National Semiconductor

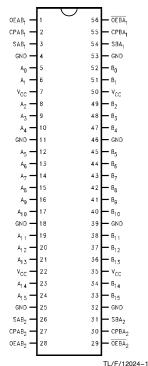
ADVANCE INFORMATION

October 1995

74LVT16652 3.3V ABT 16-Bit Transceiver/Register with TRI-STATE® Outputs

General Description

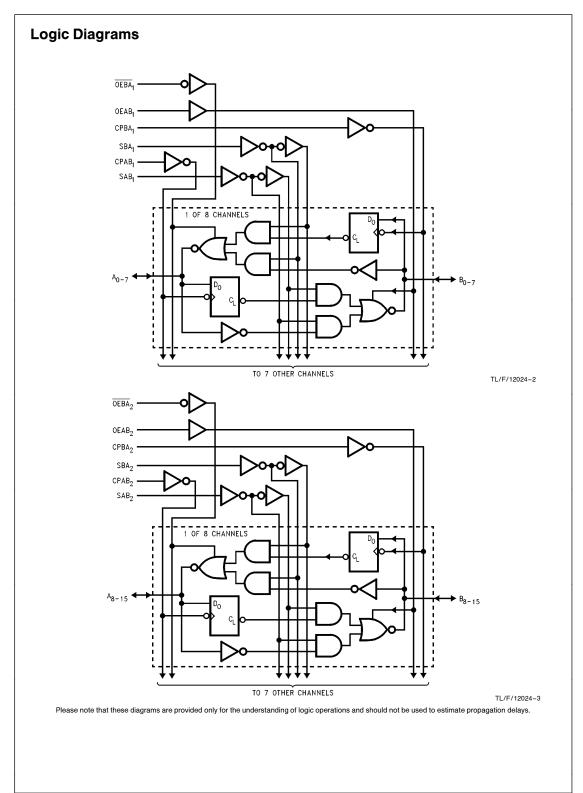
The LVT16652 consists of sixteen bus transceiver circuits with D-type flip-flops, and control circuitry arranged for multiplexed transmission of data directly from the input bus or from the internal registers. Each byte has separate control inputs which can be shorted together for full 16-bit operation. Data on the A or B bus will be clocked into the registers as the appropriate clock pin goes to HIGH logic level. Output Enable pins (OEAB, OEBA) are provided to control the transceiver function.


The transceivers are designed for low-voltage (3.3V) $V_{\rm CC}$ applications, but with the capability to provide a TTL interface to a 5V environment. The LVT16652 is fabricated with an advanced BiCMOS technology to achieve high speed operation similar to 5V ABT while maintaining a low power dissipation.

Features

- Input and output interface capability to systems at 5V VCC
- Bus-Hold data inputs eliminate the need for external pull-up resistors to hold unused inputs
- Live insertion/extraction permitted
- Power Up/Down high impedance provides glitch-free bus loading
- Outputs source/sink -32 mA/+64 mA
- Available in SSOP and TSSOP
- Functionally compatible with the 74 series 16652
- Latch-up performance exceeds 500 mA

Connection Diagram

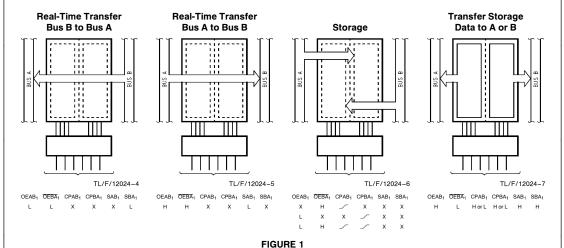

Pin Assignment for SSOP and TSSOP

Pin Names	Description				
A ₀ -A ₁₆	Data Register A Inputs/				
	TRI-STATE Outputs				
B ₀ -B ₁₆	Data Register B Inputs/				
	TRI-STATE Outputs				
CPAB _n , CPBA _n	Clock Pulse Inputs				
SAB _n , SBA _n	Select Inputs				
OEAB _n , OEBA _n	Output Enable Inputs				

	SSOP EIAJ	TSSOP JEDEC	
Order Number	74LVT16652MEA 74LVT16652MEAX	74LVT16652MTD 74LVT16652MTDX	
NS Package Number	MS56A	MTD56	

TRI-STATE® is a registered trademark of National Semiconductor Corporation.

Functional Description


In the transceiver mode, data present at the HIGH impedance port may be stored in either the A or B register or both.

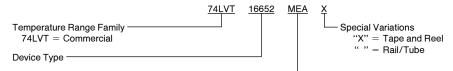
The select (SAB_n , SBA_n) controls can multiplex stored and real-time.

The examples in *Figure 1* demonstrate the four fundamental bus-management functions that can be performed with the LVT16652.

Data on the A or B data bus, or both can be stored in the internal D flip-flop by LOW to HIGH transitions at the appro-

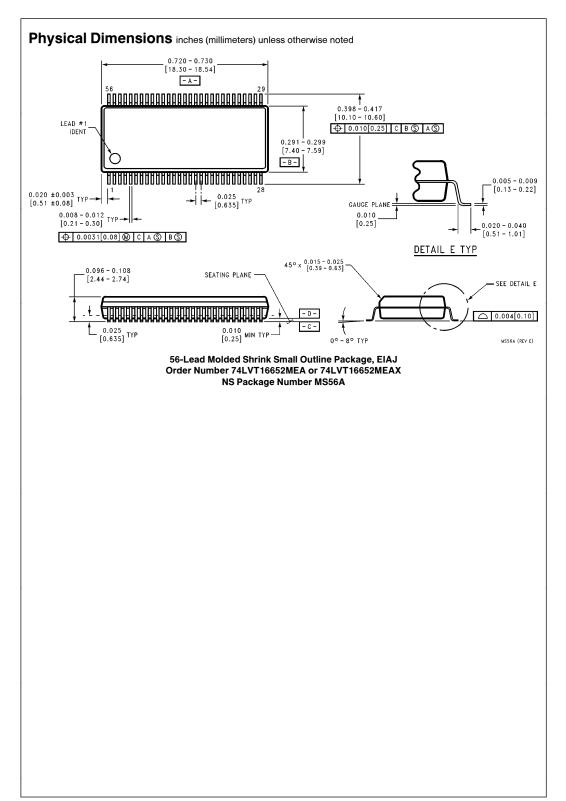
priate Clock Inputs (CPAB_n, CPBA_n) regardless of the Select or Output Enable Inputs. When SAB and SBA are in the real time transfer mode, it is also possible to store data without using the internal D flip-flops by simultaneously enabling OEAB_n and $\overline{\text{OEBA}}_n$. In this configuration each Output reinforces its Input. Thus when all other data sources to the two sets of bus lines are in a HIGH impedance state, each set of bus lines will remain at its last state.

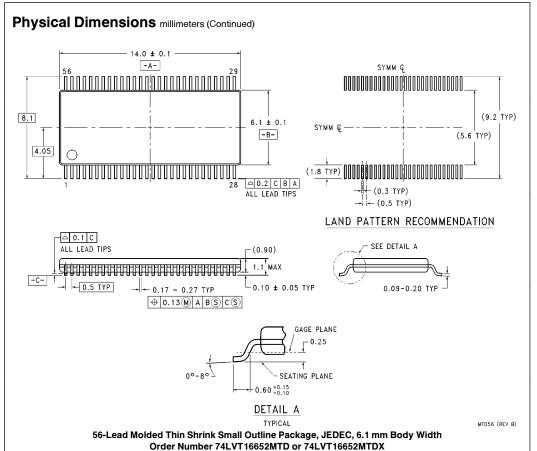
FIG


Truth Table (Note)

Inputs				Inputs/Outputs		Operating Mode			
OEAB ₁	OEBA ₁	CPAB ₁	CPBA ₁	SAB ₁	SBA ₁	A ₀ thru A ₇	B ₀ thru B ₇		
L	Н	H or L	H or L	Х	х	Input	Input Input	Input	Isolation
L	Н			Х	х		Прис	Store A and B Data	
Х	Н		H or L	Х	х	Input	Not Specified	Store A, Hold B	
Н	Н			Х	Х	Input	Output	Store A in Both Registers	
L	Х	H or L		Х	Х	Not Specified	Input	Hold A, Store B	
L	L			Х	х	Output	Input	Store B in Both Registers	
L	L	Х	Х	Х	L	Output	Output	Input	Real-Time B Data to A Bus
L	L	Х	H or L	Х	Н		прас	Store B Data to A Bus	
Н	Н	Х	Х	L	Х	Input	Innut	Output	Real-Time A Data to B Bus
Н	Н	H or L	Х	Н	х		Cutput	Stored A Data to B Bus	
Н	L	H or L	H or L	Н	Н	Output	Output	Stored A Data to B Bus and Stored B Data to A Bus	

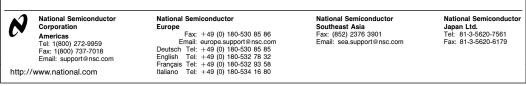
Note: The data output functions may be enabled or disabled by various signals at OEAB or OEBA inputs. Data input functions are always enabled, i.e., data at the bus pins will be stored on every LOW to HIGH transition on the clock inputs. This also applies to data I/O (A and B: 8–15) and #2 control pins.




The device number is used to form part of a simplified purchasing code where the package type and temperature range are defined as follows:

Package Code — MEA = Molded Shrink Small Outline Package, EIAJ

MTD = Molded Thin Shrink Small Outline Package, JEDEC, 4.4 mm Body Width



LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

NS Package Number MTD56

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.