

MM54C192/MM74C192 Synchronous 4-Bit Up/Down Decade Counter MM54C193/MM74C193 Synchronous 4-Bit Up/Down Binary Counter

General Description

These up/down counters are monolithic complementary MOS (CMOS) integrated circuits. The MM54C192 and MM74C192 are BCD counters, while the MM54C193 and MM74C193 are binary counters.

Counting up and counting down is performed by two count inputs, one being held high while the other is clocked. The outputs change on the positive-going transition of this clock. These counters feature preset inputs that are set when load is a logical "0" and a clear which forces all outputs to "0" when it is at a logical "1". The counters also have carry and borrow outputs so that they can be cascaded using no external circuitry.

Connection Diagram

MM54C192/MM74C192 MM54C193/MM74C193

Decade Counte Binary Counter

Counte

Features High noise margin 1V guaranteed Drive 2 LPTTL loads Tenth power TTL compatible

- 3V to 15V Wide supply range
- Carry and borrow outputs for N-bit cascading
- Asynchronous clear
- High noise immunity

0.45 V_{CC} (typ.)

Synchronous 4-Bit Up/Down Dual-In-Line Package INPUTS OUTPUTS INPUTS DATA DATA DATA CLEAR BORROW CARRY LOAD 16 13 12 11 10 15 14 DATA COUNT COUNT GND 0_A $\boldsymbol{u}_{\mathsf{D}}$ Q, Q_c INPUT OUTPUTS OUTPUTS INPUTS TL/F/5901-1 **Top View** Order Number MM54C192, MM74C192, MM54C193 or MM74C193

© 1995 National Semiconductor Corporation TL/F/5901 RRD-B30M105/Printed in U. S. A.

•	ontact the National Semic stributors for availability and					18V	
Voltage at	-	.3V to V _{CC} + 0.3V Dual-In-Line			7	700 mW	
	Temperature Range (T _A)	Small Outlin				500 mW	
MM54C154		-55° C to $+125^{\circ}$ C Operating V _C -40^{\circ}C to $+85^{\circ}$ C			3V to 15V 260℃C		
		(Soldering,					
	actrical Characteris	tics Min/Max limits apply across tem		loss othor	wise poted		
Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
моѕ то сі	MOS	•			•		
V _{IN(1)}	Logical "1" Input Voltage	$V_{CC} = 5V$	3.5			V	
		$V_{CC} = 10V$	8.0			V	
V _{IN(0)}	Logical "0" Input Voltage	$V_{CC} = 5V$			1.5	V	
		$V_{CC} = 10V$			2.0	V	
V _{OUT(1)}	Logical "1" Output Voltage	$V_{CC} = 5V, I_{O} = -10 \ \mu A$	4.5			V	
		$V_{CC} = 10V, I_{O} = -10 \ \mu A$	9.0			V	
V _{OUT(0)}	Logical "0" Output Voltage	$V_{\rm CC} = 5V, I_{\rm O} = 10 \ \mu {\rm A}$			0.5	V	
		$V_{CC} = 10V, I_{O} = 10 \ \mu A$			1.0	V	
I _{IN(1)}	Logical "1" Input Current	$V_{CC} = 15V, V_{IN} = 15V$		0.005	1.0	μΑ	
I _{IN(0)}	Logical "0" Input Current	$V_{CC} = 15V, V_{IN} = 0V$	-1.0	-0.005		μΑ	
I _{CC}	Supply Current	$V_{\rm CC} = 15V$		0.05	300	μA	
MOS TO LF	PTTL INTERFACE						
V _{IN(1)}	Logical "1" Input Voltage	$\begin{array}{ccc} 54C & V_{CC} = 4.5V \\ 74C & V_{CC} = 4.75V \end{array}$	$\begin{array}{c} V_{CC}-1.5\\ V_{CC}-1.5\end{array}$			v v	
V _{IN(0)}	Logical "0" Input Voltage	$\begin{array}{ccc} 54C & V_{CC} = 4.5V \\ 74C & V_{CC} = 4.75V \end{array}$			0.8 0.8	V V	
V _{OUT(1)}	Logical "1" Output Voltage		2.4 2.4			V V	
V _{OUT(0)}	Logical "0" Output Voltage	$\begin{array}{ccc} 54C & V_{CC} = 4.5V, I_O = 360 \; \mu A \\ 74C & V_{CC} = 4.75V, I_O = 360 \; \mu A \end{array}$			0.4 0.4	V V	
UTPUT DR	IVE (See 54C/74C Family Cha	racteristics Data Sheet) (Short Circui	t Current)				
ISOURCE	Output Source Current	$V_{CC} = 5V, V_{IN(0)} = 0V$ $T_A = 25^{\circ}C, V_{OUT} = 0V$	-1.75			mA	
ISOURCE	Output Source Current		-8			mA	
ISINK	Output Sink Current	$\begin{split} V_{CC} &= 5V, V_{IN(1)} = 5V \\ T_A &= 25^\circ C, V_{OUT} = V_{CC} \end{split}$	1.75			mA	
ISINK	Output Sink Current	$V_{CC} = 10V, V_{IN(1)} = 10V$ $T_A = 25^{\circ}C, V_{OUT} = V_{CC}$	8			mA	
		es beyond which the safety of the device cannot b I be operated at these limits. The table of "Electr					

Symbol	Parameter	Conditions	Min	Тур	Max	Units
t _{pd}	Propagation Delay Time to Q from Count Up or Down	$V_{CC} = 5V$ $V_{CC} = 10V$		250 100	400 160	ns ns
t _{pd}	Propagation Delay Time to Q Borrow from Count Down	$V_{CC} = 5V$ $V_{CC} = 10V$		120 50	200 80	ns ns
t _{pd}	Propagation Delay Time to Carry from Count Up	$V_{CC} = 5V$ $V_{CC} = 10V$		120 50	200 80	ns ns
ts	Time Prior to Load that Data Must be Present	$V_{CC} = 5V$ $V_{CC} = 10V$		100 30	160 50	ns ns
t _W	Minimum Clear Pulse Width	$V_{CC} = 5V$ $V_{CC} = 10V$		300 120	480 190	ns ns
t _W	Minimum Load Pulse Width	$V_{CC} = 5V$ $V_{CC} = 10V$		100 40	160 65	ns ns
t _{pd0} , t _{pd1}	Propagation Delay Time to Q from Load	$V_{CC} = 5V$ $V_{CC} = 10V$		300 120	480 190	ns ns
tw	Minimum Count Pulse Width	$V_{CC} = 5V$ $V_{CC} = 10V$		120 35	200 80	ns ns
f _{MAX}	Maximum Count Frequency	$V_{CC} = 5V$ $V_{CC} = 10V$	2.5 6	4 10		MHz MHz
t _r , t _f	Count Rise and Fall Time	$V_{CC} = 5V$ $V_{CC} = 10V$			15 5	μs μs
C _{IN}	Input Capacitance	(Note 2)		5		pF
C _{PD}	Power Dissipation Capacitance	(Note 3)		100		pF

*AC Parameters are guaranteed by DC correlated testing.

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2: Capacitance is guaranteed by periodic testing.

Note 3: CPD determines the no load AC power consumption of any CMOS device. For complete explanation, see 54C/74C Family Characteristics, Application Note AN-90.

> 13.5 12.5

2.5 1.5

15V

TL/F/5901-3

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.