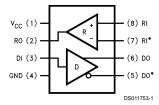
National Semiconductor

DS89C21 Differential CMOS Line Driver and Receiver Pair

General Description


The DS89C21 is a differential CMOS line driver and receiver pair, designed to meet the requirements of TIA/EIA-422-A (RS-422) electrical characteristics interface standard. The DS89C21 provides one driver and one receiver in a minimum footprint. The device is offered in an 8-pin SOIC package.

The CMOS design minimizes the supply current to 6 mA, making the device ideal for use in battery powered or power conscious applications.

The driver features a fast transition time specified at 2.2 ns, and a maximum differential skew of 2 ns making the driver ideal for use in high speed applications operating above 10 MHz.

The receiver can detect signals as low as 200 mV, and also incorporates hysteresis for noise rejection. Skew is specified at 4 ns maximum.

Connection Diagram

Order Number DS89C21TM See NS Package Number M08A The DS89C21 is compatible with TTL and CMOS levels (DI and RO).

Features

- Meets TIA/EIA-422-A (RS-422) and CCITT V.11 recommendation
- LOW POWER design 15 mW typical
- Guaranteed AC parameters:
- Maximum driver skew 2.0 ns
 Maximum receiver skew 4.0 ns
- Extended temperature range: -40°C to +85°C
- Available in SOIC packaging
- Operates over 20 Mbps
- Receiver OPEN input failsafe feature

Truth Tables

Driver

Input	Outputs		
DI	DO	DO*	
Н	Н	L	
L	L	Н	

Receiver

Output			
RO			
Н			
L			
Н			

†Non-terminated

June 1998

© 1998 National Semiconductor Corporation DS011753

Absolute Maximum Ratings (Note 1)

·

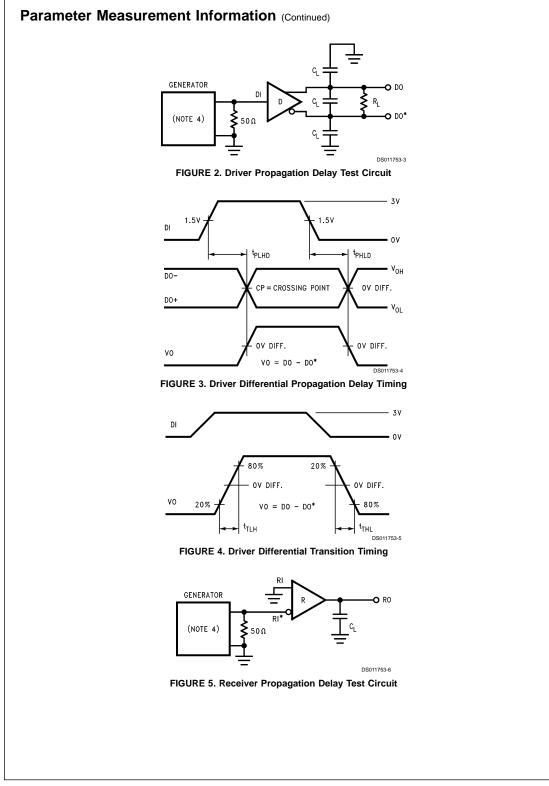
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage (V _{CC})	7V
Driver Input Voltage (DI)	-1.5V to V _{CC} + 1.5V
Driver Output Voltage (DO, DO) Receiver Input Voltage — V	-0.5V to +7V
CM	
(RI, RI [*])	±14V
Differential Receiver Input	±14V
Voltage — V _{DIFF} (RI, RI [*])	
Receiver Output Voltage (RO)	–0.5V to V _{CC} +0.5V
Receiver Output Current (RO)	±25 mA
Storage Temperature Range	

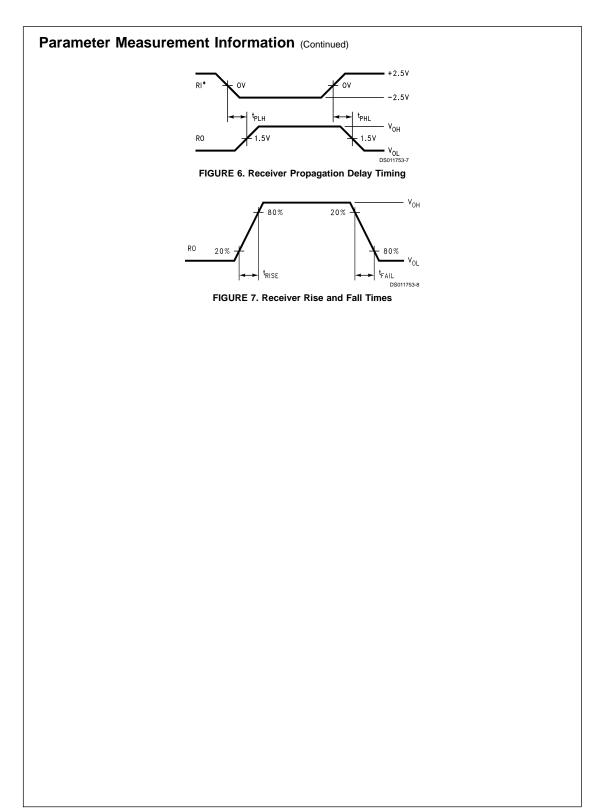
(T _{STG})	–65°C to +150°C
Lead Temperature (T _L)	+260°C
(Soldering 4 sec.)	
Maximum Junction Temperature	150°C
Maximum Package Power Dissipation	n @+25°C
M Package	714 mW
Derate M Package	5.7 mW/°C above +25°C

Recommended Operating Conditions

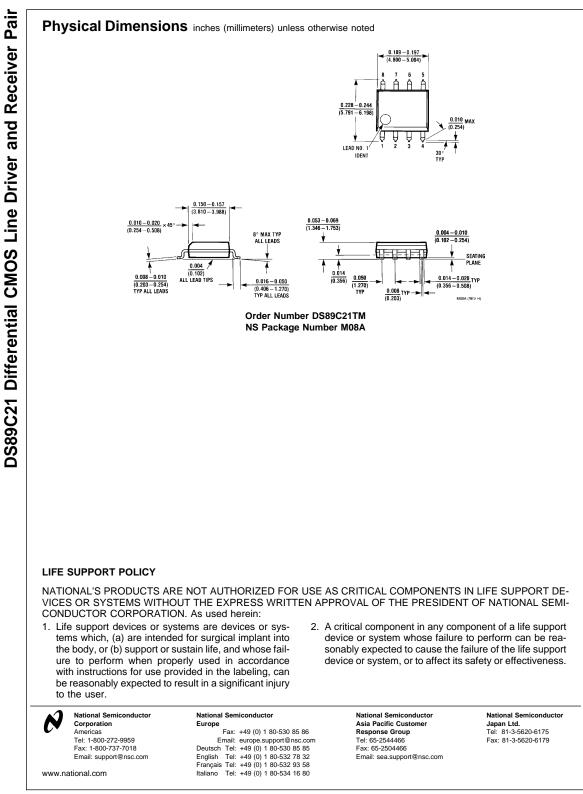
	Min	Max	Units
Supply Voltage (V _{CC})	4.50	5.50	V
Operating Temperature (T _A)	-40	+85	°C
Input Rise or Fall Time (DI)		500	ns


Electrical Characteristics (Notes 2, 3) Over recommended supply voltage and operating temperature ranges, unless otherwise specified.

Symbol	Parameter	Conditions		Pin	Min	Тур	Max	Units
DRIVER C	HARACTERISTICS							
V _{IH}	Input Voltage HIGH				2.0		V _{cc}	V
V _{IL}	Input Voltage LOW			DI	GND		0.8	V
I _{IH} , I _{IL}	Input Current	V _{IN} = V _{CC} , GND, 2.0V, 0.8V				0.05	±10	μA
V _{CL}	Input Clamp Voltage	I _{IN} = -18 mA					-1.5	V
V _{OD1}	Unloaded Output Voltage	No Load		DO,		4.2	6.0	V
V _{OD2}	Differential Output Voltage	R _L = 100Ω		DO*	2.0	3.0		V
ΔV_{OD2}	Change in Magnitude of V OD2					5.0	400	mV
	for Complementary Output States							1
V _{OD3}	Differential Output Voltage	$R_{L} = 150\Omega$			2.1	3.1		V
V _{OD4}	Differential Output Voltage	R _L = 3.9 k Ω				4.0	6.0	V
V _{oc}	Common Mode Voltage	R _L = 100Ω				2.0	3.0	V
ΔV_{OC}	Change in Magnitude of V _{OC}					2.0	400	mV
	for Complementary Output States							1
I _{OSD}	Output Short Circuit Current	V _{OUT} = 0V			-30	-115	-150	mA
IOFF	Output Leakage Current	$V_{\rm CC} = 0V$	V _{OUT} = +6V			0.03	+100	μA
			$V_{OUT} = -0.25V$			-0.08	-100	μA
RECEIVER	CHARACTERISTICS				1			
V _{TL} , V _{TH}	Differential Thresholds	V _{IN} = +7V, 0V, -7V		RI,	-200	±25	+200	mV
V _{HYS}	Hysteresis	$V_{CM} = 0V$		RI*	20	50		mV
R _{IN}	Input Impedance	$V_{IN} = -7V$, +7V, Other = 0V			5.0	9.5		kΩ
Input Current	Input Current	Other Input = 0V,	V _{IN} = +10V			+1.0	+1.5	mA
		$V_{CC} = 5.5V$ and	V _{IN} = +3.0V		0	+0.22		mA
		$V_{CC} = 0V$	V _{IN} = +0.5V			-0.04		mA
			$V_{IN} = -3V$		0	-0.41		mA
			$V_{IN} = -10V$	_		-1.25	-2.5	mA
V _{OH}	Output HIGH Voltage	I _{OH} = -6 mA	V _{DIFF} = +1V	RO	3.8	4.9		V
		-	V _{DIFF} = OPEN		3.8	4.9		V
V _{OL}	Output LOW Voltage	I _{OL} = +6 mA, V _{DIFF}	= -1V			0.08	0.3	V
IOSR	Output Short Circuit Current	$V_{OUT} = 0V$			-25	-85	-150	mA


Switch Dver recorn ymbol IFFERENT LHD HLD KD LH	Parameter D RECEIVER CHARACTERISTICS Supply Current ing Characteristics (Numerical supply voltage and operative supply voltage suppl	No Load ote 3)	DI = V_{CC} or GND DI = 2.4V or 0.5V ranges, unless otherwise sp Conditions		Min	Typ 3.0 3.8	Max 6 12	mA mA
Switch Dver recorn ymbol IFFERENT LHD HLD KD LH	Supply Current ing Characteristics (No- mended supply voltage and operati Parameter IAL DRIVER CHARACTERISTICS Propagation Delay LOW to HIGH Propagation Delay HIGH to LOW	ote 3) ng temperature r	DI = 2.4V or 0.5V ranges, unless otherwise sp	becified.				
Switch Dver recom ymbol FFERENT LHD HLD KD LH	ing Characteristics (No mended supply voltage and operati Parameter IAL DRIVER CHARACTERISTICS Propagation Delay LOW to HIGH Propagation Delay HIGH to LOW	ote 3) ng temperature r	DI = 2.4V or 0.5V ranges, unless otherwise sp	becified.				
Dver recom ymbol FFERENT LHD HLD KD LH HL	INTERPORT OF A CONTRACTOR OF A	ng temperature r	ranges, unless otherwise sp			3.8	12	<u> </u>
Dver recom ymbol FFERENT LHD HLD KD LH HL	INTERPORT OF A CONTRACTOR OF A	ng temperature r						
HLD KD LH	Propagation Delay HIGH to LOW	$R_1 = 100\Omega$			1in	Тур	Max	Uni
KD LH		-	(Figures 2, 3)		2	4.9	10	ns
LH .		C _L = 50 pF			2	4.5	10	ns
LH .	Skew, t _{PLHD} -t _{PHLD}					0.4	2.0	ns
HL	Transition Time LOW to HIGH		(Figures 2, 4)			2.2	9	ns
	Transition Time HIGH to LOW					2.1	9	ns
	CHARACTERISTICS		1					
-	Propagation Delay LOW to HIGH	C ₁ = 50 pF	(Figures 5, 6)		6	18	30	ns
	Propagation Delay HIGH to LOW	V _{DIFF} = 2.5V			6	17.5	30	ns
	Skew, t _{PLH} -t _{PHL}	$V_{CM} = 0V$			-	0.5	4.0	ns
	Rise Time	CM CT	(Figure 7)			2.5	9	n
	Fall Time		(1.90101)			2.1	9	n
raram	eter Measurement Inf		© D0					
	FI	$c_1 \pm c_2 \pm c_3$		V _{0C}				

. .


www.national.com

www.national.com

www.national.com

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.