MSM6568A

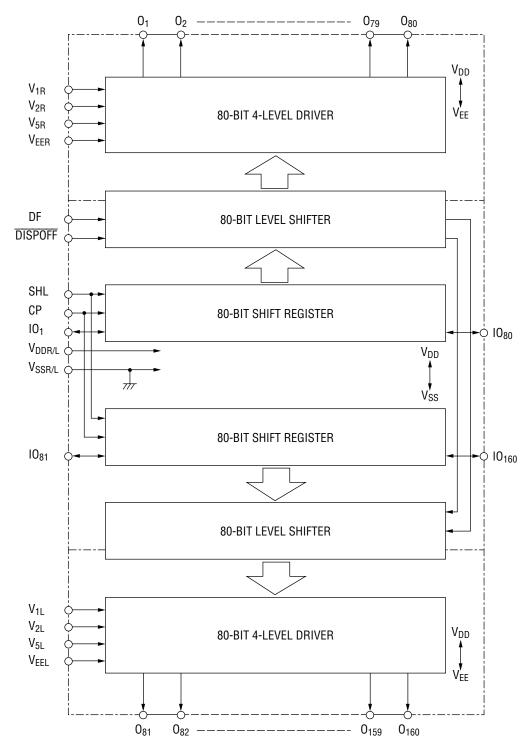
160-DOT COMMON DRIVER

GENERAL DESCRIPTION

The MSM6568A is a dot matrix LCD common driver which is fabricated in CMOS technology. The MSM6568A consists of two 80-bit bidirectional shift registers, two 80-bit level shifters, and two 80-bit 4-level drivers.

The MSM6568A is equipped with 160 output pins. By connecting two or more MSM6568A devices in cascade, the number of LCD outputs can be increased.

The MSM6568A can drive a variety of LCD panels because the bias voltage, which determines the LCD driving voltage, can be optionally supplied from an external source.


FEATURES

- Logic supply voltage : 2.7 to 5.5V
- LCD driving voltage : 14 to 28V
- Applicable LCD duty : 1/64 to 1/256
- External bias power supply available
- Package :

TCP mounting with 70mm wide film Tin-plated

(Product name : MSM6568AV-Z)

BLOCK DIAGRAM

(V_DDR/L stands for V_{DDR} and $V_{DDL},$ and $V_{SSR/L}$ for V_{SSR} and $V_{SSL}.)$

PIN CONFIGURATION (TOP VIEW)

(LCD input side)

Pin	Symbol	Pin	Symbol
1	V _{1L}	12	IO ₁₆₀
2	V _{2L}	13	I0 ₈₁
3	V _{5L}	14	IO ₈₀
4	V _{EEL}	15	I0 ₁
5	NC	16	V _{SSR}
6	V _{DDL}	17	V _{DDR}
7	SHL	18	NC
8	V _{SSL}	19	V _{EER}
9	DISPOFF	20	V _{5R}
10	СР	21	V _{2R}
11	DF	22	V _{1R}

NC : No connection

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Condition	Rating	Unit
Power Supply Voltage	V _{DD}	Ta=25°C	-0.3 to +6.5	V
Bias Voltage	V _{LCD}	Ta=25°C, V _{DD} – V _{EE}	0 to 30	V
Input Voltage	VI	Ta=25°C	-0.3 to V _{DD} +0.3	V
Storage Temperature	T _{STG}	—	-30 to +85	°C

* $V_{1}>V_{2}>V_{5}>V_{EE}$ $V_{EE}<V_{5}\leq V_{EE}+10V$ $V_{DD}\geq V1>V2\geq V_{DD}-10V$ $V_{DD}=V_{DDR}=V_{DDL}, V_{1}=V_{1R}=V_{1L}, V_{2}=V_{2R}=V_{2L},$ $V_{5}=V_{5R}=V_{5L}, V_{EE}=V_{EER}=V_{EEL}$

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Condition		Range	Unit
Power Supply Voltage	V _{DD}	_		2.7 to 5.5	V
			No load	14 to 28	V
Bias Voltage	V _{LCD}	V _{DD} – V _{EE}	LCD being driven	18 to 28	V
Operating Temperature	T _{op}	-		-20 to +75	°C

* $V_{1}>V_{2}>V_{5}>V_{EE}$ $V_{EE}<V_{5}\leq V_{EE}+7V$ $V_{DD}\geq V1>V2\geq V_{DD}-7V$ $V_{DD}=V_{DDR}=V_{DDL}, V_{1}=V_{1R}=V_{1L}, V_{2}=V_{2R}=V_{2L},$ $V_{5}=V_{5R}=V_{5L}, V_{EE}=V_{EER}=V_{EEL}$

ELECTRICAL CHARACTERISTICS

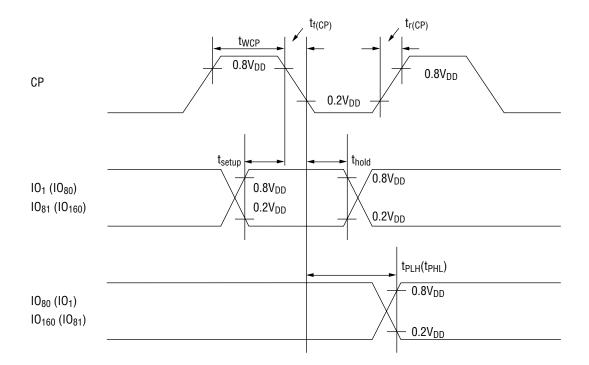
DC Characteristics

			(V _{DD} =2.7	7 to 5.5V,	Ta=-20 te	o +75°C)
Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
"H" Input Voltage	V _{IH} *1	—	0.8V _{DD}	_		V
"L" Input Voltage	V _{IL} *1	—	—	_	0.2V _{DD}	V
"H" Input Current	I _{IH} *1	$V_I=V_{DD}, V_{DD}=5.5V$	_	_	1	μA
"L" Input Current	I _{IL} *1	V _I =0V, V _{DD} =5.5V	—	_	-1	μA
"H" Output Voltage	V _{0Н} *2	I ₀ =-0.2mA, V _{DD} =2.7V	V _{DD} -0.4	_		V
"L" Output Voltage	V _{0L} *2	I ₀ =0.2mA, V _{DD} =2.7V	—	_	0.4	V
ON Resistance	Ron *4	V _{DD} -V _{EE} =25V *3	—	_	2.0	kΩ
UN RESISTATICE	R _{ON} *4	V _N -V ₀ =0.25V	—	_	2.0	K52
Supply Current	I _{SS}	CP=22kHz, V _{DD} =3.0V	_	_	50	۸
Supply Current	I _{EE}	V_{DD} – V_{EE} =25V, no load*5	—		300	μA
Input Capacitance	CI	f=1MHz	_	5		pF

*1 Applied to CP, IO1, IO80, IO81, IO160, SHL, DF, DISPOFF

*2 Applied to IO₁, IO₈₀, IO₈₁, IO₁₆₀

- *3 $V_N = V_{DD}$ to V_{EE} , $V_2 = 1/16 (V_{DD} V_{EE})$, $V_5 = 15/16 (V_{DD} V_{EE})$ $V_{DD} = V_1$, $V_{DD} = 4.5V$, $V_1 = V_{1L} = V_{1R}$, $V_2 = V_{2L} = V_{2R}$, $V_5 = V_{5L} = V_{5R}$, $V_{EE} = V_{EEL} = V_{EER}$, $V_{DD} = V_{DDL} = V_{DDR}$
- *4 Applied to O₁ to O₁₆₀
- *5 Input a "H" level signal through the IO pins every 240 clock pulses when a supply current is measured.


The DF frequency is 45Hz.

Switching Characteristics

(V_{DD}=2.7 to 5.5V, Ta=-20 to +75°C, C_L=15pF)

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
"H", "L" Propagation Delay Time	t _{PHL}				0	
П, L FTOPAYAUOIT Delay TITTE	трін			_	3	μs
Maximum Clock Frequency	f _{CP}	—	1	_	—	MHz
Clock Pulse Width	t _{WCP}	—	63	_	_	ns
Data Setup Time			100			
$IO_n \rightarrow CP$ *1	t _{setup}	—	100		_	ns
Data Hold Time			100			
$CP \rightarrow IO_n$ *1	t _{hold}	—	100	_	_	ns
	t _{r(CP)}		_	_	20	ns
Rise Time / Fall Time of CP	t _{f(CP)}	—				

*1 IOn=IO1-IO160

FUNCTIONAL DESCRIPTION

Pin Functional Description

• IO₁, IO₈₀, IO₈₁, IO₁₆₀

Data input/output pins for the two 80-bit bidirectional shift registers.

• SHL

Input pin to select the shift direction of the two 80-bit bidirectional registers.

Table 1 shows the relations between the SHL pin and the IO_1 , IO_{80} , IO_{81} , IO_{160} pins.

• CP

Clock pulse input pin for the two 80-bit bidirectional shift registers.

Scan data shifts at the falling edge of a clock pulse.

• DF

Signal input pin to synchronize with AC current for LCD driving waveforms. Normally an inverted frame signal is input to this pin.

• V_{DDL}, V_{DDR}, V_{SSL}, V_{SSR} Power supply pins.

Normal operating conditions are $V_{DDR}=V_{DDL}=2.7$ to 5.5V, $V_{SSR}=V_{SSL}=0V$.

• DISPOFF

Input pin to control the O_1 to O_{160} outputs. During input of "L" level, V_1 levels are output from O_1 to $O_{160}.$

• V_{1L}, V_{1R}, V_{2L}, V_{2R}, V_{5L}, V_{5R}, V_{EEL}, V_{EER}

Bias voltage input pins for LCD driving. Voltages must be input to all these pins.

• O₁ to O₁₆₀

4-level driver output pins corresponding to each bit of the shift registers.

The V_1 , V_2 , V_5 , or \hat{V}_{EE} level is selected and output based on the combination of shift register data and a DF signal.

Table 2 shows the relations between the scan data and the LCD driving outputs.

Table 1	
---------	--

SHL	Shift direction	IO ₁ , IO ₈₁ / IO ₈₀ , IO ₁₆₀	I/O	Input
	0 ₁ →0 ₈₀ IO ₁ , IO ₈₁	10 10	Innut	$\rm IO_1$ and $\rm IO_{81}$ are data input pins for the shift register.
		Input	Data is input to these pins in synchronization with clocks	
L	$0_{81} \rightarrow 0_{160}$	$\begin{array}{c c} 0_1 \to 0_{80} & & & \\ 0_{81} \to 0_{160} & & & \\ \hline & & & & \\ 10_{80}, 10_{160} & & \\ \end{array}$	Output	and is output from IO_{80} and IO_{160} with delay by the number
			Output	(80) of shift register bits in synchronization with clocks.
	$\begin{array}{c} 0_{80} \rightarrow 0_1 \\ 0_{160} \rightarrow 0_{81} \end{array}$	0 ₈₀ →0 ₁ IO ₈₀ , IO ₁₆₀ Input	المسيط	IO_{80} and IO_{160} are data input pins for the shift register.
			Input	Data is input to these pins in synchronization with clocks
Н		10 10	Output	and is output from IO_1 and IO_{81} with delay by the number
		10 ₁ , 10 ₈₁		(80) of shift register bits in synchronization with clocks.

Table 2

Scan data	LCD driving output
Н	Select levels (V ₁ , V _{EE})
L	Non-select levels (V ₂ , V ₅)

Truth Table

DF	Shift register data	DISPOFF	Driver output level (O ₁ -O ₁₆₀)
L	L	Н	V2
L	Н	Н	V _{EE}
Н	L	Н	V5
Н	Н	Н	V ₁
Х	Х	L	V ₁

X : Don't Care