OKI Semiconductor

MSM27C1655CZ

524,288-Double Word x 32-Bit or 1,048,576-Word x 16-Bit

4-Double Word x 32-Bit or 8-Word x 16-Bit Page Mode One Time PROM

DESCRIPTION

The MSM27C1655CZ is a 16Mbit electrically Programmable Read-Only Memory with page mode. Its configuration can be electrically switched between 524,288 double word x 32bit and 1,048,576 word x 16bit. The MSM27C1655CZ operates on a single +5V power supply and is TTL compatible. The MSM27C1655CZ provides Page mode which can greatly reduce the read access time. Since the MSM27C1655CZ operates asynchronously , external clocks are not required , making this device easy-to-use. The MSM27C1655CZ is suitable as large-capacity fixed memory for microcomputers and data terminals. It is manufactured using a CMOS double silicon gate technology and is offered in 70-pin SSOP , 70-pin TSOP packages.

FEATURES

- 524,288 double word x 32bit / 1,048,576 word x 16bit electrically switchable configuration
- Single +5V power supply
- Access time 100ns

Page mode access time 30ns

- Input / Output TTL compatible
- Three-state output
- Packages

70-pin plastic SSOP (SSOP70-P-500-0.80-K) 70-pin plastic TSOP (TSOPII70-P-400-0.65-K)

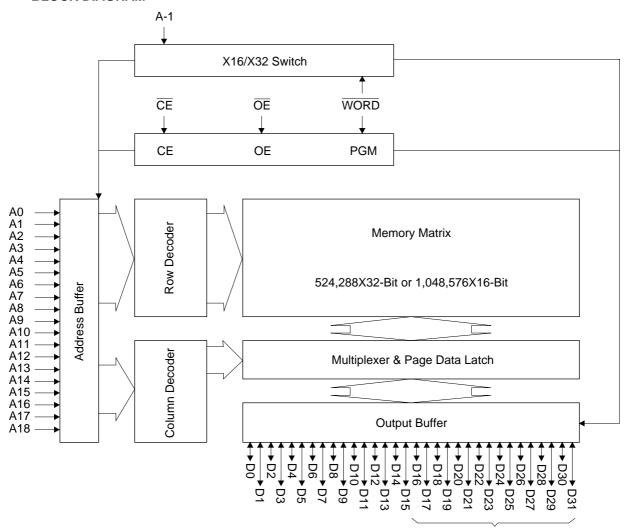
PIN CONFIGURATION (TOP VIEW)

		,	
A0 1	\bigcirc	70	V_{PP}
A1 2			NC
A2 3			NC
A3 4		67	WORD
A4 5		66	ŌĒ
A5 6		65	CE
V _{CC} 7		64	V_{SS}
D0 8		63	D31/A-1
D16 9		62	D15
D1 10		61	D30
D17 11		60	D14
V _{SS} 12		59	V_{SS}
V _{CC} 13		58	V_{CC}
D2 14			D29
D18 15			D13
D3 16			D28
D19 17			D12
D4 18			D27
D20 19			D11
D5 20			D26
D21 21			D10
V _{SS} 22			V_{SS}
V _{CC} 23			V_{CC}
D6 24		l	D25
D22 25			D9
D7 26			D24
D23 27		44	
V _{SS} 28			V_{CC}
A6 29			NC
A7 30			A18
A8 31			A17
A9 32			A16
A10 33		38	A15

PIN NAMES	FUNCTIONS
D31/A-1	Data output / Address input
A0 - A18	Address input
D0 - D30	Data output
CE	Chip enable
ŌĒ	Output enable
V _{CC}	Power supply voltage
V _{SS}	GND
WORD	Mode switch
V _{PP}	Program power supply voltage
NC	Non connection

70-pin SSOP , TSOP

37 A14


36 A13

A11 34

A12 35

MSM27C1655CZ

BLOCK DIAGRAM

In 16-bit output mode, these pins are three-stated and pin D31 functions as the A-1 address pin.

FUNCTION TABLE

MODE	CE	ŌĒ	WORD	V _{PP}	V _{CC}	D0 - D15	D16 - D30	D31/A-1			
READ (32-Bit)	L	L	Н				D _{OUT}				
READ (16-Bit)	L	L	L		4.5\	D _{OUT}	Hi-Z	L/H			
OUTDUT DICADLE		Н	Н	*				4.5V to		Hi-Z	_
OUTPUT DISABLE	L	П	L		5.5V		ПІ-Д	*			
STAND-BY	Н	*	Н				Hi-Z —				
21 AIND-D1	"		L				1 II-Z	*			
PROGRAM	L	Н				D _{IN}	Hi-Z	L/H			
PROGRAM INHIBIT	Н	Н	L	11.5V	6.25V		Hi-Z				
PROGRAM VERIFY	Н	L				D _{OUT}	Hi-Z	L/H			

^{*:} Don't Care

3

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Condition	Value	Unit
Operating temperature under bias	Topr		0 to 70	°C
Storage temperature	T _{stg}	-	-55 to 125	°C
Input voltage	V _I		-0.5 to V _{CC} + 0.5	V
Output voltage	Vo		-0.5 to V _{CC} + 0.5	V
Power supply voltage	V _{CC}	relative to V _{SS}	-0.5 to 7	V
Program power supply voltage	V_{PP}		-0.5 to 12.5	V
Power dissipation per package	P_{D}	-	1.0	W

RECOMMENDED OPERATING CONDITIONS FOR READ

(Ta=0 to 70° C)

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
V _{CC} power supply voltage	V _{CC}	V _{CC} =4.5V-5.5V	4.5	-	5.5	V
V _{PP} power supply voltage	V _{PP}		-0.5	-	V _{CC} +0.5	V
Input "H" level	V _{IH}	VCC= 1.0 V 0.0 V	2.2	-	V _{CC} +0.5	V
Input "L" level	V _{IL}		-0.5	-	0.8	V

Voltage is relative to Vss

ELECTRICAL CHARACTERISTICS (Read operation)

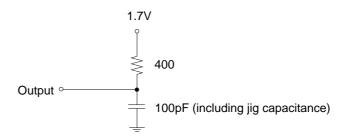
DC Characteristics

(V_{CC} =5V±0.5V, Ta=0 to 70 $^{\circ}$ C)

			(- CC -		.,	,
Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Input leakage current	ILI	V _I =0 to Vcc	-	-	10	μΑ
Output leakage current	I _{LO}	V _O =0 to Vcc	-	-	10	μΑ
V _{CC} power supply current	I _{CS1}	CE=V _{CC}	-	-	50	μΑ
(Standby)	I _{CS2}	CE=V _{IH}	-	-	1	mA
V _{CC} power supply current (Read)	I _{CCA}	CE=V _{IL} , OE=V _{IH} tc=100ns	-	-	120	mA
V _{PP} power supply current	I _{PP}	V _{PP} =V _{CC}	-	-	10	μΑ
Input "H" level	V _{IH}	-	2.2	-	V _{CC} +0.5	V
Input "L" level	V _{IL}	-	-0.5	-	0.8	V
Output "H" level	V _{OH}	I _{OH} =-400μA	2.4	-	-	V
Output "L" level	V _{OL}	I _{OL} =2.1mA	-		0.45	V

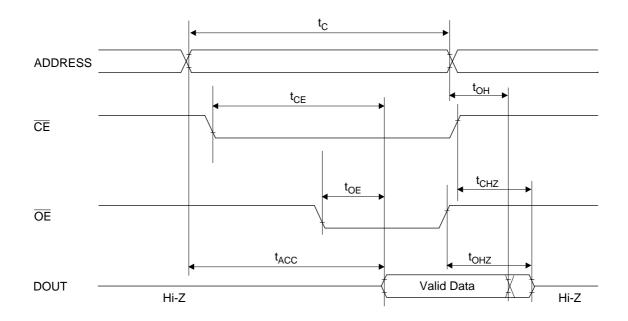
Voltage is relative to Vss

AC Characteristics

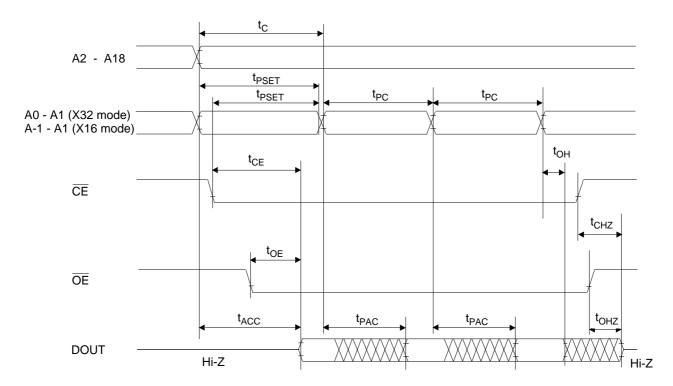

(V_{CC} =5V±0.5V, Ta=0 to 70 $^{\circ}$ C)

Parameter	Symbol	Condition	Min.	Max.	Unit
Address access cycle time	T _C	-	100	-	ns
Address access time	T _{ACC}	CE=OE=V _{IL}	-	100	ns
Page set up time	T _{PSET}	NOTE(1)	120	-	ns
Page access cycle time	T _{PC}	-	30	-	ns
Page access time	T _{PAC}	-	-	30	ns
CE access time	T _{CE}	ŌE=V _{IL}	-	100	ns
OE access time	T _{OE}	CE=V _{IL}	-	30	ns
Output disable time	T _{CHZ}	OE=V _{IL}	0	30	ns
Output disable time	T _{OHZ}	CE=V _{IL}	0	25	ns
Output hold time	T _{OH}	$\overline{CE} = \overline{OE} = V_{IL}$	0	-	ns

NOTE(1) T_{PSET} is defined as the end of either \overline{CE} trailing edge or address transition in random access term until the first page address transition.


Measurement conditions

Input signal level ------ 0V/3V
Input timing reference level ----- 0.8V/2.0V
Output load ------ 1TTL gate + 100pF
Output timing reference level ----- 0.8V/2.0V



TIMING CHART

NORMAL MODE READ CYCLE

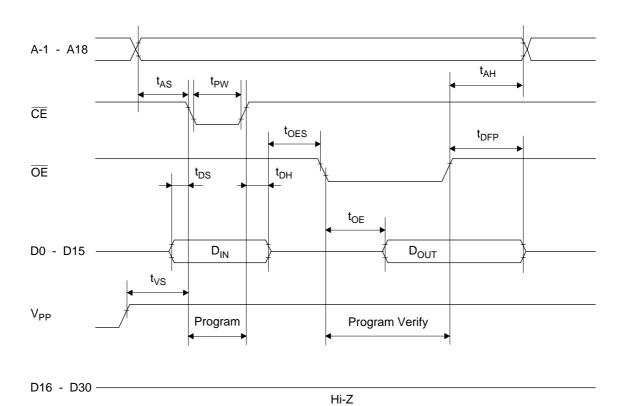
PAGE MODE READ CYCLE

ELECTRICAL CHARACTERISTICS (Programming operation)

DC Characteristics

(Ta=25°C±5°C)

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Input leakage current	I _{LI}	V _I =V _{CC} +0.5V	-	-	10	μΑ
V _{PP} power supply current (Program)	I _{PP2}	CE=V _{IL}	-	-	50	mA
V _{CC} power supply current	I _{CC}	-	-	-	100	mA
Input "H" level	V _{IH}	-	2.2	-	V _{CC} +0.5	V
Input "L" level	V _{IL}	-	-0.5	-	0.8	V
Output "H" level	V _{OH}	I _{OH} =-400μA	2.4	-	-	V
Output "L" level	V _{OL}	I _{OL} =2.1mA	-	-	0.45	V
Program voltage	V_{PP}	-	11.25	11.5	11.75	V
V _{CC} power supply voltage	V _{CC}	-	6.0	6.25	6.5	V

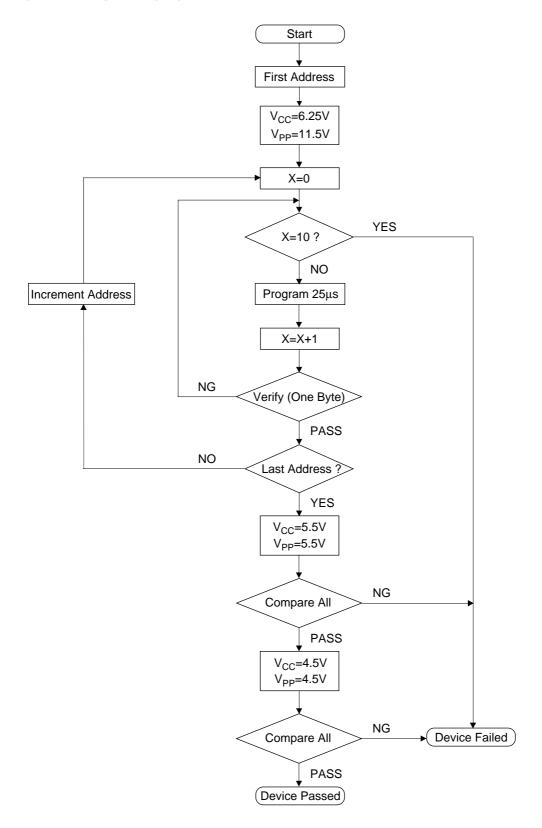

Voltage is relative to Vss

AC Characteristics

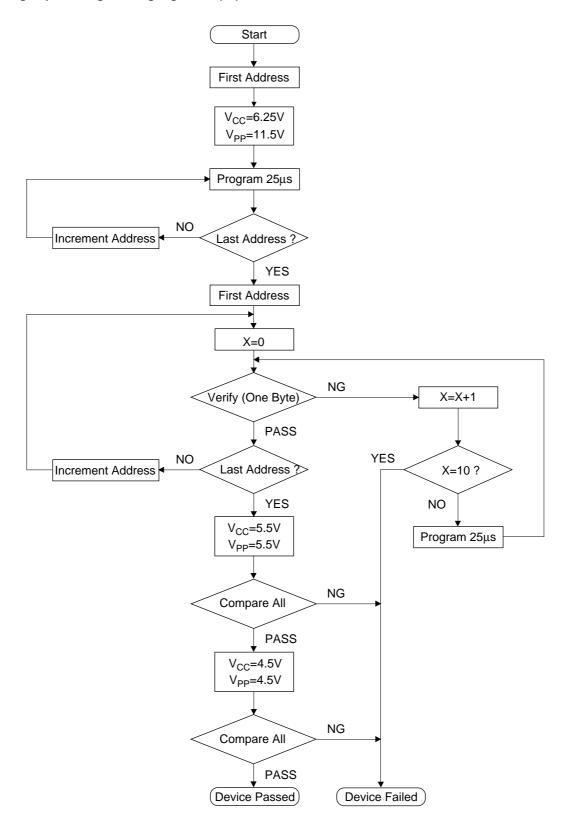
 $(\mathsf{V}_{CC}\!\!=\!\!6.25 \mathsf{V}\!\!\pm\!\!0.25 \mathsf{V},\!\mathsf{V}_{pp}\!\!=\!\!11.5 \mathsf{V}\!\!\pm\!\!0.25 \mathsf{V},\!\mathsf{Ta}\!\!=\!\!25^{\circ}\!C\!\!\pm\!\!5^{\circ}\!C)$

		. 00	PP			
Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Address set-up time	T _{AS}	-	2	-	-	μs
OE set-up time	T _{OES}	-	2	-	-	μs
Data set-up time	T _{DS}	-	2	-	-	μs
Address hold time	T _{AH}	-	0	-	-	μs
Data hold time	T _{DH}	-	2	-	-	μs
Output float delay from OE	T _{DFP}	-	0	-	130	ns
V _{PP} voltage set-up time	T _{VS}	-	2	-	-	μs
Program pulse width	T _{PW}	-	23	25	27	μs
Data valid from OE	T _{OE}	-	-	-	150	ns

Programming Waveform



PIN Capacitance


(V_{CC}=5V, Ta=25°C, f=1MHz)

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Input	C _{IN1}	V ₁ =0V	-	-	12	
V _{PP}	C _{IN2}	v =0 v	-	-	60	pF
Output	C _{OUT}	V _O =0V	-	-	15	

High Speed Programming Algorithm (I)

High Speed Programming Algorithm (II)

NOTICE

The information contained herein can change without notice owing to product and/or technical improvements. Before using the product, please make sure that the information being referred to is up-to-date.

The outline of action and examples for application circuits described herein have been chosen as an explanation for the standard action and performance of the product. When planning to use the product, please ensure that the external conditions are reflected in the actual circuit, assembly, and program designs.

When designing your product, please use our product below the specified maximum ratings and within the specified operating ranges including, but not limited to, operating voltage, power dissipation, and operating temperature.

Oki assumes no responsibility or liability whatsoever for any failure or unusual or unexpected operation resulting from misuse, neglect, improper installation, repair, alteration or accident, improper handling, or unusual physical or electrical stress including, but not limited to, exposure to parameters beyond the specified maximum ratings or operation outside the specified operating range.

Neither indemnity against nor license of a third party's industrial and intellectual property right, etc. is granted by us in connection with the use of the product and/or the information and drawings contained herein. No responsibility is assumed by us for any infringement of a third party's right which may result from the use thereof.

The products listed in this document are intended for use in general electronics equipment for commercial applications (e.g., office automation, communication equipment, measurement equipment, consumer electronics, etc.). These products are not authorized for use in any system or application that requires special or enhanced quality and reliability characteristics nor in any system or application where the failure of such system or application may result in the loss or damage of property, or death or injury to humans. Such applications include, but are not limited to, traffic and automotive equipment, safety devices, aerospace equipment, nuclear power control, medical equipment, and life-support systems.

Certain products in this document may need government approval before they can be exported to particular countries. The purchaser assumes the responsibility of determining the legality of export of these products and will take appropriate and necessary steps at their own expense for these.

No part of the contents cotained herein may be reprinted or reproduced without our prior permission.

All brand, company and product names are the trademarks or registered trademarks of their respective owners.

Copyright 1998 Oki Electric Industry Co., Ltd.

ADDRESSES & SEMICONDUCTOR WEB SITES

OKI Electric Industry Co., Ltd.,

Device Business Group, 10-3, Shibaura, 4-chome, Minato-ku, Tokyo 108, Japan, Tel.: +81-(0)3-5445-6327,

Fax.: +81-(0)3-5445-6328,

http://www.oki.co.jp/OKI/DBG/english/index.htm

(NOTE: URL is case sensitive)

OKI Semiconductor Group,

785 North Mary Avenue, Sunnyvale, CA 94086, U.S.A., Tel.: +1-408-720-1900, Fax.: +1-408-720-1918, http://www.okisemi.com/

OKI Electric Europe GmbH,

Head Office Europe, Hellersbergstrasse 2, D-41460 Neuss, Germany, Tel: +49-2131-15960, Fax: +49-2131-103539, http://www.oki-europe.de/

OKI Electronics (Hong Kong) Ltd.,

Suite 1901-1&19, Tower 3, China Hong Kong City, 33 Canton Road, Tsimshatsui, Kowloon, Hong Kong, Tel.: +852-2-736-2336,

Tel.: +852-2-736-2336, Fax.: +852-2-736-2395

OKI Semiconductor (Asia) Pte. Ltd.,

78 Shenton Way 09-01, Singapore 0207, Tel.: +65-221-3722, Fax.: +65-323-5376

OKI Semiconductor (Asia) Pte. Ltd.,

Taipei Branch,

7th Fl. No.260, Tun Hwa North Road,

Taipei, Taiwan, R.O.C., Sumitomo-Flysun Building, Tel.: +886-2-2719-2561,

Fax.: +886-2-2715-2892 http://www.oki.net.tw/

For further information, please contact:

