} = I_{B2} = 1.0 \text{ mAdc})$ | t <sub>f</sub> | _ | 75  | ns |

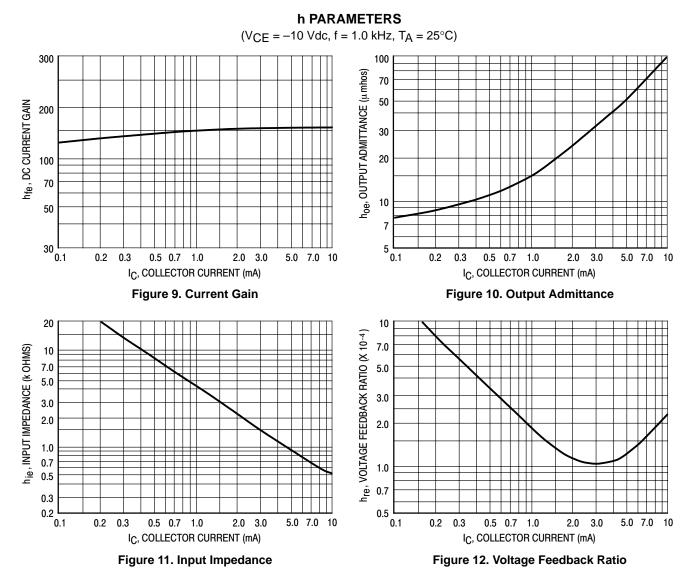
2. Pulse Test: Pulse Width  $\leq$  300 µs; Duty Cycle  $\leq$  2%.



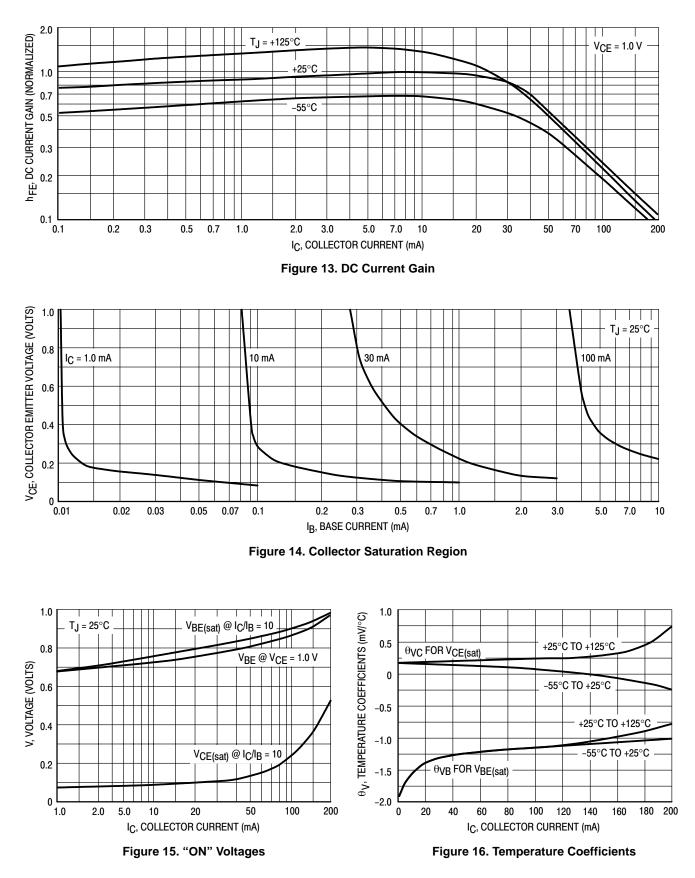

\* Total shunt capacitance of test jig and connectors

Figure 1. Delay and Rise Time Equivalent Test Circuit


Figure 2. Storage and Fall Time Equivalent Test Circuit

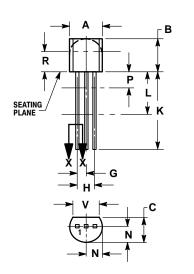

### **TYPICAL TRANSIENT CHARACTERISTICS**




#### **TYPICAL AUDIO SMALL-SIGNAL CHARACTERISTICS NOISE FIGURE VARIATIONS**

(V<sub>CE</sub> = -5.0 Vdc, T<sub>A</sub> =  $25^{\circ}$ C, Bandwidth = 1.0 Hz)










## PACKAGE DIMENSIONS

TO-92 **TO-226AA** CASE 29-11 **ISSUE AL** 





NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. CONTOUL OF PACKAGE BEYOND DIMENSION R IS UNCONTROLLED. 4. LEAD DIMENSION IS UNCONTROLLED IN P AND BEYOND DIMENSION K MINIMUM.

|     | INCHES |       | MILLIN | IETERS |
|-----|--------|-------|--------|--------|
| DIM | MIN    | MAX   | MIN    | MAX    |
| Α   | 0.175  | 0.205 | 4.45   | 5.20   |
| В   | 0.170  | 0.210 | 4.32   | 5.33   |
| С   | 0.125  | 0.165 | 3.18   | 4.19   |
| D   | 0.016  | 0.021 | 0.407  | 0.533  |
| G   | 0.045  | 0.055 | 1.15   | 1.39   |
| Η   | 0.095  | 0.105 | 2.42   | 2.66   |
| L   | 0.015  | 0.020 | 0.39   | 0.50   |
| Κ   | 0.500  |       | 12.70  |        |
| L   | 0.250  |       | 6.35   |        |
| Ν   | 0.080  | 0.105 | 2.04   | 2.66   |
| Ρ   |        | 0.100 |        | 2.54   |
| R   | 0.115  |       | 2.93   |        |
| ۷   | 0.135  |       | 3.43   |        |

STYLE 1: PIN 1. EMITTER 2. BASE 3. COLLECTOR STYLE 14: PIN 1. EMITTER 2. COLLECTOR 3. BASE

#### http://onsemi.com 6

# <u>Notes</u>

**ON Semiconductor** and without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

#### PUBLICATION ORDERING INFORMATION

#### Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada

Findle: 303–675–2175 of 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: ONlit@hibbertco.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031 Phone: 81–3–5740–2700 Email: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative.