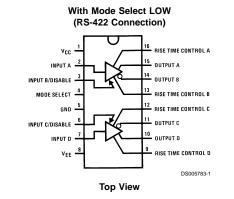
July 1998

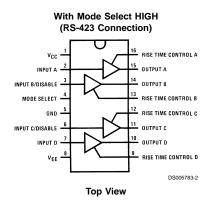
DS1691A/DS3691 (RS-422/RS-423) Line Drivers with TRI-STATE Outputs

National Semiconductor

DS1691A/DS3691 (RS-422/RS-423) Line Drivers with TRI-STATE[®] Outputs

General Description


The DS1691A/DS3691 are low power Schottky TTL line drivers designed to meet the requirements of EIA standards RS-422 and RS-423. They feature 4 buffered outputs with high source and sink current capability with internal short circuit protection. A mode control input provides a choice of operation either as 4 single-ended line drivers or 2 differential line drivers. A rise time control pin allows the use of an external capacitor to slow the rise time for suppression of near end crosstalk to other receivers in the cable. Rise time capacitors are primarily intended for waveshaping output signals in the single-ended driver mode. Multipoint applications in differential mode with waveshaping capacitors is not allowed.


With the mode select pin low, the DS1691A/DS3691 are dual-differential line drivers with TRI-STATE outputs. They feature $\pm 10V$ output common-mode range in TRI-STATE mode and 0V output unbalance when operated with $\pm 5V$ supply.

Features

- Dual RS-422 line driver with mode pin low, or quad RS-423 line driver with mode pin high
- TRI-STATE outputs in RS-422 mode
- Short circuit protection for both source and sink outputsOutputs will not clamp line with power off or in
- TRI-STATE
- 100 Ω transmission line drive capability
- Low I_{CC} and I_{EE} power consumption RS-422: I_{CC} = 9 mA/driver typ RS-423: I_{CC} = 4.5 mA/driver typ: I_{EE} = 2.5 mA/driver typ
- Low current PNP inputs compatible with TTL, MOS and CMOS
- Pin compatible with AM26LS30

Connection Diagrams

Ordering Information

Order Number	Package Type	NS Package Number
DS3691M	SO Package	M16A
DS3691N	Molded DIP	N16E
For Complete Military Product	Specifications, refer to the appro	priate SMD or MDS.
DS1691AJ/883	Ceramic DIP	J16A

TRI-STATE® is a registered trademark of National Semiconductor Corporation.

Absolute Maximum Ratings (Note 2)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage	
V _{cc}	7V
V _{EE}	-7V
Maximum Power Dissipation (Note 1)	at 25°C
Cavity Package	1509 mW
Molded DIP Package	1476 mW
SO Package	1051 mW
Input Voltage	15V
Output Voltage (Power OFF)	±15V
Storage Temperature	–65°C to + 150°C
Lead Temperature (Soldering, 4 seconds)	260°C

Operating Conditions

	Min	Max	Units
Supply Voltage			
DS1691A			
V _{cc}	4.5	5.5	V
V _{EE}	-4.5	-5.5	V
DS3691			
V _{cc}	4.75	5.25	V
V _{EE}	-4.75	-5.25	V
Temperature (T _A)			
DS1691A	-55	+125	°C
DS3691	0	+70	°C
Note 1: Derete equity packs	$a = 10.1 \text{ m} \text{W/}^{\circ} \text{C}$ obc	vo 25°C: dorato	molded DIP

Note 1: Derate cavity package 10.1 mW/'C above 25'C; derate molded DIP package 11.9 mW/'C above 25'C. Derate SO package 8.41 mW/'C above 25'C.

DC Electrical Characteristics (Notes 3, 4, 5, 6)

Symbol	Parameter	Condi	tions	Min	Тур	Max	Units
RS-422 CONNE	CTION, V _{EE} CONNECTION TO G	ROUND, MODE SELE	CT ≤ 0.8V				
V _{IH}	High Level Input Voltage			2			V
V _{IL}	Low Level Input Voltage					0.8	V
I _{IH}	High Level Input Current	V _{IN} = 2.4V			1	40	μA
		V _{IN} ≤ 15V			10	100	μA
IIL	Low Level Input Current	V _{IN} = 0.4V			-30	-200	μA
VI	Input Clamp Voltage	I _{IN} = -12 mA				-1.5	V
Vo	Differential Output Voltage	R _L = ∞	V _{IN} = 2V		3.6	6.0	V
\overline{V}_{O}	V _{A,B}		V _{IN} = 0.8V		-3.6	-6.0	V
V _T	Differential Output Voltage	R _L = 100Ω	V _{IN} = 2V	2	2.4		V
\overline{V}_{T}	V _{A,B}	$V_{CC} \ge 4.75V$	V _{IN} = 0.8V	-2	-2.4		V
$V_{OS}, \overline{V}_{\overline{OS}}$	Common-Mode Offset	R _L = 100Ω			2.5	3	V
	Voltage						
$ V_T - \overline{V_T} $	Difference in Differential	R _L = 100Ω			0.05	0.4	V
	Output Voltage						
V _{os} - V _{os}	Difference in Common-	R _L = 100Ω			0.05	0.4	V
	Mode Offset Voltage						
V _{SS}	$ V_T - \overline{V}_T $	R _L = 100 Ω , V _{CC} ≥ 4	4.75V	4.0	4.8		V
V _{CMR}	Output Voltage Common-	V _{DISABLE} = 2.4V		±10			V
	Mode Range						
I _{XA}	Output Leakage Current	$V_{\rm CC} = 0V$	V _{CMR} = 10V			100	μA
I _{XB}	Power OFF		$V_{CMR} = -10V$			-100	μA
I _{ox}	TRI-STATE Output Current	V _{CC} = Max	$V_{CMR} \le 10V$			100	μA
		$V_{EE} = 0V$ and $-5V$	$V_{CMR} \ge -10V$			-100	μA
I _{SA}	Output Short Circuit Current	V _{IN} = 0.4V	V _{OA} = 6V		80	150	mA
			V _{OB} = 0V		-80	-150	mA
I _{SB}	Output Short Circuit Current	V _{IN} = 2.4V	V _{OA} = 0V		-80	-150	mA
			V _{OB} = 6V		80	150	mA
I _{cc}	Supply Current				18	30	mA

Symbol	Parameter	Conditions	Min	Тур	Max	Units
RS-422 C	ONNECTION, V _{CC} = 5V, MOD	E SELECT = 0.8V				
t _r	Output Rise Time	$R_{L} = 100\Omega, C_{L} = 500 \text{ pF} (Figure 1)$		120	200	ns
t _f	Output Fall Time	$R_{L} = 100\Omega, C_{L} = 500 \text{ pF} (Figure 1)$		120	200	ns
t _{PDH}	Output Propagation Delay	$R_{L} = 100\Omega, C_{L} = 500 \text{ pF} (Figure 1)$		120	200	ns
t _{PDL}	Output Propagation Delay	$R_L = 100\Omega$, $C_L = 500 \text{ pF}$ (Figure 1)		120	200	ns
t _{PZL}	TRI-STATE Delay	$R_L = 450\Omega$, $C_L = 500 \text{ pF}$, $C_C = 0 \text{ pF}$ (Figure 4)		250	350	ns
t _{PZH}	TRI-STATE Delay	$R_{L} = 450\Omega, C_{L} = 500 \text{ pF}, C_{C} = 0 \text{ pF} (Figure 4)$		180	300	ns
t _{PLZ}	TRI-STATE Delay	$R_L = 450\Omega$, $C_L = 500 \text{ pF}$, $C_C = 0 \text{ pF}$ (Figure 4)		180	300	ns
t _{PHZ}	TRI-STATE Delay	$R_1 = 450\Omega, C_1 = 500 \text{ pF}, C_C = 0 \text{ pF}$ (Figure 4)		250	350	ns

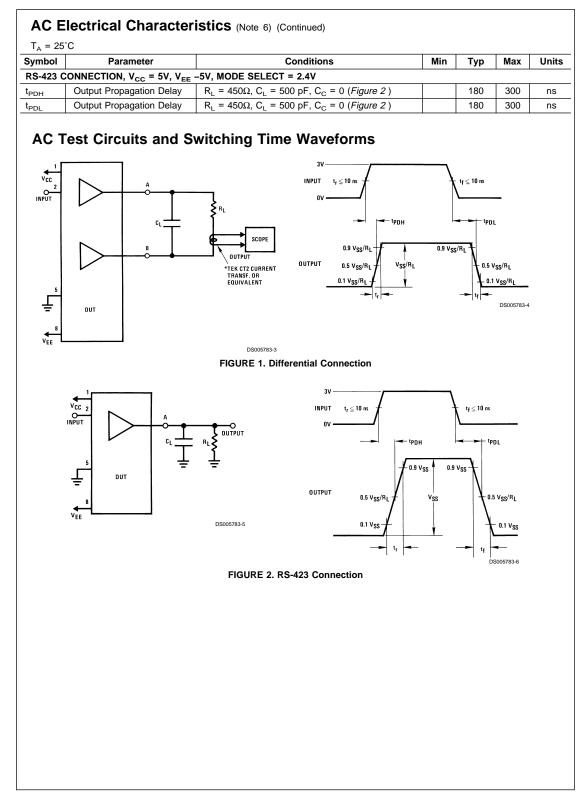
DC Electrical Characteristics (Notes 3, 4, 5, 6)

Symbol	Parameter	Cond	itions	Min	Тур	Max	Units
RS-423 CON	NECTION, V _{CC} = V _{EE} , MODE	SELECT ≥ 2V		-			
V _{IH}	High Level Input Voltage			2			V
V _{IL}	Low Level Input Voltage					0.8	V
I _{IH}	High Level Input Current	V _{IN} = 2.4V			1	40	μA
		V _{IN} ≤ 15V			10	100	μA
I _{IL}	Low Level Input Current	V _{IN} = 0.4V			-30	-200	μA
VI	Input Clamp Voltage	I _{IN} = -12 mA				-1.5	V
Vo	Output Voltage	R _L = ∞, (Note 7)	V _{IN} = 2V	4.0	4.4	6.0	V
\overline{V}_{O}		$V_{CC} \ge 4.75V$	V _{IN} = 0.4V	-4.0	-4.4	-6.0	V
V _T	Output Voltage	R _L = 450Ω	V _{IN} = 2.4V	3.6	4.1		V
\overline{V}_{T}		$V_{CC} \ge 4.75V$	$V_{IN} = 0.4V$	-3.6	-4.1		V
$ V_T - \overline{V}_T $	Output Unbalance	V _{CC} = V _{EE} = 4.7	5V, R _L = 450Ω		0.02	0.4	V
I _X +	Output Leakage Power OFF	$V_{CC} = V_{EE} = 0V$	V _O = 6V		2	100	μA
I _X ⁻	Output Leakage Power OFF	$V_{CC} = V_{EE} = 0V$	$V_{\rm O} = -6V$		-2	-100	μA
l _s +	Output Short Circuit Current	$V_{O} = 0V$	V _{IN} = 2.4V		-80	-150	mA
Is ⁻	Output Short Circuit Current	$V_{O} = 0V$	V _{IN} = 0.4V		80	150	mA
I _{SLEW}	Slew Control Current		·		±140		μA
I _{cc}	Positive Supply Current	V _{IN} = 0.4V, R _L = ∝	b		18	30	mA
I _{EE}	Negative Supply Current	V _{IN} = 0.4V, R _L = ∝	>		-10	-22	mA

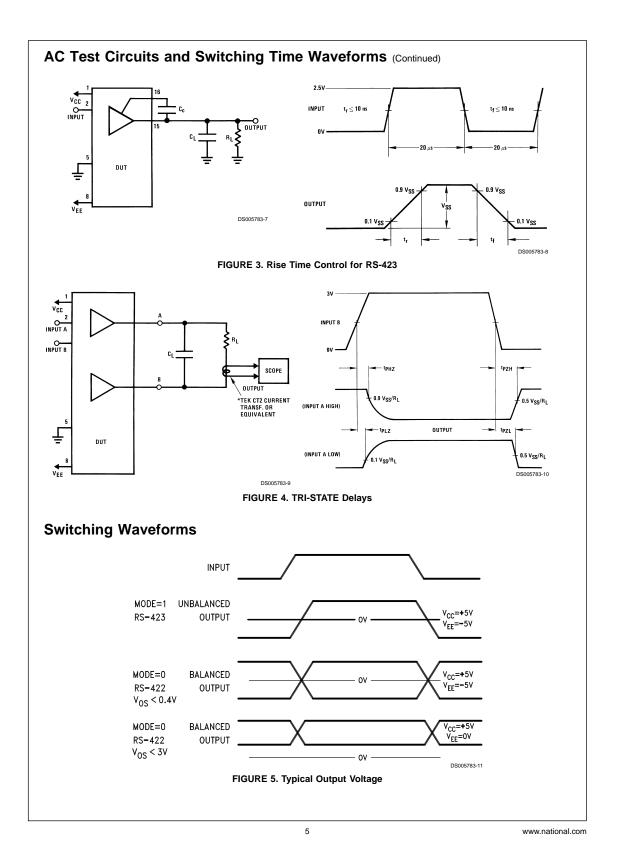
Note 2: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The tables of "Electrical Characteristics" provide conditions for actual device operation.

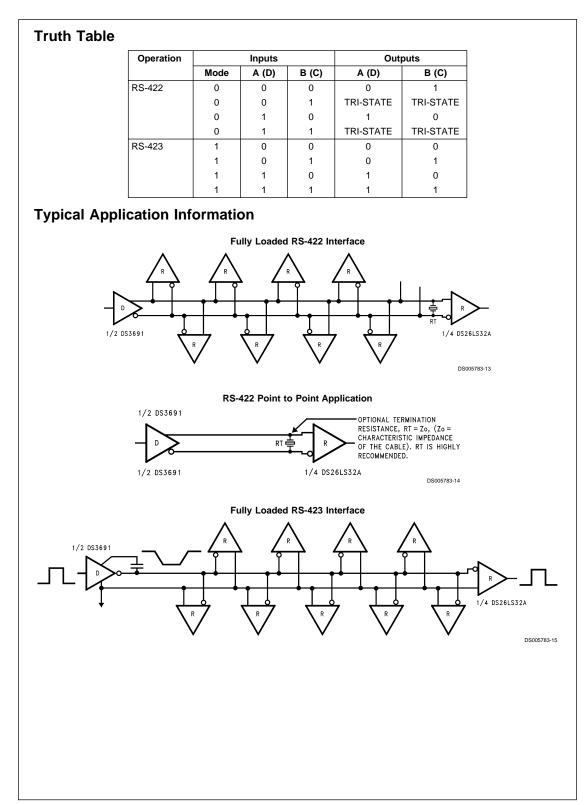
Note 3: Unless otherwise specified, min/max limits apply across the -55°C to +125°C temperature range for the DS1691A and across the 0°C to +70°C range for the DS3691. All typicals are given for V_{CC} = 5V and T_A = 25°C. V_{CC} and V_{EE} as listed in operating conditions.

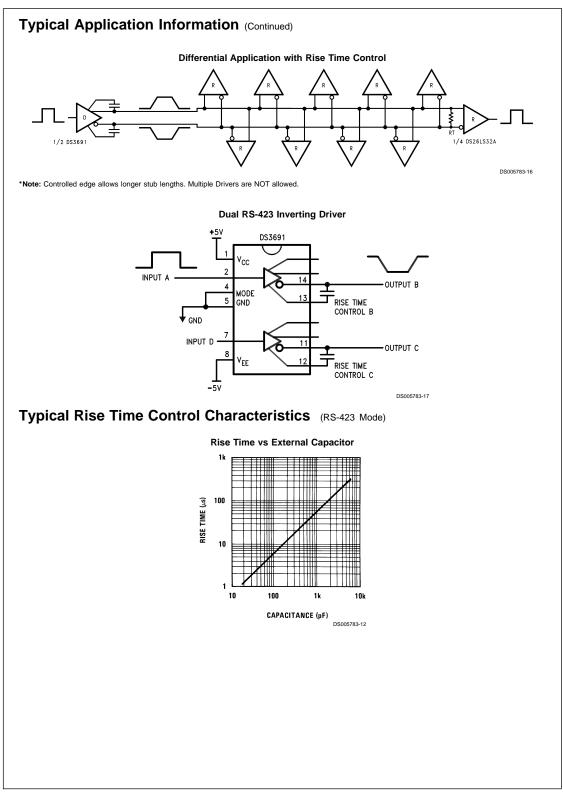
Note 4: All currents into device pins are positive; all currents out of device pins are negative. All voltages are referenced to ground unless otherwise specified. Note 5: Only one output at a time should be shorted.

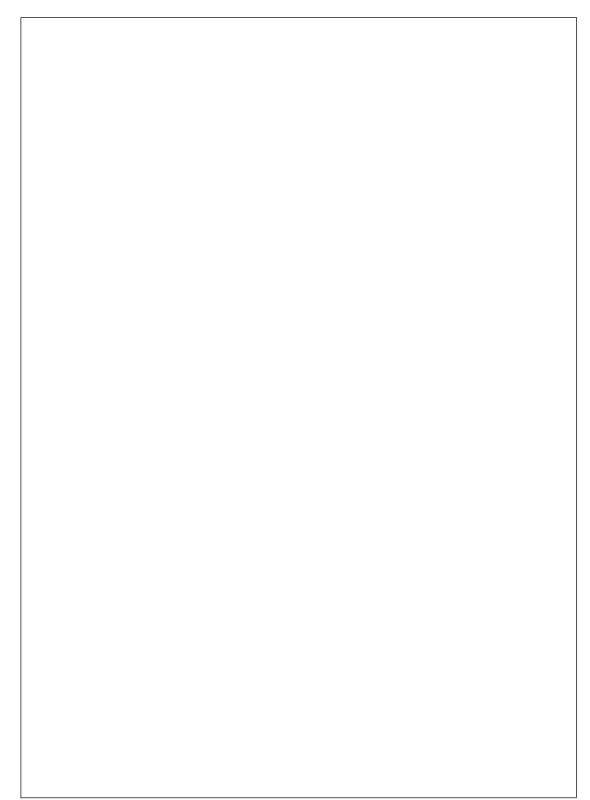

Note 6: Symbols and definitions correspond to EIA RS-422 and/or RS-423 where applicable.

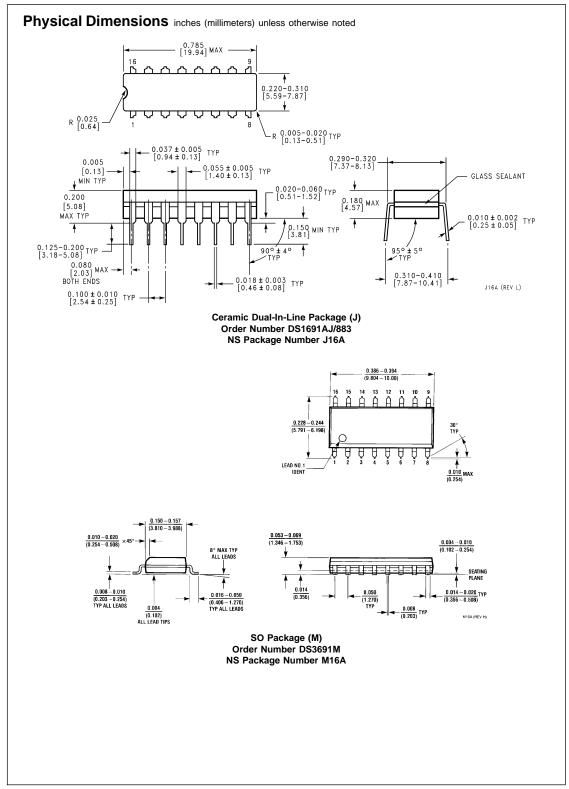
Note 7: At -55°C, the output voltage is +3.9V minimum and -3.9V minimum.

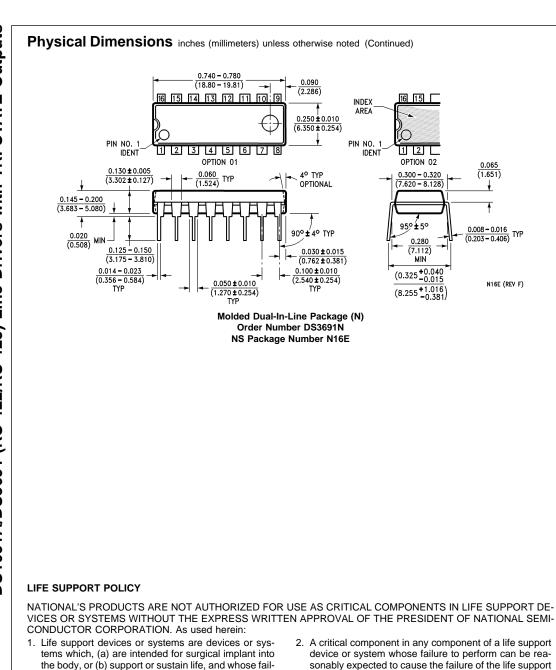

AC Electrical Characteristics (Note 6)


Symbol	Parameter	Conditions	Min	Тур	Max	Units
RS-423 CONNECTION, V _{CC} = 5V, V _{EE} –5V, MODE SELECT = 2.4V						
t _r	Rise Time	$R_{L} = 450\Omega, C_{L} = 500 \text{ pF}, C_{C} = 0 \text{ (Figure 2)}$		120	300	ns
t _f	Fall Time	$R_{L} = 450\Omega, C_{L} = 500 \text{ pF}, C_{C} = 0 \text{ (Figure 2)}$		120	300	ns
t _r	Rise Time	$R_{L} = 450\Omega, C_{L} = 500 \text{ pF } C_{C} = 50 \text{ pF} (Figure 3)$		3.0		μs
t _f	Fall Time	$R_{L} = 450\Omega, C_{L} = 500 \text{ pF } C_{C} = 50 \text{ pF} (Figure 3)$		3.0		μs
t _{rc}	Rise Time Coefficient	$R_{L} = 450\Omega, C_{L} = 500 \text{ pF}, C_{C} = 50 \text{ pF} (Figure 3)$		0.06		µs/pF


3




4



ure to perform when properly used in accordance

with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

\mathbf{N}	National Semiconductor	National Semiconductor	National Semiconductor	National Semiconductor
Х.	Corporation	Europe	Asia Pacific Customer	Japan Ltd.
/*	Americas	Fax: +49 (0) 1 80-530 85 86	Response Group	Tel: 81-3-5620-6175
	Tel: 1-800-272-9959	Email: europe.support@nsc.com	Tel: 65-2544466	Fax: 81-3-5620-6179
	Fax: 1-800-737-7018	Deutsch Tel: +49 (0) 1 80-530 85 85	Fax: 65-2504466	
	Email: support@nsc.com	English Tel: +49 (0) 1 80-532 78 32	Email: sea.support@nsc.com	
		Français Tel: +49 (0) 1 80-532 93 58		
w.na	ational.com	Italiano Tel: +49 (0) 1 80-534 16 80		

 $\frac{0.090}{(2.286)}$

0.250 ± 0.010 (6.350 ± 0.254)

4° TYP OPTIONAL

900 + 40 TYP

0.030 ± 0.015 (0.762 ± 0.381)

0.100 ± 0.010

(2.540 ± 0.254)

TYP

Molded Dual-In-Line Package (N) Order Number DS3691N NS Package Number N16E

16 15

1 2 _

OPTION 02

0.300 - 0.320 (7.620 - 8.128)

95° ± 5°

0.280 (7.112)

MIN

(0.325**+**0.040 -0.015

(8.255 +1.016)

0.065

(1.651)

¥

ł

0.008 - 0.016 (0.203 - 0.406) TYP

N16E (REV F)

 \bigcirc

INDEX AREA

PIN NO. 1

IDENT

9

OPTION 01

0.050 ± 0.010 (1.270 ± 0.254) TYP

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications