
Data Sheet

1.0 Introduction

1.1

Overview
The VRC5074 System Controller is a software-configurable chip that directly connects 
the VR5000 CPU to SDRAM memory, a PCI Bus, and a Local Bus, without external 
logic or buffering. From the CPU’s viewpoint, the controller acts as a memory control-
ler, DMA controller, PCI-Bus host bridge, and Local-Bus host bridge. From the view-
point of PCI agents, the controller acts as master and target on the PCI Bus. The 
controller also has one serial port and four timers. 

1.2

Features
� CPU Interface

• Connects directly to a 250 MHz VR5000 CPU.

• 100 MHz CPU bus. 

• Peak block-transfer throughput of 800 Mbytes/sec, maximum sustained 
throughput of 640 Mbytes/sec.

• 16 x 8-byte (128-byte) CPU-to-controller FIFO.

• Little-endian or big-endian byte order on CPU interface.

• Supports secondary cache.

• 15 interrupt sources, individually enabled and assigned to one of the CPU’s 
seven interrupt inputs. 

• Supports all CPU bus-cycle types (but the only write type is pipelined write).
Parity generation and checking on CPU data cycles.

• Mode data at reset provided by a serial EEPROM or by the controller. 

• 3.3V I/O.

� Memory Interface

• 100 MHz memory bus. 

• Maximum sustained throughput of 800 Mbytes/sec.

• Supports three physical loads per data bit: two SDRAM physical banks and 
one other (e.g., EPROM, Flash, or buffers bridging to a secondary memory 
bus).

• Supports four types of SDRAM with two to four on-chip virtual banks: 256Mb 
four-bank, 64Mb four-bank, 64Mb two-bank, 16Mb two-bank.

• On-chip bank-interleaving buffers. 

• Programmable address ranges for each memory bank.

• Memory may maintain multiple open SDRAM pages.

• Parity or ECC generation and checking of memory data cycles with 64+8 bits 
of SDRAM and no performance degradation. 
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• Read/write buffers:
- 8-dword (64-byte) CPU Write FIFO.
- 8-dword (64-byte) PCI Write FIFO. 

• On-chip refresh generation.

• 3.3V I/O.

� PCI Bus

• Full compliance with PCI Local Bus Specification, Revision 2.1.

• Four possible configurations:
- 66 MHz, 64-bit bus (maximum sustained bandwidth 533 Mbytes/sec)
- 66 MHz, 32-bit bus (maximum sustained bandwidth 267 Mbytes/sec)
- 33 MHz, 64-bit bus (maximum sustained bandwidth 267 Mbytes/sec)
- 33 MHz, 32-bit bus (maximum sustained bandwidth 133 Mbytes/sec)

• PCI-Master support, allowing the CPU, DMA, and Local-Bus masters to 
access targets on the PCI Bus via two programmable PCI Address Windows.

• PCI-Target support, allowing PCI-Bus masters to access to all controller 
resources.

- Eleven programmable Base Address Register (BAR) windows.
- All reads are delayed transactions.
- Up to four simultaneous delayed transactions.

• Master and target read/write bursts up to 2 Mbytes in length. 

• Master and target read/write buffers: 
- 32-entry x 8-byte (256-byte) PCI Output FIFO.
- 32-entry x 8-byte (256-byte) PCI Input FIFO.
- 4-entry x 8-byte (32-byte) CPU Delayed Read Completion (DRC) Buffer.
- 4-entry x 8-byte (32-byte) DMA Delayed Read Completion (DRC) Buffer.

• Optional PCI Central Resource functions:
- Buffered PCI clock to 5 other PCI devices. 
- PCI clock can be external or derived from CPU clock.
- Arbitration for the controller and 5 other PCI devices.
- CPU interrupt control for 5 PCI devices.

• Full PCI Configuration Space.

• 64-bit addressing support for master and target using Dual Address Cycle 
(DAC).

• Locked cycle (exclusive access) support as master and target.

• Parity generation and checking on address and data cycles.

• Compliant with both 3.3V and 5V PCI signaling. 

� Local Bus

• 25 MHz or 50 MHz bus (0.25 or 0.50 of system clock). 

• Programmable chip-selects for 7 devices plus Boot ROM.
- Each chip-select supports up to 4GB address space.
- Devices may alternatively be located on the memory bus. 
- Chip-select signals may alternatively be used for DMA or UART control, or 

as general-purpose I/O signals.

• Support for burst cycles on the Local Bus. 



• Support for Local-Bus master control of the Local Bus, using 68000 or Intel 
arbitration protocols. 

• Programmable control-signal relationships and timing:
- Timing can be fixed or use external Ready signal.
- 12-bit timer for external Ready signal. 

• 3.3V outputs, 5V-tolerant inputs

� DMA

• Two DMA channels.

• Block transfers to or from any physical address.

• Transfers initiated by the CPU, a PCI-Bus master, or a Local-Bus master.

• Peak block-transfer throughput of 800 Mbytes/sec, maximum sustained 
throughput of 640 Mbytes/sec.

• 32 x 8-byte (256-byte) DMA FIFO.

• Two sets of DMA control registers. One set can be programmed while the 
other performs a transfer. 

• Chained transfers—when one transfer completes, another programmed 
transfer automatically begins. 

• Supports bidirectional, unaligned transfers. 

• Optional hardware handshake signals (REQ#, ACK#, EOT#) if certain chip-
selects are not used.

� Serial Port (UART)

• Compatible with National Semiconductor’s PC16550D UART.

• Receiver and transmitter each have a 16-byte FIFO.

• 5, 6, 7, or 8 bits per character.

• Even, odd, or no parity-bit generation and detection.

• 1, 1.5, or 2 stop-bit generation.

• Baud-rate generator division of input clock by 1 to (216 -1).

• Prioritized interrupt controls. 

• DSR and DTR control signals.

• Optional hardware controls (CTS#, RTS#, DCD#, XIN#) if certain chip-selects 
are not used.

� Timers

• 16-bit SDRAM refresh timer.

• 24-bit CPU-bus read timer.

• 32-bit general-purpose timer.

• 32-bit watchdog timer.

• All timers are cascadable.

� Multi-Controller Support
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2.0 Internal and System Architecture

2.1

Internal Architecture
There are three masters internal to the controller that can generate accesses:

� CPU

� PCI Bus

� DMA (which generates accesses on behalf of the CPU, PCI-Bus masters, or 
Local-Bus masters)

There are four targets internal to the controller that can respond to an access:

� Memory (SDRAM and other devices on the memory bus)

� PCI Bus

� Local Bus

� Controller’s Internal Registers (Table 8 on page 31)

There are independent, point-to-point buses, 64-bits wide in each direction, that con-
nect all possible master-target pairs (except loop-back pairs):

� CPU-to-Memory

� CPU-to-PCI Bus

� CPU-to-Local Bus

� CPU-to-Controller’s Internal Registers

� DMA-to-Memory

� DMA-to-PCI Bus

� DMA-to-Local Bus

� DMA-to-Controller’s Internal Registers

� PCI Bus-to-Memory

� PCI Bus-to-Local Bus

� PCI Bus-to-Controller’s Internal Registers

Figure 1 shows these internal buses. If only one master accesses a given target, no 
resource contention occurs, so that accesses by all masters can proceed simulta-
neously to their separate targets. When multiple masters attempt to access a given tar-
get, the controller arbitrates as follows: 

When the Controller’s Internal Registers are targeted by multiple masters simulta-
neously, the arbitration is very fast, because the registers run so quickly. The longest 
delay any master is likely to see is only a few clocks. 

The Memory target also responds very fast when targeted by multiple masters simul-
taneously. It attempts to service all requests in the most efficient manner, for example 
by giving priority to requests for a page that is currently open. SDRAM has such high 
bandwidth that it is unlikely for any one master to be held off for more than a few clocks.

The PCI-Bus target has an arbiter for responding to simultaneous accesses by the 
CPU and DMA. The arbiter is controlled by programmable fields that govern the dura-
tion of consecutive accesses by these masters.



The Local-Bus target, like the PCI-Bus target, has a programmable arbiter that governs 
the duration of consecutive accesses by the CPU, DMA and PCI masters. 

Figure 1:   V RC5074 Internal Architecture 



2.2

System-Design 
Options

Several signals are sampled at reset (Section 12.0) to determine the properties of the 
controller’s operation in a system, including:

� Endian Mode: The CPU interface can operate in either little-endian or big-endian 
mode. However, the memory, PCI-Bus, and Local-Bus interfaces always operate 
in little-endian mode. 

� PCI-Bus and Local-Bus Width: The controller can support either a 64-bit PCI Bus 
and no Local Bus, or a 32-bit PCI Bus and a 32-bit Local Bus. 

� PCI Central Resource Functions: The controller can operate either as the PCI 
Central Resource or it can operate in a PCI Stand-Alone Mode (i.e., not the 
Central Resource). 

� Multi-Controller Configurations: When multiple controllers are used in a system, 
each has its own ID and address space, and one controller is the Main Controller. 

Figure 2 through Figure 7 show examples of how the controller can be used in system 
designs. 

Figure 2:   Single-Controller, 32-Bit PCI-Bus Configuration 

Figure 2 shows a system in which the controller supports two physical banks of 
SDRAM memory, a 32-bit Local Bus with Boot ROM and two other devices, and a 32-
bit PCI Bus. If the CPU and controller shown here are the main CPU and the main PCI 
controller in the system, the controller can perform all (or any) of the PCI Central 
Resource functions for other PCI devices, and the CPU can run the PCI Configuration 
Space cycles for all PCI devices in the system. 



If the VR5000 CPU has a secondary cache, the controller monitors cache hits. An 
optional Serial EEPROM provides mode data to the CPU at reset. If the EEPROM is 
not used, the controller itself can configure the CPU with a default mode sequence. 

Figure 3:   Single-Controller, 64-Bit PCI-Bus Configuration With Memory-Bus Buffer 

Figure 3 shows a system in which the controller supports the maximum of three phys-
ical loads on the memory bus—two physical banks of SDRAM memory plus one row of 
transceivers, which in turn support additional devices. Signals that were used in Figure 
2 for a the 32-bit Local Bus are configured here to be the high address and data bits for 
a 64-bit PCI Bus. 

Only the address and data signals to non-SDRAM loads on the memory bus need to be 
buffered. The chip-selects for these devices need not be buffered, because each of 
these bits supports only a single load.



Figure 4:   Single-Controller, 64-Bit PCI-Bus Configuration 

Figure 4 is similar to Figure 3, but shows a system in which the controller supports 
more than the maximum of three physical loads on the memory bus. If more than three 
loads are placed on the memory bus, the bus will slow down. Such configurations 
require either a CPU SysClock slower than 100 MHz or buffering on the memory bus, 
as is done in Figure 3. 



Figure 5:   Intelligent PCI Peripheral Configuration (Stand-Alone Mode) 

Figure 5 shows a system in which a VRC5074 controller is an intelligent peripheral to a 
Main CPU and its associated PCI host bridge. The VRC5074 controller is on a PCI 
board with direct connection to its own VR5000 CPU, supporting one or two physical 
banks of SDRAM on the memory bus plus up to eight other devices on the Local Bus. 
The daughter board connects to the main system controller over a 32-bit PCI Bus. 
Accesses via the Main Controller to its resources can proceed simultaneously with 
accesses via the VRC5074 controller to its resources, except when two PCI Bus mas-
ters attempt to access the same resource simultaneously via the shared PCI Bus. 

In such a system, the main system controller would typically act as the PCI Central 
Resource, and the main system CPU would run the PCI Configuration Space cycles for 
all PCI devices in the system. This is called a stand-alone configuration because the 
VRC5074 controller does not perform the PCI Central Resource functions. 



Figure 6:   PCI Peripheral Configuration With No CPU (Stand-Alone Mode)

Figure 6 shows a system in which the controller is placed on a PCI daughter board 
without its own CPU. As in Figure 5, the controller supports one or two physical banks 
of SDRAM on the memory bus plus up to eight other devices on the Local Bus. The 
daughter board connects to the main system controller over a 32-bit PCI Bus. 

Here again, the main system controller acts as the PCI Central Resource, and the main 
system CPU runs the PCI Configuration Space cycles for all PCI devices in the system. 
This is also called a stand-alone configuration, because the VRC5074 controller does 
not provide the PCI Central Resource functions. 



Figure 7:   Multi-Controller Configuration With Dual PCI Buses 

Figure 7 shows a system in which one VR5000 CPU is attached directly to two VRC5074 
controllers. In this example, one controller is configured to support a 32-bit PCI Bus 
while the other controller supports a second, separate, 64-bit PCI Bus. Either controller 
can support one or two physical banks of SDRAM, and the controller supporting the 
32-bit PCI Bus can have up to seven other devices on its Local Bus. A similar multi-
configuration could be used to attach one or more VRC5074 controllers and one or 
more ASICs to a single CPU. 

If the VR5000 CPU is the main system CPU, it would run the PCI Configuration Space 
cycles for all PCI devices in the system, and each of the two VRC5074 controllers would 
provide PCI Central Resource functions for its associated PCI Bus. 



2.3

Terminology
� # as a suffix on a signal name means active-Low. Signals without this suffix are 

active-High. 

� 0x means a hexadecimal number.

� assert means to drive a signal to its active state (active-Low or active-High).

� b means bit, or a binary number.

� B means byte.

� controller means the VRC5074 System Controller.

� dword or doubleword means 8 bytes. This definition is MIPS-compatible and 
differs from the PCI Local Bus Specification, where a dword is 4 bytes. 

� external agent means any logic device directly connected to the CPU that 
supports CPU requests.

� external device means any logic device, other than the CPU, that is connected to 
the controller.

� flushed is not used, because it is an ambiguous term (it means either write-back 
or discard).

� h means a hexadecimal nibble. 

� Local Bus means the controller’s Local Bus, not the PCI Local Bus. 

� Main Controller means the controller directly connected to the main CPU in a 
system. Only the Main Controller should run PCI Configuration Space cycles. 

� Mb means megabit.

� MB means megabyte.

� memory (unless otherwise modified) means memory attached to the controller. 

� module means a set of chips, as in a SIMM or DIMM.

� n means an integer.

� negate means to drive a signal to its inactive state. See assert, above.

� PCI Stand-Alone Mode means the controller’s operating mode when it is not 
providing the PCI Central Resource functions for the system. 

� qword or quadword means 16 bytes. This definition is MIPS-compatible and 
differs from the PCI Local Bus Specification, where a qword is 8 bytes. 

� SDRAM means synchronous DRAM. 

� word means 4 bytes. This definition is MIPS-compatible and differs from the PCI 
Local Bus Specification, where a word is 2 bytes.

2.4

Reference 
Documents

The following documents form a part of this data sheet. 

� Vr5000 Microprocessor User’s Manual, Revision 1.1 (NEC Electronics, Inc., 
Document No. U11323EU1V0UM00).

� Vr5000 Bus Interface User’s Manual, Revision 1.1 (NEC Electronics, Inc., 
Document No. U11322EU1V0UM00).

� CB-C9 Multiplying Asynchronous PLL (APLL) Data Sheet, Preliminary, November 
1996 (NEC Electronics, Inc.).



� CB-C9 ASIC Family 0.35 Micron Standard Cell Specification Version 1.1a Analog 
PLL for Clock Skew Control - AAPLNIL, Preliminary (NEC Electronics, Inc.). 

� CB-C8VX/VM ASIC Family 0.5 micron Standard Cell User’s Manual, Mega 
Function NY16550L UART, Preliminary, 4 October 1996 (NEC Electronics, Inc.).

� DDB-VRC5074 Single Board Computer Specification (NEC Electronics, Inc.).

� PCI Local Bus Specification, Revision 2.1 (Peripheral Component Interconnect 
Special Interest Group).



3.0 Signal Summary 

The controller has 350 signals, 124 power or ground pins, and 26 no-connects or blank 
pins, for a total of 500 pins. Table 1 through Table 6 summarize signal functions. An “#” 
suffix on a signal name means active-Low. The pinouts are shown in Section 17.0 on 
page 197. 

Table 1: CPU-Bus Signals

Signal I/O
5V
Tolerant

Reset
Value

Pullup/
Pulldown

Toggle
Rate
(MHz)

AC
Load
(pF)

DC
Drive
(mA)

Description

BigEndian I/O No HiZ 0 25 3 Endian Mode . This signal is normally an input, 
just as it is to the CPU. It specifies the endian 
mode of t he CPU interface (big-endian = High, 
little-endian = Low). The input from this signal 
is ORed with the Endian Bit (EB) of the Serial 
Mode EEPROM sequence to specify the 
CPU’s endian mode (Section 12.4.2).
As an output, this signal is the chip-select for 
the Serial Mode EEPROM (Section 12.4.1). 
The signal is also an output during the wiggle-
mode test (Section 15.0).

CntrValid# I/O No HiZ external 
pullup

100 50 6 Controller Output Valid . Output from the 
controller indicating valid information on 
SysAD bus, except that it is an input in multi-
controller configurations (Section 5.3.4). The 
signal connects to the ValidIn# signal on the 
CPU. 

CntrVccOk O No Low 0 50 6 Controller Vcc OK . Output from the controller 
initialization logic, indicating that the CPU can 
read the initialization (mode) bits. CntrVccOk is 
held low by VccOk until the controller 
initialization logic has read the Serial Mode 
EEPROM (Section 12.4.2).

ColdReset# O No Low 0 50 6 Cold Reset . Asserted when VccOk is negated 
or on a software cold reset (Section 5.5.1). 
Negated synchronously with SysClock, 64K 
clocks after CntrVccOk is asserted.

CPUValid# I No HiZ CPU Output Valid . Input from the CPU 
indicating valid information on SysAD bus. This 
signal connects to the ValidOut# signal on the 
CPU.

Int#[5:0] O No HiZ external 
pullup

100 50 6 Maskable Interrupts . Controller interrupts to 
CPU.

MCWrRdy# O No High 50 50 6 Multi-Controller Write Ready . Output from 
controller indicating when it can accept a CPU 
write. The signal is used only in multi-controller 
configurations (Section 5.3.4). 

ModeClock I Yes Mode Clock . SysClock divided by 256. 
Provided by the CPU (Section 12.4.2). 

ModeOut O Yes High 6 Mode Data . Serial boot-mode data for CPU 
initialization. The data is generated by the 
controller, or it is generated from a Serial Mode 
EEPROM and monitored and corrected by the 
controller (Section 12.4). This signal connects 
to the ModeIn signal on the CPU. 



NMI# O No HiZ external 
pullup

100 50 6 Non-Maskable Interrupt . Controller non-
maskable interrupt to CPU.

PROM_CLK O Yes Low 5 50 6 PROM Clock . Output clock to the Serial Mode 
EEPROM (Section 12.4.2). 

PROM_SD I/O Yes HiZ external 
pullup

5 50 6 PROM Serial Data . The controller drives 
address and commands out and receives CPU 
serial boot-mode data in on this signal, which is 
connected to the Serial Mode EEPROM 
(Section 12.4.2). The signal must be pulled up 
if the Serial Mode EEPROM is not 
implemented.

Reset# O No Low 0 50 6 Reset. Asserted when VccOk is negated or on 
programmed warm reset. Negated either 64 
clocks after ColdReset# is negated for power-
up and cold resets, or 64 clocks after being 
asserted due to a warm reset (Section 5.5.1).

ScDOE# O No HiZ external 
pulldown

50 50 6 Secondary-Cache Data Output Enable . The 
controller negates ScDOE# during cache 
misses, when the controller is providing data to 
the CPU, and asserts ScDOE# to indicate that 
it will supply the last dword of a read response 
in the next clock.

ScMatch I No Secondary-Cache Match . Hit/miss indication 
from secondary cache for current request. 
Valid two clocks after the address is driven.

ScWord[1:0] I/O No 50 50 6 Secondary-Cache Word . Doubleword offset 
within the secondary cache line. 

SysAD[63:0] I/O No HiZ 100 50 6 System Address and Data . System 
multiplexed address/data bus. The controller 
uses the SysAD[63:0] bits and the 
SysCmd[2:0] bits to internally generate byte 
enables, per Table 4.14 of the VR5000 Bus 
Interface User’s Manual. 

SysADC[7:0] I/O No HiZ 100 50 6 System Address and Data Check . System 
address/data check bus (one even-parity bit 
per SysAD byte).

SysClock I No System Clock . The controller has an internal 
phase-locked loop (PLL) attached to SysClock. 

SysCmd[8:0] I/O No HiZ 100 50 6 System Command . The command and or 
data-type for the current bus cycle.

VccOk I Yes Vcc OK . Input from external analog circuit 
indicating that power to the CPU and controller 
has been above 3.135 volts for more than 100 
milliseconds. The assertion of this signal 
begins the initialization sequence. 

WrRdy# I/O No High 50 50 6 Write Ready . Output from the controller 
indicating when it can accept a CPU write, 
except that it is an input in multi-controller 
configurations (Section 5.3.4). 

Table 1: CPU-Bus Signals  (continued)

Signal I/O
5V
Tolerant

Reset
Value

Pullup/
Pulldown

Toggle
Rate
(MHz)

AC
Load
(pF)

DC
Drive
(mA)

Description



Table 2: Memory-Bus Signals

Signal I/O
5V
Tolerant

Reset
Value

Pullup/
down

Toggle
Rate
(MHz)

AC
Load
(pF)

DC
Drive
(mA)

Description

BootCS# O Yes High 5 50 6 Boot Memory Chip-Select.  The device 
corresponding to this chip-select may be 
located either on the Local Bus or the Memory 
Bus, as specified in the MEM/LOC bit of the 
BOOTCS Physical Device Address Register 
(PDARs, Section 5.4). This signal is also listed 
in Table 4.

DQM O No High 0 50 12 Data Qualifier Mask . SDRAM chip data I/O 
qualifier mask.

MAbank0[14:0] O No Low 100 50 12 Memory Address, Bank 0 . Multiplexed row/
column address for memory bank 0 (even 
bank).

MAbank1[14:0] O No Low 100 50 12 Memory Address, Bank 1 . Multiplexed row/
column address for memory bank 1 (odd 
bank).

MCAS#[1:0] O No High 100 50 12 Memory Column Address Strobes . These 
signals are for physical banks 1 and 0, 
respectively, and are logically distinct. 

MDC[7:0] I/O No HiZ 100 50 6 Memory Data Check . Even-parity or ECC 
syndrome bits for MD[63:0]. 

MCS#[1:0] O No High 100 50 12 Memory Chip-Selects . These signals are for 
physical banks 1 and 0, respectively, and are 
logically distinct. 

MD[63:0] I/O No HiZ 100 50 6 Memory Data .

MRAS#[1:0] O No High 100 50 12 Memory Row Address Strobes . These 
signals are for physical banks 1 and 0, 
respectively, and are logically distinct. 

MRDY# I Yes Memory Ready . Access-ready timing for non-
SDRAM memory (such as Flash). The timing 
associated with such devices can, 
alternatively, be specified in the Memory 
Access Timing Register (ACSTIME), as 
described in Section 6.6.2.

MWE#[1:0] O Yes High 100 50 12 Memory Write-Enables . These signals are for 
physical banks 1 and 0, respectively, and are 
logically distinct. 



 

Table 3: PCI-Bus Signals

Signal I/O
5V
Tolerant

Reset
Value

Pullup/
down

Toggle
Rate
(MHz)

AC
Load
(pF)

DC
Drive
(mA)

Description

ACK64# I/O Same as LOC_CLK in Table 4. PCI Acknowledge 64-Bit Transfer . Asserted 
by the controller when it is ready to drive data 
as a target. This signal is carried on the 
LOC_CLK pin when PCI64# is asserted. 

C/BE#[3:0] I/O Yes 33 or 66 50 12 PCI Command and Byte-Enables . During the 
address phase of a transaction, the signals 
carry the bus command. During the data phase, 
they carry byte-enables for the data on 
PCI_AD[31:0]. 

C/BE#[7:4] I/O Same as LOC_A[3:0] in Table 4. PCI Command and Byte-Enables  (64-bit). 
These signals are carried on the LOC_A[4:0] 
pins when PCI64# is asserted. 

DEVSEL# I/O Yes external 
pullup

10 12 PCI Device Select . Asserted by the controller 
to indicate that it is the target of the current 
access. Sampled by the controller to determine 
whether any device is responding to the current 
access. 

FRAME# I/O Yes external 
pullup

10 12 PCI Cycle Frame . Asserted by the controller as 
master to indicate the duration of an access. 
Sampled by the controller to determine the 
duration of an access. 

GNT#[4:0] I/O Yes 2 12 PCI Bus Grant . Asserted by the controller as 
PCI Central Resource (PCICR# asserted) to 
indicate that a requesting device may control 
the PCI Bus. In Stand-Alone Mode, (PCICR# 
negated and GNT#[4:1] are unused inputs) 
GNT#[0] is sampled by the controller to 
determine if it has been granted its request on 
REQ#[0] for control of the PCI Bus. 

IDSEL I Yes PCI Initialization Device Select . Selects the 
controller as the target for Configuration Read 
and Write transactions. During Central 
Resource operation (PCICR# asserted), IDSEL 
outputs may be provided by resistively coupling 
to PCI_AD[31:16] signals. See section 3.7.4. of 
the PCI Local Bus Specification, Revision 2.1.

INTA# I/O Yes external 
pullup

0 12 PCI Interrupt A . INTA# is an output if PCICR# 
is negated. INTA# is never driven High (pseudo 
open-drain). See Section 5.5.2 and Section 
5.5.3 for interrupt prioritization and enabling. 

INTB# I Yes external 
pullup

PCI Interrupt B . See Section 5.5.2 and Section 
5.5.3 for interrupt prioritization and enabling. 

INTC# I Yes external 
pullup

PCI Interrupt C . See Section 5.5.2 and Section 
5.5.3 for interrupt prioritization and enabling. 

INTD# I Yes external 
pullup

PCI Interrupt D . See Section 5.5.2 and Section 
5.5.3 for interrupt prioritization and enabling. 

INTE# I Yes external 
pullup

Auxiliary Interrupt . See Section 5.5.2 and 
Section 5.5.3 for interrupt prioritization and 
enabling. 

IRDY# I/O Yes external 
pullup

10 12 PCI Initiator Ready . Asserted by the controller 
as master to indicate that it is driving valid data 
on a write, or that it is prepared to accept data 
on a read. Sampled by the controller in 
conjunction with TRDY#.



LOCK# I/O Yes external 
pullup

10 12 PCI Exclusive Access . Indicates an atomic 
operation that may take multiple bus 
transactions to complete. 

M66EN I Yes PCI 66 MHz Enable . Enables 66 MHz 
operation of the PCI Bus. When M66EN is 
asserted, all devices on the PCI Bus must run 
at 66 MHz. 

PCI_AD[31:0] I/O Yes 33 or 66 12 PCI Multiplexed Address and Data . 

PCI_AD[63:32] Same as LOC_AD[31:0] in Table 4. PCI Multiplexed Address and Data  (64-bit). If 
PCI64# is asserted, bits 63:32 of the PCI Bus 
are carried on the LOC_AD[31:0] pins. 

PAR I/O Yes 33 or 66 12 PCI Parity . The even-parity bit for 
PCI_AD[31:0] and C/BE#[3:0].

PAR64 I/O Same as LOC_A[4] in Table 4. PCI Parity  (64-bit). The even-parity bit for 
PCI_AD[63:32] and C/BE#[7:4]. Only valid 
when PCI64# is asserted. 

PCI64# I Yes PCI 64-Bit . When PCI64# is asserted, 64-bit 
PCI-Bus operation is enabled and Local Bus 
operation is disabled. (Section 7.6 and Section 
8.5). In this case:
• the LOC_AD[31:0] pins carry the 

PCI_AD[63:32] signals.

• the LOC_A[3:0] pins carry the C/BE#[7:4] 
signals.

• the LOC_A[4] pin carries the PAR64 signal.

• the LOC_ALE pin carries the REQ64# 
signal.

• the LOC_CLK pin carries the ACK64# 
signal. 

PCI64# is a static signal and must be valid and 
unchanging during and after reset. 

PCICR# I Yes PCI Central Resource . Identifies the controller 
as the PCI Central Resource (Section 7.8). If 
PCICR# is asserted:
• PCLK[4:0] are all outputs. 

• REQ#[4:0] are all inputs.

• GNT#[4:0] are all outputs.

• INTA# is an input.

• PCIRST# is an output.

• The controller configures 64-bit PCI 
operation with its REQ64# output.

• The controller generates PCI Configuration 
Space cycles. 

PCICR# is a static signal and must be valid and 
unchanging during and after reset. See Section 
7.8 for details.

PCIRST# I/O Yes 0 12 PCI Reset . PCIRST# is an input, except that it 
is an output if PCICR# is asserted. See Section 
12.3 for details on PCIRST# during reset.

Table 3: PCI-Bus Signals  (continued)

Signal I/O
5V
Tolerant

Reset
Value

Pullup/
down

Toggle
Rate
(MHz)

AC
Load
(pF)

DC
Drive
(mA)

Description



PCLK[4:0] I/O Yes 133 12 PCI Clock . The maximum frequency can be 66 
MHz. When PCICR# is negated, PCLK[0] is an 
input and PCLK[4:1] are floated. When 
PCICR# is asserted, PCLK[4:0] are all outputs. 
The controller always uses PCLK[0] as its PCI-
Bus clock. 

PCLKIN I Yes PCI Clock Input . External input for PCLK[4:0].

PERR# I/O Yes external 
pullup

0 12 PCI Parity Error . Reports even-parity data 
errors across the PCI_AD[31:0], C/BE#[3:0] 
and PAR signals, or across the PCI_AD[63:32], 
C/BE#[7:4], and PAR64 signals. 

REQ#[4:0] I/O Yes 5 12 PCI Bus Request . Sampled by the controller 
as PCI Central Resource to determine if a PCI 
device wishes to control the PCI Bus. In Stand-
Alone Mode, the controller asserts REQ#[0] to 
request control of the PCI Bus, and REQ#[4:1] 
are unused inputs. Compare the description of 
GNT#[4:0]. 

REQ64# I/O Same as LOC_ALE in Table 4. PCI 64-Bit Request . Asserted by the controller 
when it is ready to drive data as a master. This 
signal is carried on the LOC_ALE pin when 
PCI64# is asserted. 

SERR# I/O Yes external 
pullup

0 12 PCI System Error . Reports even-parity 
address errors on PCI_AD[31:0], C/BE#[3:0] 
and PAR, or on PCI_AD[63:32], C/BE#[7:4] or 
PAR64; data errors on the Special Cycle 
command; or any other catastrophic system 
error. SERR# is never driven High (pseudo 
open-drain).

STOP# I/O Yes external 
pullup

10 12 PCI Stop . Asserted by the controller as target 
to request that a transfer be stopped. Sampled 
by the controller in conjunction with TRDY#

TRDY# I/O Yes external 
pullup

10 12 PCI Target Ready . Asserted by the controller 
as target to indicate that it is driving valid data 
on a read, or that it is prepared to accept data 
on a write. Sampled by the controller in 
conjunction with IRDY#.

Table 3: PCI-Bus Signals  (continued)

Signal I/O
5V
Tolerant

Reset
Value

Pullup/
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Table 4: Local-Bus Signals

Signal I/O
5V
Tolerant

Reset
Value

Pullup/
down

Toggle
Rate
(MHz)

AC
Load
(pF)

DC
Drive
(mA)

Description

BootCS# O Same as BootCS# in Table 2. Boot Memory Chip-Select.  The device 
corresponding to this chip-select may be 
located either on the Local Bus or the Memory 
Bus, as specified in the MEM/LOC bit of the 
BOOTCS Physical Device Address Register 
(PDAR), Section 5.4. 

DCS#[8:2] I/O Yes HiZ 10 50 6 Device Chip-Selects  (or other functions). The 
devices corresponding to these chip-selects 
may be located either on the Local Bus or the 
Memory Bus, as specified in the MEM/LOC bit 
of the corresponding Physical Device Address 
Register (PDAR), Section 5.4. 
After reset, software can configure the 
DCS#[8:2] signals as follows:
• DCS#[2] = UART_RTS# (active-low 

output) or general-purpose I/O. 

• DCS#[3] = UART_CTS# (active-low input) 
or general-purpose I/O. 

• DCS#[4] = UART_DCD# (active-low input) 
or general-purpose I/O. 

• DCS#[5] = UART_XIN (clock input) or 
general-purpose I/O. 

• DCS#[6] = DMA_ACK# (active-low output) 
or general-purpose I/O. 

• DCS#[7] = DMA_REQ# (active-low input) 
or general-purpose I/O. 

• DCS#[8] = DMA_EOT# (active-low input) 
or general-purpose I/O. 

See the following sections for details:
• Additional UART Signals, Section 10.2.

• DMA Hardware Handshaking, Section 9.4.

• Device Chip-Select Function Register 
(DCSFN), Section 8.6.3. 

• Device Chip-Selects as I/O Bits Register 
(DCSIO), Section 8.6.4. 

LOC_A[4:0] I/O Yes Low 66 50 12 Local-Bus Byte-Enables and Low-Address 
Bits  (or other functions). During the first clock 
of a Local-Bus cycle, LOC_A[3:0] carry active-
low byte-enables (in effect, BE#[3:0] for the 
Local Bus). During the remainder of a non-
block bus cycle, LOC_A[4:0] carry the five low-
address bits (the same bits that were carried 
on LOC_AD[4:0] bits when LOC_ALE was 
active). 
The function of the LOC_A[4:0] signals 
changes when a Local-Bus master takes 
control of the Local Bus (See Section 8.4.1). 
If PCI64# is asserted:
• LOC_A[3:0] = PCI-Bus C/BE#[7:4].

• LOC_A[4] = PCI-Bus PAR64.

See Section 8.5 for details. 



LOC_AD[31:0] I/O Yes HiZ 66 50 12 Local-Bus Address and Data  (or other 
functions). Local 32-bit multiplexed address/
data bus. 
If PCI64# is asserted:
• LOC_AD[31:0] = PCI-Bus PCI_AD[63:32].

See Section 8.5 for details.

LOC_ALE I/O Yes Low 66 50 12 Local-Bus Address Latch Enable  (or other 
function). Asserted in the same clock as the 
access.
If PCI64# is asserted:
• LOC_ALE = PCI-Bus REQ64#.

See Section 8.5 for details.

LOC_BG#
or
HLDA

O Yes High 5 50 6 Local-Bus Grant  (or other function). Indicates 
that the controller has relinquished the Local 
Bus to a requesting master on the Local Bus. 
This signal becomes HLDA in Intel bus-
arbitration mode (Section 8.6.1). 

LOC_BGACK# I Yes Local-Bus Grant Acknowledge . Indicates 
that an Local-Bus master has taken control of 
the Local Bus. 

LOC_BR#
or
HOLD

I Yes external 
pullup

Local-Bus Request  (or other function). 
Asserted by a Local-Bus master to request 
control of the Local Bus. This signal becomes 
HOLD in Intel bus-arbitration mode (Section 
8.6.1). LOC_BR# may require an external 
pullup, depending on the application. 

LOC_CLK O Yes High 100 50 12 Local-Bus Clock  (or other function). 
Generated by controller. The frequency is 
SysClock divided by 4 or by 2. 
If PCI64# is asserted:
• LOC_CLK = PCI-Bus ACK64#.

See Section 8.5 for details.

LOC_FR# I/O Yes High 10 50 6 Local-Bus Frame . Indicates that a Local Bus 
cycle is taking place. 

LOC_RD# I/O Yes High 10 50 6 Local-Bus Read . Used for Local Bus devices 
that implement separate read and write control 
signals.

LOC_RDY# I/O Yes High external 
pullup

10 50 6 Local-Bus Ready . Acknowledge signal for 
devices on the Local Bus that do not respond 
in a fixed amount of time, as specified in the 
Local Bus Chip-Select Timing Registers 
(LCSTn), Section 8.6.2. LOC_RDY# may 
require an external pullup, depending on the 
application. 

LOC_WR# I/O Yes High 10 50 6 Local-Bus Write or Read . Used as Write, 
along with LOC_RD#, for devices that 
implement separate read and write control 
signals. Used as Write/Read# for devices that 
implement a single write/read control signal.

Table 4: Local-Bus Signals  (continued)
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Table 5: DMA Hardware-Handshake Signals

Signal I/O
5V
Tolerant

Reset
Value

Pullup/
down

Toggle
Rate
(MHz)

AC
Load
(pF)

DC
Drive
(mA)

Description

DMA_ACK# O Same as DSC#[6] Table 4. DMA Acknowledge . Used by the controller to 
acknowledge a DMA transfer request from an 
external device. If DMA_ACK# is used, 
however, DMA_REQ# must also be used. 
This signal can be implemented by software, 
after reset, as an alternative to DSC#[6] signal. 
See Section 9.4 for details. 

DMA_REQ# I Same as DSC#[7] Table 4. DMA Request . Used by an external device to 
request a DMA transfer. 
This signal can be implemented by software, 
after reset, as an alternative to DSC#[7] signal. 
See Section 9.4 for details. 

DMA_EOT# I Same as DSC#[8] Table 4. DMA End of Transfer . Used by an external 
device to abort a DMA transfer, but only if the 
DMA source is doing the handshaking. 
This signal can be implemented by software, 
after reset, as an alternative to DSC#[8] signal. 
See Section 9.4 for details. 

Table 6: Serial-Port (UART) Signals

Signal I/O
5V
Tolerant

Reset
Value

Pullup/
down

Toggle
Rate
(MHz)

AC
Load
(pF)

DC
Drive
(mA)

Description

UART_CTS# I Same as DSC#[3] Table 4. Serial-Port Clear To Send . This signal can be 
implemented by software, after reset, as an 
alternative to DSC#[3] signal. See Section 10.2 
for details. 

UART_DCD# I Same as DSC#[4] Table 4. Serial-Port Data Carrier Detect . This signal 
can be implemented by software, after reset, 
as an alternative to DSC#[4] signal. See 
Section 10.2 for details. 

UART_DSR# I Yes HiZ Serial-Port Data Set Ready .

UART_DTR# I/O Yes HiZ internal 
pulldown 
(50K ohm)

1 50 6 Serial-Port Data Terminal Ready . This signal 
is sampled during reset (Section 12.4) in order 
to set the controller’s ID number in a multi-
controller configuration (Section 5.3). 

UART_RTS# O Same as DSC#[2] Table 4. Serial-Port Read To Send . This signal can be 
implemented by software, after reset, as an 
alternative to DSC#[2] signal. See Section 10.2 
for details. 

UART_RxDRDY# I Yes HiZ Serial-Port Receive Data .

UART_TxDRDY# I/O Yes HiZ internal 
pulldown 
(50K ohm)

1 50 6 Serial-Port Transmit Data . This signal is 
sampled during reset (Section 12.4) in order to 
set the controller’s ID number in a multi-
controller configuration (Section 5.3). 

UART_XIN I Same as DSC#[5] Table 4. Serial-Port External Crystal Input . This 
signal can be implemented by software, after 
reset, as an alternative to DSC#[5] signal. See 
Section 10.2 for details. 



Table 7: Utility Signals

Signal I/O
5V
Tolerant

Reset
Value

Pullup/
down

Toggle
Rate
(MHz)

AC
Load
(pF)

DC
Drive
(mA)

Description

SMC I No Scan Mode Control . Selects test type. Low for 
normal operation. 

TEST# I Yes Test-Mode Enable . Enables test mode. High 
for normal operation. 

TEST_SEL I Yes Test Select . Selects test type. Low for normal 
operation.



4.0 Register and Resource Summary

4.1

Register Summar y
Table 8 summarizes the controller’s internal register set. This listing is organized by the 
base-address offset, shown in the left-most column of the table. The base address for 
the register set is specified by the INTCS Physical Device Address Register (Section 
5.4). Detailed descriptions of each register are given in the sections listed in the right-
most Reference column of the table.

The PCI-related registers are shown in two separate blocks in Table 8. The main PCI-
Bus Registers begin at offset 0x00E0, and the PCI Configuration Space Registers 
begin at offset 0x0200. The PCI Configuration Space Registers can actually be 
accessed via two different methods, as described in Section 7.13. 

If you configure the controller’s CPU interface to operate in Big-Endian mode (Section 
5.2.6), see Section 13.0 for the implications of accessing registers in this mode. 
 

Table 8: Register Summary

Offset From 
Base a Register Name Acronym

Size 
(bytes)

CPU-Bus
R/W

Reset Value Reference

Physical Device Address Registers (PDARs)—See Section 5.4 on page 45

0x0000 SDRAM Bank 0 SDRAM0 8 R/W 0x0 0000 00D0 Section 5.4 on page 45

0x0008 SDRAM Bank 1 SDRAM1 8 R/W 0x0 0000 00D0 Section 5.4 on page 45

0x0010 Device Chip-Select 2 DCS2 8 R/W 0x0 0000 0000 Section 5.4 on page 45

0x0018 Device Chip-Select 3 DCS3 8 R/W 0x0 0000 0000 Section 5.4 on page 45

0x0020 Device Chip-Select 4 DCS4 8 R/W 0x0 0000 0000 Section 5.4 on page 45

0x0028 Device Chip-Select 5 DCS5 8 R/W 0x0 0000 0000 Section 5.4 on page 45

0x0030 Device Chip-Select 6 DCS6 8 R/W 0x0 0000 0000 Section 5.4 on page 45

0x0038 Device Chip-Select 7 DCS7 8 R/W 0x0 0000 0000 Section 5.4 on page 45

0x0040 Device Chip-Select 8 DCS8 8 R/W 0x0 0000 0000 Section 5.4 on page 45

0x0048 reserved — 8 R 0x0 0000 0000 —

0x0050 reserved — 8 R 0x0 0000 0000 —

0x0058 reserved — 8 R 0x0 0000 0000 —

0x0060 PCI Address Window 0 PCIW0 8 R/W 0x0 0000 00C0 Section 5.4 on page 45

0x0068 PCI Address Window 1 PCIW1 8 R/W 0x0 0000 00C0 Section 5.4 on page 45

0x0070 Controller Internal 
Registers and Devices

INTCS 8 R/W 0x0 1Fh0 00EF b Section 5.4 on page 45

0x0078 Boot ROM Chip-Select BOOTCS 8 R/W 0x0 1FC0 002F c Section 5.4 on page 45

CPU Interface Registers —See Section 5.5 on page 50

0x0080 CPU Status CPUSTAT 8 R/W 0x0000 0000 0000 0N00 Section 5.5.1 on page 50

0x0088 Interrupt Control INTCTRL 8 R/W 0X8888 8888 8888 8888 Section 5.5.2 on page 52

0x0090 Interrupt Status 0 INTSTAT0 8 R 0x0000 0000 0000 0000 Section 5.5.3 on page 55

0x0098 Interrupt Status 1 and CPU 
Interrupt Enable 

INTSTAT1 8 R/W 0x0001 0000 0000 0000 Section 5.5.4 on page 55

0x00A0 Interrupt Clear INTCLR 8 R/W 0x0000 0000 0000 0000 Section 5.5.5 on page 56

0x00A8 PCI Interrupt Control INTPPES 8 R/W 0x0000 0000 0000 0000 Section 5.5.6 on page 57

0x00B0 reserved — 8 R 0x0000 0000 0000 0000 —

0x00B8 See PCI-Bus Registers, below

Memory-Interface Registers —See Section 6.6 on page 72



0x00C0 Memory Control MEMCTRL 8 R/W 0x0000 0000 0000 0080 Section 6.6.1 on page 72

0x00C8 Memory Access Timing ACSTIME 8 R/W 0x0000 0000 0000 001F Section 6.6.2 on page 74

0x00D0 Memory Check Error Status CHKERR 8 R 0x0000 0000 0000 0000 Section 6.6.3 on page 74

0x00D8 reserved — 8 R 0x0000 0000 0000 0000 —

PCI-Bus Registers —See Section 7.11 on page 91

0x00E0 PCI Control PCICTRL 8 R/W 0X6000 0000 8000 0000 Section 7.11.1 on page 91

0x00E8 PCI Arbiter PCIARB 8 R/W 0x0050 0011 1100 003F Section 7.11.2 on page 98

0x00F0 PCI Master (Initiator) 0 PCIINIT0 8 R/W 0x0000 0000 0000 8406 Section 7.11.3 on page 101

0x00F8 PCI Master (Initiator) 1 PCIINIT1 8 R/W 0x0000 0000 0000 8406 Section 7.11.3 on page 101

0x00B8 d PCI Error PCIERR 8 R/W 0x0000 0000 0000 0000 Section 7.11.4 on page 103

See also the PCI Configuration Space Registers, starting at offset 0x0200, below

Local-Bus Registers —See Section 8.6 on page 120

0x0100 Local Bus Configuration LCNFG 8 R/W 0x0 0000 0000 Section 8.6.1 on page 121

0x0108 reserved — 8 R 0x0 0000 0000 —

0x0110 Local Bus Chip-Select Timing 2 LCST2 8 R/W 0x0 0000 0000 Section 8.6.2 on page 122

0x0118 Local Bus Chip-Select Timing 3 LCST3 8 R/W 0x0 0000 0000 Section 8.6.2 on page 122

0x0120 Local Bus Chip-Select Timing 4 LCST4 8 R/W 0x0 0000 0000 Section 8.6.2 on page 122

0x0128 Local Bus Chip-Select Timing 5 LCST5 8 R/W 0x0 0000 0000 Section 8.6.2 on page 122

0x0130 Local Bus Chip-Select Timing 6 LCST6 8 R/W 0x0 0000 0000 Section 8.6.2 on page 122

0x0138 Local Bus Chip-Select Timing 7 LCST7 8 R/W 0x0 0000 0000 Section 8.6.2 on page 122

0x0140 Local Bus Chip-Select Timing 8 LCST8 8 R/W 0x0 0000 0000 Section 8.6.2 on page 122

0x0148 reserved — 8 R 0x0 0000 0000 —

0x0150 Device Chip-Select Muxing and 
Output Enables

DCSFN 8 R/W 0x0 0000 0000 Section 8.6.3 on page 125

0x0158 Device Chip-Selects As I/O Bits DCSIO 8 R/W 0x0 0000 0000 Section 8.6.4 on page 128

0x0160 reserved — 8 R 0x0 0000 0000 —

0x0168 reserved — 8 R 0x0 0000 0000 —

0x0170 reserved — 8 R 0x0 0000 0000 —

0x0178 Local Boot Chip-Select Timing BCST 8 R/W 0x0 003F 8E3F Section 8.6.5 on page 129

DMA Registers —See Section 9.5 on page 133

0x0180 DMA Control 0 DMACTRL0 8 R/W 0x0000 0000 0000 0000 Section 9.5.1 on page 133

0x0188 DMA Source Address 0 DMASRCA0 8 R/W 0x0000 0000 0000 0000 Section 9.5.2 on page 136

0x0190 DMA Destination Address 0 DMADESA0 8 R/W 0x0000 0000 0000 0000 Section 9.5.3 on page 136

0x0198 DMA Control 1 DMACTRL1 8 R/W 0x0000 0000 0000 0000 Section 9.5.1 on page 133

0x01A0 DMA Source Address 1 DMASRCA1 8 R/W 0x0000 0000 0000 0000 Section 9.5.2 on page 136

0x01A8 DMA Destination Address 1 DMADESA1 8 R/W 0x0000 0000 0000 0000 Section 9.5.3 on page 136

0x01B0 reserved — 8 R 0x0000 0000 0000 0000 —

0x01B8 reserved — 8 R 0x0000 0000 0000 0000 —

Timer Registers —See Section 5.6 on page 58

0x01C0 SDRAM Refresh Control T0CTRL 8 R/W 0x0000 0001 0000 0186 Section 5.6.1 on page 58

0x01C8 SDRAM Refresh Counter T0CNTR 8 R/W 0x0000 0000 0000 0000 Section 5.6.2 on page 59

0x01D0 CPU-Bus Read Time-Out Control T1CTRL 8 R/W 0x0000 0000 0000 0000 Section 5.6.3 on page 59

0x01D8 CPU-Bus Read Time-Out 
Counter

T1CNTR 8 R/W 0x0000 0000 0000 0000 Section 5.6.4 on page 60

0x01E0 General-Purpose Timer Control T2CTRL 8 R/W 0x0000 0000 0000 0000 Section 5.6.5 on page 60

0x01E8 General-Purpose Timer Counter T2CNTR 8 R/W 0x0000 0000 0000 0000 Section 5.6.6 on page 61

Table 8: Register Summary  (continued)

Offset From 
Base a Register Name Acronym
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(bytes)

CPU-Bus
R/W

Reset Value Reference



0x01F0 Watchdog Timer Control T3CTRL 8 R/W 0x0000 0000 0000 0000 Section 5.6.7 on page 61

0x01F8 Watchdog Timer Counter T3CNTR 8 R/W 0x0000 0000 0000 0000 Section 5.6.8 on page 62

PCI Configuration Space Registers —See Section 7.13 on page 105

0x0200 e PCI Vendor ID VID 2 R 0x1033 Section 7.13.1 on page 107

0x0202 e PCI Device ID DID 2 R 0x005A Section 7.13.2 on page 107

0x0204 e PCI Command PCICMD 2 R/W 0x0000 or
0x0006 f

Section 7.13.3 on page 107

0x0206 e PCI Status PCISTS 2 R/W 0x02A0 Section 7.13.4 on page 108

0x0208 e PCI Revision ID REVID 1 R 0x01 Section 7.13.5 on page 109

0x0209 e PCI Class Code CLASS 3 R 0x06 0000 Section 7.13.6 on page 110

0x020C e PCI Cache Line Size CLSIZ 1 R/W 0x00 Section 7.13.7 on page 110

0x020D e PCI Latency Timer MLTIM 1 R/W 0x00 Section 7.13.8 on page 110

0x020E e PCI Header Type HTYPE 1 R 0x00 Section 7.13.9 on page 110

0x020F e BIST unimplemented 1 R 0x00 —

0x0210 e PCI Base Address Register 
Control

BARC 8 R/W 0x0000 0000 0000 0004 Section 7.13.10 on page 
110

0x0218 e PCI Base Address Register 0 BAR0 8 R/W 0x0000 0000 0000 0000 Section 7.13.10 on page 
110

0x0220 e PCI Base Address Register 1 BAR1 8 R/W 0x0000 0000 0000 0000 Section 7.13.10 on page 
110

0x0228 e PCI Cardbus CIS Pointer unimplemented 4 R 0x0000 0000 —

0x022C e PCI Sub-System Vendor ID SSVID 2 R/W depends on various 
conditions

Section 7.13.11 on page 
111

0x022E e PCI Sub-System ID SSID 2 R/W depends on various 
conditions

Section 7.13.12 on page 
111

0x0230 e Expansion ROM Base Address unimplemented 4 R 0x0000 0000 —

0x0234 e reserved — 6 R 0x00 —

0x023C e PCI Interrupt Line INTLIN 1 R/W 0xFF Section 7.13.13 on page 
112

0x023D e PCI Interrupt Pin INTPIN 1 R 0x01 Section 7.13.14 on page 
112

0x023E e PCI Min_Gnt unimplemented 1 R 0x00 —

0x023F e PCI Max_Lat unimplemented 1 R 0x00 —

0x0240 e PCI Base Address Register 2 BAR2 8 R/W 0x0000 0000 0000 0000 Section 7.13.10 on page 
110

0x0248 e PCI Base Address Register 3 BAR3 8 R/W 0x0000 0000 0000 0000 Section 7.13.10 on page 
110

0x0250 e PCI Base Address Register 4 BAR4 8 R/W 0x0000 0000 0000 0000 Section 7.13.10 on page 
110

0x0258 e PCI Base Address Register 5 BAR5 8 R/W 0x0000 0000 0000 0000 Section 7.13.10 on page 
110

0x0260 e PCI Base Address Register 6 BAR6 8 R/W 0x0000 0000 0000 0000 Section 7.13.10 on page 
110

0x0268 e PCI Base Address Register 7 BAR7 8 R/W 0x0000 0000 0000 0000 Section 7.13.10 on page 
110

0x0270 e PCI Base Address Register 8 BAR8 8 R/W 0x0000 0000 0000 0000 Section 7.13.10 on page 
110

0x0278 e PCI Base Address Register 
BOOT

BARB 8 R/W 0x0000 0000 0000 0004 Section 7.13.10 on page 
110

Table 8: Register Summary  (continued)
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4.2

Resource-
Accessibility 
Summary

Table 9 summarizes the accessibility of controller resources to the CPU and DMA 
logic. 

0x0280:
0x02FF

reserved — 128 R 0x00 —

Serial-Port Registers—See Section 10.4 on page 139

0x0300 UART Receiver Data Buffer UARTRBR 1 R 0x0000 0000 0000 00xx Section 10.4.1 on page 139

0x0300 UART Transmitter Data Holding UARTTHR 1 W 0x0000 0000 0000 00xx Section 10.4.2 on page 139

0x0308 UART Interrupt Enable UARTIER 1 R/W 0x0000 0000 0000 0000 Section 10.4.3 on page 139

0x0300 UART Divisor Latch LSB UARTDLL 1 R/W 0x0000 0000 0000 00xx Section 10.4.4 on page 140

0x0308 UART Divisor Latch MSB UARTDLM 1 R/W 0x0000 0000 0000 00xx Section 10.4.5 on page 140

0x0310 UART Interrupt ID UARTIIR 1 R 0x0000 0000 0000 0001 Section 10.4.6 on page 140

0x0310 UART FIFO Control UARTFCR 1 W 0x0000 0000 0000 0000 Section 10.4.7 on page 141

0x0318 UART Line Control UARTLCR 1 R/W 0x0000 0000 0000 0000 Section 10.4.8 on page 142

0x0320 UART Modem Control UARTMCR 1 R/W 0x0000 0000 0000 0000 Section 10.4.9 on page 143

0x0328 UART Line Status UARTLSR 1 R/W 0x0000 0000 0000 0060 Section 10.4.10 on page 
144

0x0330 UART Modem Status UARTMSR 1 R/W 0x0000 0000 0000 0000 Section 10.4.11 on page 
144

0x0338 UART Scratch UARTSCR 2 R/W 0x0000 0000 0000 00xx Section 10.4.12 on page 
145

a. At reset, the base address for the register set of a single controller, or the Main Controller in a multi-controller configura-
tion, is 0x0 1FA0 0000. For the base address of other controllers in a multi-controller configuration, see Section 5.3.

b. The “h” nibble in this reset value changes in multi-controller configurations (Section 5.3). 
c. The BOOTCS reset value depends on the size of the PCI bus, size of boot ROM, and other conditions. See Section 

5.4.2 and Section 5.3.
d. This is a non-consecutive address.
e. These are the controller’s internal addresses for accessing the PCI Configuration Space Registers. To obtain these 

addresses, a value of 0x0200 has been added to the offset of the Configuration Space Registers shown in Table 26 on 
page 105. There are two paths for accessing each of these registers. See Section 7.13. 

f. PCICMD resets to 0x0000 when PCICR# is negated, or to 0x0006 when PCICR# is asserted.

Table 8: Register Summary  (continued)

Offset From 
Base a Register Name Acronym

Size 
(bytes)

CPU-Bus
R/W

Reset Value Reference

Table 9: System Resources Accessible to the CPU and DMA 

Targets Accessible Through Controller
Accessible 
By CPU

Accessible 
By DMA

Reference

Boot ROM Yes Yes Section 6.4 on page 64

SDRAM Memory Yes Yes Section 6.5 on page 67

PCI Memory Space a

a. Via PCI Address Windows (see Section 5.4) with controller as PCI master.

Yes Yes Section 7.4 on page 81

PCI I/O space a Yes Yes Section 7.4.6 on page 85

PCI Configuration Registers a Yes Yes Section 7.12 on page 103

External (DCS[8:2]) Devices b

b. Any device selected by a DCS[8:2] signal. Such devices can reside on the Memory or 
Local Bus. 

Yes Yes Section 8.6.3 on page 125

Controller’s Internal Registers c Yes Yes Table 8 on page 31



Table 10 summarizes the accessibility of controller resources to PCI-Bus masters. 

Table 11 summarizes the accessibility of controller resources to Local-Bus masters. 

c. Includes Physical Device Address Registers (PDARs), System and CPU control regis-
ters, Memory-Bus control registers, PCI-Bus control registers and PCI configuration reg-
isters, Local-Bus control registers, DMA control registers, UART control registers, Timer 
control registers

Table 10: System Resources Accessible to PCI-Bus Masters 

Targets Accessible Through Controller
Accessible By PCI-Bus 
Masters

Reference

Boot ROM Yes Section 6.4 on page 64

SDRAM Memory Yes Section 6.5 on page 67

PCI I/O space No

PCI Configuration Space No a

a. A PCI-Bus master cannot access non-controller PCI Configuration Space via the con-
troller, but it can access the controller’s own internal PCI configuration registers either 
directly (see Table 8 on page 31) or when the PCI Central Resource asserts the appropri-
ate IDSEL signal. 

Section 7.12 on page 103

External (DCS[8:2]) Devices b

b. Any device selected by a DCS[8:2] signal. Such devices can reside on the Memory or 
Local Bus. 

Yes Section 8.6.3 on page 125

Controller’s Internal Registers c

c. Includes Physical Device Address Registers (PDARs), System and CPU control regis-
ters, Memory-Bus control registers, PCI-Bus control registers and PCI configuration reg-
isters, Local-Bus control registers, DMA control registers, UART control registers, Timer 
control registers

Yes Table 8 on page 31

Table 11: System Resources Accessible to Local-Bus Masters 

Targets Accessible Through Controller
Accessible By Local-
Bus Masters a

a. Accesses by Local-Bus masters are implemented by the controller’s DMA logic, as 
described in Section 8.4.2. 

Reference

Boot ROM Yes b

b. Device must be on the Memory Bus.

Section 6.4 on page 64

SDRAM Memory Yes Section 6.5 on page 67

PCI Memory Space c

c. Via PCI Address Windows (see Section 5.4) with controller as PCI master.

Yes Section 7.4 on page 81

PCI I/O space c Yes Section 7.4.6 on page 85

PCI Configuration Space c Yes Section 7.12 on page 103

External (DCS[8:2]) Devices d

d. Any device selected by a DCS[8:2] signal. Such devices can reside on the Memory or 
Local Bus. 

Yes b Section 8.6.3 on page 125

Controller’s Internal Registers e

e. Includes Physical Device Address Registers (PDARs), System and CPU control regis-
ters, Memory-Bus control registers, PCI-Bus control registers and PCI configuration reg-
isters, Local-Bus control registers, DMA control registers, UART control registers, Timer 
control registers

Yes Table 8 on page 31



4.3

Address Space 
Summary

Figure 8 summarizes the accessibility of address spaces supported by the controller’s 
Physical Device Address Registers (PDARs), which are described fully in Section 5.4. 

Figure 8:   Access Supported By Physical Device Address Registers (PDARs) 



5.0 CPU/System Interface and Registers

The controller can interface directly to a VR5000 CPU, in full compliance with the 
VR5000 Bus Interface User’s Manual, Revision 1.1. The controller can operate with or 
without direct connection to a VR5000 CPU. When it operates without direct connec-
tion, another CPU in the system would configure the controller, as shown in Figure 6 on 
page 17. 

The CPU interface operates at a maximum frequency of 100 MHz and supports a peak 
block-transfer throughput of 800 MB/sec and a maximum sustained throughput of 640 
Mbytes/sec. 

Through the controller, the CPU can gain access to memory, the PCI Bus, the Local 
Bus, and the controller’s internal registers (Table 8). All CPU bus-cycle types and data 
sizes supported by the VR5000 SysAD bus are supported by the controller, except 
that—due to the pipelined nature of the controller’s CPU interface—the Pipelined Write 
Mode is the only non-block write mode supported. 

Section 12.4.2 on page 152 describes the CPU initialization procedures, the CPU 
operating modes imposed by the controller. Multi-controller configurations (Section 
5.3) allow either multiple VRC5074 controllers or a single VRC5074 controller and other 
external agents to reside on the CPU interface. Figure 7 on page 18 shows an exam-
ple. Such system designs must pay special attention to loading issues on the CPU bus. 

5.1

CPU and System 
Confi guration and 
Monitorin g

Software configures and monitors the CPU interface and the controller’s general sys-
tem functions by using the following registers:

� CPU and Controller Initialization, Section 12.4 on page 151.

� Physical Device Address Registers (PDARs), Section 5.4 on page 45.

� CPU Interface Registers, Section 5.5 on page 50.

� Timer Registers, Section 5.6 on page 58.

5.2

CPU Interface

5.2.1

Signal Connections to 
CPU

Table 12 summarize the signal connections between the CPU and the controller. 

Table 12: CPU-Controller Signal Connections

CPU Controller Signal

Signal R/W R/W Signal

BigEndian I I/O BigEndian

ColdReset# I O ColdReset#

ExtRqst# I (tied High) —

Int#[5:0] I O Int#[5:0]

JTCK I a —

JTDI I a —

JTDO O a —



5.2.2

CPU-Interface Data 
Path

The controller samples addresses and data from the CPU on the rising edge of 
SysClock. On the controller side of the CPU interface, a 16 x 8-byte (128-byte) CPU-to-
controller FIFO (the CPU-Interface FIFO) buffers SysAd information. The FIFO can 
hold 16 dwords of SysAd items (address or data) and is surrounded by two pipeline 
stages. On the CPU side of the interface, every signal is buffered through a row of reg-
isters. 

If the CPU issues a memory read while the controller’s CPU-Interface FIFO is empty, 
the request bypasses the FIFO and is loaded directly into a row of registers. If the FIFO 
or controller-side register row is not empty, addresses do not bypass the FIFO. If the 
CPU interface is idle, a read request bypasses both the FIFO and the controller-side 
register row, saving a minimum of one clock compared to the non-idle case. The CPU’s 
RdRdy input signal is not driven by the controller and should be tied Low. Since the 

JTTMS# I a —

ModeClock O I ModeClock

ModeIn I O ModeOut

NMI# I O NMI#

RdRdy# I (tied Low) —

Release# O a —

Reset# I O Reset#

ScCWE#[1:0] O a —

ScDCE#[1:0] O a —

ScDOE# I O ScDOE#

ScLine[15:0] I/O a —

ScMatch I I ScMatch

ScCLR# O a —

ScTCE# I/O a —

ScTDE# O a —

ScTOE# O a —

ScValid# I/O a —

ScWord[1:0] I/O I/O ScWord[1:0]

SysAD[63:0] I/O I/O SysAD[63:0]

SysADC[7:0] I/O I/O SysADC[7:0]

SysClock I I SysClock

SysCmd[8:0] I/O I/O SysCmd[8:0]

SysCmdP I/O a —

ValidIn# I I/O CntrValid#

ValidOut# O I CPUValid#

VccOk I O CntrVccOk

WrRdy# I I/O WrRdy# b

a. The controller does not connect to this signal. 
b. In multi-controller configurations, all external agents’ MCWrRdy# signals must be ORed 

together and registered in an external device. The output of this device must then be 
wired to the CPU’s WrRdy# input and to the controllers’ WrRdy# inputs. 

Table 12: CPU-Controller Signal Connections  (continued)

CPU Controller Signal

Signal R/W R/W Signal



controller supports only a single pending read, the read is implicitly stalled until the 
read data is returned.

For CPU reads, the controller drives response data from the target onto the SysAd bus 
and asserts the CntrValid# signal. For block reads, the controller negates ScDOE# 
after it has been determined that the secondary cache (if implemented) has missed on 
the request. ScDOE# remains negated until the third of four dwords is returned to the 
CPU. Since the re-assertion of ScDOE# indicates that the controller will drive the last 
dword in the next cycle, the third dword is held back and ScDOE# remains negated 
until the fourth dword is driven by the responding resource. This additional clock for the 
third and fourth dwords is necessary due to the unpredictable timing relationship 
between the third and fourth dwords. The timing for ScDOE# is the same in a multi-
controller configuration as it is in a single-controller configuration. 

Data for CPU writes always goes through the CPU-Interface FIFO before being loaded 
into the controller-side register row. The controller requests the appropriate resource 
when the address and cycle-type information are loaded into the register row. When 
the associated resource is available, the address and data at the output of the FIFO is 
clocked into the targeted resource and the FIFO advances. 

5.2.3

SysAd Flow Control
The CPU may be stalled if it requests access to a target that is not ready. This occurs 
when the outstanding requests have filled the controller’s CPU-Interface FIFO. The 
controller monitors the status of the FIFO and stalls the CPU if it needs to prevent a 
FIFO overflow. Stalling occurs either implicitly or explicitly. The CPU is implicitly stalled 
if a read resource is unavailable; the controller does not proceed until it receives the 
requested data for the pending read cycle. The controller always leaves room in the 
FIFO for a read request, so that reads are never explicitly stalled.

The CPU is explicitly stalled when the buffer contains six items of SysAd information 
(address or data); in this case, the controller negates WrRdy#. Although the FIFO can 
hold a maximum of 16 items of SysAd information, the action of stalling the CPU must 
begin early, due to the pipelined nature of both the controller and the CPU interface. 

For example, the following case is one in which the FIFO will fill up. When WrRdy# is 
negated, the CPU may issue two more requests (a non-block write followed by a block 
write) before it is stalled on the third request. These two additional requests represent 
seven more items in the FIFO. Including two items in the controller’s pipeline, the total 
in the FIFO by the time the CPU stalls is 15 items. This leaves one place in the FIFO 
for the CPU to issue a read request. At this point, the CPU is stalled. If the third request 
issued following the negation of WrRdy# is a write request, that request is explicitly 
stalled. If the third request is a read, however, that request goes into the last place in 
the buffer and the CPU is implicitly stalled.

If the FIFO begins to empty, or if the above worst-case scenario does not occur, i.e. the 
FIFO does not contain 15 items when the CPU is stalled, the controller reasserts and 
negates WrRdy# based on the FIFO depth and the pending stalled write request. If the 
stalled request is a non-block write request, the controller reasserts WrRdy# for one 
clock when the FIFO contains less than 13 items. Similarly, if the stalled request is a 
block write request, the controller reasserts WrRdy# for one clock once the buffer con-
tains less than 10 items. If the FIFO empties to five items, the controller asserts 
WrRdy# until the FIFO fills back up to six or more items.



If the CPU is stalled implicitly on a read request, the controller reasserts WrRdy# when 
the FIFO empties to five items. The FIFO always empties before the completion of the 
read request.

5.2.4

Parity Checking and 
Generation

By default, when the DISPC and DISCPUPC bits are cleared in the CPU Status Reg-
ister (CPUSTAT, Section 5.5.1), the controller checks even parity during CPU writes 
and generates even parity during CPU reads. The SysAd bus is only checked during 
data transfers, not address transfers. Write parity is checked when the information is in 
the controller’s CPU-interface register row. Read parity is generated when the data is 
driven from the resource to the CPU interface, after byte swapping (if necessary). If the 
CPCEEN bit is set in the Interrupt Control Register (INTCTRL, Section 5.5.2) an inter-
rupt is generated when a CPU read or write parity error is detected. 

When returning bad data to the CPU during a block read (cache-line fill), the controller 
sets bit SysCmd[5] and bad parity on SysADC[7:0] for each data word of the block that 
is bad. However, the VR5000 CPU only looks at command bit 5 of the first data word in 
a block. Thus, if the data error is in a word of the block other than the first word, the 
CPU will only notice the error when the data is fetched from the CPU’s cache, in which 
case a cache exception (not a bus-error exception) is generated. 

5.2.5

CPU Reads
The CPU’s RdRdy# input should be tied Low (asserted). Reads are self-throttling, 
because only one outstanding read is generated by the CPU and supported by the 
controller. 

5.2.5.1

Read Requests that Hit 
the Secondary Cache

A block read issued by the CPU may be a request that was speculatively issued to both 
the controller and the secondary cache. If the secondary cache hits on the request, the 
controller’s CPU interface and (potentially) the targeted resource must abort the 
request. The controller does this by monitoring ScMatch, which is an input to both the 
CPU and the controller. When ScMatch is asserted two clocks after the address is 
issued, the controller aborts the read from the targeted resource (if the request has 
made it through the FIFO) and removes the request from the FIFO.

5.2.5.2

Non-Matching Read 
Address

When a read request is issued by the CPU, but the address does not match any of 
those programmed into the controller’s Physical Device Address Registers (Section 
5.4), the controller responds to the CPU by driving all 0s on the SysAd bus. The 
TMODE bits in the CPU Status Register (CPUSTAT, Section 5.5) determine whether 
good or bad parity will be generated for this response. An optional, programmable 
interrupt may be generated when this condition occurs, as specified by the CNTDEN 
bit in the Interrupt Status Register 0 (INTSTAT0, Section 5.5.2).

For multi-controller configurations (Section 5.3), if no device responds to the read 
request after a programmable time-out interval has elapsed, as specified in the CPU-
Bus Read Time-Out Control Register (T1CTRL, Section 5.6.3), the Main Controller 
responds by driving all 0s on the SysAd bus. As in single-controller configurations, 
good or bad parity may be generated for this response, and an interrupt may be gen-
erated when the condition occurs.



5.2.5.3

Branches to Unaligned 
Addresses

The controller implements a hardware fix for the VR5000 CPU bug that prevents the 
CPU from correctly handling a doubleword fetch due to a branch to an unaligned 
address. 

The controller uses the SysAD[63:0] bits and the SysCmd[2:0] bits to internally gener-
ate byte enables, per Table 4.14 of the Vr5000 Bus Interface User’s Manual. For a 4-
byte read to an address that is not doubleword-aligned, the controller correctly gener-
ates the byte enables and returns the proper data to the CPU, on the proper byte lanes. 

5.2.6

Endian Configuration
The controller’s CPU interface supports either big- or little-endian byte ordering. How-
ever, all of the controller’s logic, except the CPU interface, operates solely in little-
endian mode. To implement a big-endian CPU interface, do either of the following: 

� Set the Big Endian (BE) bit in the CPU’s Config Register during the CPU and 
controller initialization sequence (Section 12.4), or 

� Tie the controller’s and the CPU’s BigEndian signal High. 

If either or both of these conditions occur, the controller will swap incoming and outgo-
ing bytes on the SysAd bus so that the CPU can operate in big-endian mode while the 
controller operates in little-endian mode. The software implications of this, and some 
related PCI-device examples, are described in Section 13.0.

5.3

Multi-Controller 
Confi gurations

The controller can support multiple external agents, including multiple VRC5074 con-
trollers. Figure 7 on page 18 illustrates such a system design. This is called multi-con-
troller mode, or a multi-controller configuration. The logic for this support handles 
functions such as which controller initializes the CPU, which controller responds to 
Boot ROM accesses, separation of the default register address space of each control-
ler, compensation for externally combining the individual WrRdy# signals, and handling 
bus cycles that are not responded to. 

5.3.1

Distinguishing 
Between Multiple 
Controllers

In a single-controller configuration, the base address of the controller’s internal config-
uration registers is 0x1FA0_0000 after reset. In a multi-controller configuration, the 
UART_DTR# and UART_TxDRDY# signals are sampled at reset to identify each con-
troller and assign separate address spaces for their internal registers. The sampled ID 
determines the base address of each controller’s register set. An ID of 00 identifies the 
Main Controller, as shown in Table 13. Software can read this ID in the MAINCTRL field 
of the CPU Status Register (CPUSTAT), Section 5.5.1.

Table 13: Reset Configuration Signals for Multi-Controller Configurations

Signal Sampled at Reset

Controller 
ID Number

Base Address 
Of Controller’s 
Internal Registers
After Reset
(PDAR = INTCS)

Base Address 
Of Boot ROM After 
Reset
(PDAR = BOOTCS)

UART_DTR# UART_TxDRDY#

0 0 00
(Main Controller)

0x0 1FA0_0000 a 0x0 1FC0 0000



UART_DTR# and UART_TxDRDY# have 50k-ohm pulldowns internally. Thus, in a sin-
gle-controller configuration, no connection to these signals is necessary. 

5.3.2

The Main Controller
The Main Controller is responsible for any activity that is not performed by any other 
controller. At boot time, the Main Controller performs the CPU’s initialization sequence 
(Section 12.4) by driving the clock, address, and command to the Serial Mode 
EEPROM (if present), reading in the configuration information (if Serial Mode 
EEPROM is present) or providing the default (if Serial Mode EEPROM is not present), 
correcting any illegal cases, and sending initialization information to the CPU. Other 
controller(s) in the system monitor the initialization sequence in order to obtain the con-
figuration information that is relevant to them. After initialization, the Main Controller 
responds to Boot ROM fetches.

The concepts of Main Controller and PCI Central Resource (Section 7.8) are unre-
lated. The controller can be a Main Controller for a given CPU, but that CPU might not 
be the Main CPU in the system, and the Main Controller for that CPU, or any other 
CPU in the system, might not provide the PCI Central Resource for the system. 

5.3.3

Programming
All controllers in a multi-controller configuration must have their TMODE bits pro-
grammed in their CPU Status Register (CPUSTAT), Section 5.5.1, as soon as possible 
after the system boots. These bits indicate to the controller that this is a multi-controller 
configuration and how the Main Controller should handle read requests that are not 
responded to. The bits must be programmed before read requests are issued to 
devices other than the Main Controller. 

If the TMODE bits are not programmed before read requests are issued to devices 
other than the Main Controller, the controller behaves as though in single-controller 
configuration. A read to another controller causes a no-target decode in the Main Con-
troller. The Main Controller responds immediately with all zeros. There is, then, a high 
likelihood that either this data will be taken as the response for the read request or that 
the true response and the Main Controller’s no-target response will collide, causing 
bus contention.

In a multi-controller configuration, the Main Controller waits for the CPU-Bus Read 
Time-Out Control Register (T1CTRL), Section 5.6.3 and Section 5.6.4, to terminate 
before responding to the request with all zeros. The time-out counter must have been 
initialized for this feature to work. This gives the targeted controller time to respond to 
the read request. 

0 1 01 0x0 1F80_0000 disabled

1 0 10 0x0 1F60_0000 disabled

1 1 11 0x0 1F40_0000 disabled

a. This is the base address for all single-controller configurations, and for the Main Control-
ler in a multi-controller configuration.

Table 13: Reset Configuration Signals for Multi-Controller Configurations  

Signal Sampled at Reset

Controller 
ID Number

Base Address 
Of Controller’s 
Internal Registers
After Reset
(PDAR = INTCS)

Base Address 
Of Boot ROM After 
Reset
(PDAR = BOOTCS)

UART_DTR# UART_TxDRDY#



When outstanding read requests are responded to, the Main Controller automatically 
resets the CPU-Bus Read Time-Out Counter. Read requests in any of the controller 
pipelines are discarded when a response is provided to the CPU. This is possible 
because the CPU has only one read outstanding at any time, so if a read response 
occurs, a read in the pipeline is by definition not destined for this controller. If a write 
request does not decode in the controller, the write data is disregarded regardless of 
whether the system implements a single- or multi-controller configuration. 

5.3.4

CntrValid#, WrRdy# 
and MCWrRdy#

In a multi-controller configuration, the bidirectional CntrValid# signal is shared by all 
controllers. On a CPU access, all controllers decode the access but only one controller 
(the active controller) decodes the address as being for it. The active controller drives 
CntrValid# and all other controllers take it as an input, so that they can keep track of 
what is happening on the CPU bus. 

WrRdy# is an input in a multi-controller configuration, as opposed to an output in sin-
gle-controller configurations. Due to the speed of the CPU’s bus interface, all of the 
MCWrRdy# outputs from all controllers must be externally ORed and registered (on 
SysClock) to generate WrRdy# to the CPU and all controllers. Figure 9 shows the con-
nections. 

Figure 9:   Multi-Controller Signal Connections

If the CPU is writing to memory attached to one of the controllers, that controller will 
negate its MCWrRdy# output while the other controllers will assert their MCWrRdy# 
outputs. The OR gate will then cause WrRdy# to the CPU and all other controllers to be 
negated, thus indicating that further writes are being held off. 

Programming the TMODE bits to indicate a multi-controller configuration causes the 
controller to compensate for the external combination of all external agents’ WrRdy# 
signals. The controller expects this extra clock delay when monitoring the WrRdy# 
input in a multi-controller configuration, and it adjusts the CPU-Interface FIFO water 
marks accordingly. 
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5.3.5

Access Targeting
In a multi-controller configuration in which one or more VRC5074 controllers, and pos-
sibly other devices, share a common CPU bus, each VRC5074 controller watches all 
activity on the shared bus to determine which accesses are intended for it. If that 
VRC5074 controller determines that the current access is not intended for it, that con-
troller flushes writes after the CPU-Interface FIFO (Section 5.2.2) and drops reads 
either when it sees another device’s answer or after its own read time-out. 



5.4

Physical Device 
Address Registers 
(PDARs)

The bottom 36 bits (bits 35:0) of the CPU’s SysAD bus are the valid physical address 
bits. These are decoded by the controller according to masks in the controller’s 13 
Physical Device Address Registers (PDARs). Figure 8 on page 36 shows how the 
PDARs facilitate accesses by various bus masters to various bus targets. 

Table 14 summarizes the characteristics of the PDARs. The text that follows specifies 
the contents of each PDAR. 

5.4.1

Initialization State of 
PDARs

After the Serial Mode EEPROM initializes the CPU at reset (Section 12.0), the PDARs 
turn off all physical address space except the chip-selects for the controller’s internal 
register space (INTCS) and the Boot ROM (BOOTCS). The PDARs are located at the 

Table 14: Physical Device Address Registers (PDARs)

Register Symbol Offset R/W Reset Value Description

SDRAM Bank 0 SDRAM0 0x0000 R/W 0x0 0000 00D0 SDRAM memory bank 0.

SDRAM Bank 1 SDRAM1 0x0008 R/W 0x0 0000 00D0 SDRAM memory bank 1.

Device Chip-Select 2 a DCS2 0x0010 R/W 0x0 0000 0000 Configures DCS#[2] signal.

Device Chip-Select 3 a DCS3 0x0018 R/W 0x0 0000 0000 Configures DCS#[3] signal.

Device Chip-Select 4 a DCS4 0x0020 R/W 0x0 0000 0000 Configures DCS#[4] signal.

Device Chip-Select 5 a DCS5 0x0028 R/W 0x0 0000 0000 Configures DCS#[5] signal.

Device Chip-Select 6 a DCS6 0x0030 R/W 0x0 0000 0000 Configures DCS#[6] signal.

Device Chip-Select 7 a DCS7 0x0038 R/W 0x0 0000 0000 Configures DCS#[7] signal.

Device Chip-Select 8 a DCS8 0x0040 R/W 0x0 0000 0000 Configures DCS#[8] signal.

reserved RFU9 0x0048 R 0x0 0000 0000 —

reserved RFUa 0x0050 R 0x0 0000 0000 —

reserved RFUb 0x0058 R 0x0 0000 0000 —

PCI Address Window 0 PCIW0 0x0060 R/W 0x0 0000 00C0 Configures PCI Address Window 0. This 
address window can be accessed by the 
CPU or DMA, with the controller acting 
as the PCI-Bus master. See Section 
7.4.2 for an example of address 
generation. 

PCI Address Window 1 PCIW1 0x0068 R/W 0x0 0000 00C0 Configures PCI Address Window 1. This 
address window can be accessed by the 
CPU or DMA, with the controller acting 
as the PCI-Bus master. See Section 
7.4.2 for an example of address 
generation. 

Controller Internal 
Registers and Devices

INTCS 0x0070 R/W 0x0 1Fn0 00EF Configures controller’s internal registers. 
The reset value changes in a multi-
controller configuration (see Section 
5.3.3).

Boot Chip-Select a BOOTCS 0x0078 R/W 0x0 1FC0 002F b Configures BootCS# signal. The reset 
value changes in a multi-controller 
configuration (see Section 5.3.1).

a. When the controller is configured for 32-bit PCI operation (PCI64# negated), the boot memory and the seven DCS 
devices can be individually configured by the MEM/LOC bit in the PDAR (Section 5.4) to appear on the memory bus or 
the Local Bus. When the controller is configured for 64-bit PCI operation (PCI64# asserted), these devices always 
appear on the memory bus. 

b. The BOOTCS reset value depends on the size of the PCI bus, size of boot ROM, and other conditions. See Section 
5.4.2 and Section 5.3.



first 16 dwords of the controller’s internal register space. For a single-controller config-
uration, or for the Main Controller in a multi-controller configuration (Section 5.3.3), 
these 16 dwords are located at offsets 0x0078:0x0000 from base address 
0x0_1FA0_0000. Boot ROM for a single-controller configuration is decoded to base 
address 0x0_1FC0_0000, although this changes for a multi-controller configuration 
(Table 13). 

After reset, the PDARs may be programmed to occupy any valid physical address 
space and to decode physical address ranges from 4GB down to 2MB. A maximum of 
15 address bits, SysAD[35:21], can be decoded. 16MB ranges must start at 16MB 
boundaries; 1GB ranges must start at 1GB boundaries. If the address mappings of two 
Physical Device Address Registers overlap, the lower-numbered Physical Device 
Address Register decode is selected. 

When programming a PDAR, the register should be read immediately after writing it. 
This ensures that address decoders are properly configured. 

5.4.2

PDAR Fields
All PDARs have the same bit organization, except where noted below.



Bit 3:0 MASK Address-Decoding Mask and Enable. 

This field specifies the number of high-order 
SysAD[35:21] address bits to be masked and com-
pared with the ADDR field during the decoding of this 
device’s base address. The field resets to 0x0 for all 
PDARs except INTCS and BOOTCS, both of which 
reset to 0xF. The value of this field for the INTCS 
PDAR always reads as 0xF and cannot be changed. 
Some values of this field disable address decoding. 
See Section 5.4.3 for a PDAR address-translation 
example.

Mask 
Value

Valid For PDARs Description

0x0 All except INTCS Physical Address decode OFF

0x1:0x3 All except INTCS reserved/OFF

0x4 All except INTCS 4 Address bits SysAD[35:32] are 
masked and compared (4GB 
address space). 

0x5 All except INTCS 5 Address bits SysAD[35:31] are 
masked and compared (2GB 
address space). 

0x6 All except INTCS 6 Address bits SysAD[35:30] are 
masked and compared (1GB 
address space). 

0x7 All except INTCS 7 Address bits SysAD[35:29] are 
masked and compared (512MB 
address space). 

0x8 All except INTCS 8 Address bits SysAD[35:28] are 
masked and compared (256MB 
address space). 

0x9 All except INTCS 9 Address bits SysAD[35:27] are 
masked and compared (128MB 
address space). 

0xA All except INTCS 10 Address bits SysAD[35:26] 
are masked and compared 
(64MB address space). 

0xB All except INTCS 11 Address bits SysAD[35:25] 
are masked and compared 
(32MB address space). 

0xC All except INTCS 12 Address bits SysAD[35:24] 
are masked and compared 
(16MB address space). 

0xD All except INTCS 13 Address bits SysAD[35:23] 
are masked and compared (8MB 
address space). 

0xE All except INTCS 14 Address bits SysAD[35:22] 
are masked and compared (4MB 
address space). 

0xF All PDARs 15 Address bits SysAD[35:21] 
are masked and compared (2MB 
address space). 



Bit 4 MEM/LOC Memory or Local Bus Chip-Selects.
1 = Memory Bus.
0 = Local Bus.
Valid for DCS[8:2] and BOOTCS only. Resets to 0 for 
DCS[8:2]. Software sets the MEM/LOC bit to tell con-
troller which port a physical device is accessible 
from. At reset, the BOOTCS PDAR’s MEM/LOC bit is 
set to 1 if the PCI64# signal is asserted, and it is 
cleared to 0 if PCI64# is negated; there is a Serial 
Mode EEPROM bit that can override this default 
(Section 12.4).
The timing characteristics of chip-selects configured 
for the Local Bus are specified in the Local Bus Chip-
Select Timing Registers (LCSTn), Section 8.6.2, and 
the Local Boot Chip-Select Timing Register (BCST), 
Section 8.6.5.

Bit 5 VISPCI Visible on PCI Bus. 
1 = visible.
0 = not visible.
Resets to 0 for all except INTCS and BOOTCS, 
which reset to 1. Software must set this bit to 1 to 
allow PCI accesses to this device.

Bit 7:6 WIDTH Data Width of Physical Device.  

Writable for DCS[8:2] and BOOTCS. The width value 
for INTCS, SDRAM0, SDRAM1, PCIW0, and PCIW1 
are fixed at 0x3 (64 bits). BOOTCS resets as 0x0 
and has Serial Mode EEPROM bits (Section 12.4) 
that configure its width. Resets to 0x0 for all others.

Bit 20:8 reserved Hardwired to 0.

Bit 35:21 ADDR Physical Address For This Device. 
These bits, after masking with the value of the MASK 
field, are compared with the incoming high-order 
address bits to decode the physical address space of 
this device. This field resets to 0x0 for all PDARs, 
except INTCS and BOOTCS. See Section 5.4.3 for a 
PDAR address-translation example. 
In a multi-controller configuration (Section 5.3), the 
reset values for the INTCS and BOOTCS registers 
change, based on the controller ID. If this is the Main 

Width 
Value

Description

0x0 Physical device data width 8-bits

0x1 Physical device data width 16-bits

0x2 Physical device data width 32-bits

0x3 Physical device data width 64-bits



Controller (controller ID 0x0), the ADDR field of the 
INTCS and BOOTCS registers resets to 0x0 1FA 
and 0x0 1FC, respectively. If this is not the Main 
Controller, the ADDR field of the INTCS and 
BOOTCS registers resets to the value shown below: 

Bit 63:36 reserved Hardwired to 0.

5.4.3

PDAR Address 
Decoding Example

When the CPU generates a 36-bit physical address, the ADDR and MASK fields of the 
PDARs determine where that access goes. For example, suppose that the CPU 
address range 0x0_2000_0000 through 0x0_3FFF_FFFF should go to SDRAM Bank 0 
(the SDRAM0 PDAR). This is equivalent to saying that when the SysAD[35:29] 
address bits are b0000_001, the access should go to SDRAM Bank 0.

In this example, the MASK and ADDR fields of the PDAR for SDRAM Bank 0 would be 
programmed as follows:

� MASK = 0x7, which means only compare [35:29]

� ADDR[35:21] = b0000_001x_xxxx_xxx

The value in the ADDR field specifies the high-order address bits that must match the 
incoming address, and the MASK field specifies which ADDR bits are to be used in the 
address comparison. In this example, a MASK value of 0x7 means only compare 
[35:29], and this is equivalent to a mask of b1111_1110_0000_000. Thus, when the 
CPU generates an access to SDRAM Bank 0, the controller uses only address bits 
SysAD[28:0] from the CPU. These are the bits that were not masked by the SDRAM0 
PDAR. 

Figure 10:   PDAR Address Decoding Example

Controller 
ID

INTCS Base 
Address Indicated 
by ADDR field of 
INTCS PDAR at 
Reset 

BOOTCS Base 
Address Indicated 
by ADDR field of 
BOOTCS PDAR at 
Reset

0x0 
(Main Controller)

0x0 1FA0 0000 0x0 1FC0 0000

0x1 0x0 1F80 0000 0x0 0000 0000

0x2 0x0 1F60 0000 0x0 0000 0000

0x3 0x0 1F40 0000 0x0 0000 0000

3
5

2
1

2
0

0

0 0 0 0 0 0 1 x x x x x x x x ADDR field of PDAR

1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 MASK field of PDAR

0 0 0 0 0 0 1 SysAD[28:0] Address sent to SDRAM0



5.5

CPU Interface 
Registers

5.5.1

CPU Status Register 
(CPUSTAT)

The TMODE field (bits 5:4) of this register should be programmed as soon as possible 
after reset. See Section 5.3.3 for details.

Bit 0 CLDRST Cold Reset.
1 = cold-reset the entire system. 
0 = writing 0 has no effect; the bit always reads 0. 
Setting this bit resets the controller, causes it to 
assert ColdReset# to the CPU, and (if PCICR# is 
asserted) causes it to assert PCIRST# on the PCI 
Bus. The same actions that are performed by setting 
this bit are also performed during power-up (VccOk 
input asserted). Compare the PCICRST field (bit 63) 
of the PCI Control Register (PCICTRL), Section 
7.11.1.

Bit 1 WARMRST Warm Reset.
1 = warm-reset the CPU. 
0 = clear the 1.
Setting this bit causes the controller to assert Reset# 
to the CPU. The controller and PCI devices are not 
reset. After a warm reset, this bit reads 1. The bit can 
be cleared by writing 0. Compare the PCIWRST field 
(bit 62) of the PCI Control Register (PCICTRL), Sec-
tion 7.11.1.

Bit 2 DISPC Disable Parity Checking.
1 = disable parity checking of CPU write data. 
0 = enable parity checking of CPU write data.
The controller checks even parity when this bit is 
cleared. See Section 5.2.4 for a description of CPU-
related parity generation and checking. 

Table 15: CPU Interface Registers

Register Symbol Offset R/W Reset Value Description

CPU Status CPUSTAT 0x0080 R/W 0x0000 0000 0000 0h00 a Miscellaneous CPU status and control.

Interrupt Control INTCTRL 0x0088 R/W 0x8888 8888 8888 8888 Interrupt enable and priority.

Interrupt Status 0 INTSTAT0 0x0090 R 0x0000 0000 0000 0000 Interrupt status 0.

Interrupt Status 1 and CPU 
Interrupt Enable 

INTSTAT1 0x0098 R/W 0x0001 0000 0000 0000 Interrupt status 1 and CPU interrupt 
enable.

Interrupt Clear INTCLR 0x00A0 R/W 0x0000 0000 0000 0000 Interrupt clear.

PCI Interrupt Control INTPPES 0x00A8 R/W 0x0000 0000 0000 0000 Interrupt input signals polarity and edge 
vs. level sensitivity control.

a. The “h” nibble in this reset value changes in multi-controller configurations (Section 5.3). 



Bit 3 DISCPUPC Disable Parity Generation.
1 = disable parity generation for CPU reads. 
0 = enable parity generation for CPU reads. 
The controller generates even parity when this bit is 
cleared. See Section 5.2.4 for a description of CPU-
related parity generation and checking. 

Bits 5:4 TMODE No-Target Read Response. 

This field determines how the controller responds to 
a CPU read request that (a) does not decode to this 
controller’s address space, as specified by this con-
troller’s PDARs (Section 5.4), (b) encounters a time-
out of the CPU-Bus Read Timer (Section 5.6.4), or 
(c) encounters a timeout of the Local-Bus Ready 
Timer (SUBSCWID plus CONWID fields of the Local 
Bus Chip Select Registers, LCSTn, Section 8.6.2). If 
a TMODE value of 2 or 3 is programmed, the CPU-
Bus Read Timer must be initialized in order for this 
feature to work. Failure to load a value into this timer 
causes the system to hang for a CPU read request to 
which no controller responds. The TMODE field 
should be programmed as soon as possible after 
reset. See Section 5.3.3 for details.

Bits 7:6 reserved Hardwired to 0.

Bits 9:8 CTRLNUM Controller ID Number. (read-only) 

These read-only bits are set by the UART_DTR# and 
UART_TxDRDY# signals during cold reset (Section 

TMODE 
Value

Description

0x0 Single-controller configuration. Return zeros with 
bad parity.

0x1 Single-controller configuration. Return zeros with 
good even parity.

0x2 Multi-controller configuration. If this is the Main 
Controller, return zeros with bad parity after time-out.

0x3 Multi-controller configuration. If this is the Main 
Controller, return zeros with good even parity after 
time-out.

Controller ID Base Address of Registers

00 0x1FA0_0000 (Main Controller)

01 0x1F80_0000

10 0x1F60_0000

11 0x1F40_0000



12.0) and determine the controller’s address space 
in a multi-controller configuration (Section 5.3). 

Bit 10 MAINCTRL Main Controller. (read-only) 
1 = Main Controller. 
0 = not the Main Controller.

Bits 63:11 reserved Hardwired to 0.

5.5.2

Interrupt Control 
Register (INTCTRL)

Section 11.0 on page 147 gives an overview of interrupts. Each nibble of the INTCTRL 
register contains the enable bit and priority bits for each source of a controller interrupt. 
The three least-significant bits of each nibble contain the interrupt priority assignment. 
The most-significant bit of the nibble contains the interrupt enable. When set, the inter-
rupting source is enabled to interrupt the CPU. Encodings 0 through 5 correspond to 
CPU interrupts 0 through 5. Encoding 6 corresponds to the CPU’s NMI# input. 

Bits 2:0 CPCEPRI CPU-Interface Parity-Error Interrupt Priority.

Bit 3 CPCEEN CPU-Interface Parity-Error Interrupt Enable.
1 = enable. 
0 = disable. 

Bits 6:4 CNTDPRI CPU No-Target Decode Interrupt Priority.
Same values as Bits 2:0. 

Bit 7 CNTDEN CPU No-Target Decode Interrupt Enable.
1 = enable. 
0 = disable. 

Bits 10:8 MCEPRI Memory-Check Error Interrupt Priority.
Same values as Bits 2:0. 

Bit 11 MCEEN Memory-Check Error Interrupt Enable.
1 = enable. 
0 = disable. 
The error-checking mode (parity or ECC) is specified 

Priority 
Value

Description

0x0 This interrupt is assigned to CPU interrupt level 0, 
Int#[0].

0x1 This interrupt is assigned to CPU interrupt level 1, 
Int#[1].

0x2 This interrupt is assigned to CPU interrupt level 2, 
Int#[2].

0x3 This interrupt is assigned to CPU interrupt level 3, 
Int#[3].

0x4 This interrupt is assigned to CPU interrupt level 4, 
Int#[4].

0x5 This interrupt is assigned to CPU interrupt level 5, 
Int#[5].

0x6 This interrupt is assigned to CPU non-maskable 
interrupt, NMI#.

0x7 reserved



in the Memory Control Register (MEMCTRL), Sec-
tion 6.6.1. The type of memory-check error is 
reported in the Memory Check Error Status Register 
(CHKERR), Section 6.6.3.

Bits 14:12 DMAPRI DMA Controller Interrupt Priority.
Same values as Bits 2:0. 

Bit 15 DMAEN DMA Controller Interrupt Enable.
1 = enable all DMA interrupt sources. 
0 = disable all DMA interrupt sources. 
This bit is a global enable for the DMA interrupt 
sources that are individually enabled by the IE bit in 
the DMA Control Registers 0 and 1 (DMACTRLn), 
Section 9.5.1. Clearing all bits in DMACTRLn is the 
same as clearing the DMAEN bit. 

Bits 18:16 UARTPRI UART Interrupt Priority.
Same values as Bits 2:0. 

Bit 19 UARTEN Global UART-Interrupt Enable.
1 = enable all UART interrupt sources. 
0 = disable all UART interrupt sources. 
This bit is a global enable for all UART interrupt 
sources that are individually enabled in the UART 
Interrupt Enable Register (UARTIER), Section 
10.4.3. Clearing all bits in UARTIER is the same as 
clearing the UARTEN bit. 

Bits 22:20 WDOGPRI Watchdog Timer Interrupt Priority.
Same values as Bits 2:0. 

Bit 23 WDOGEN Watchdog Timer Interrupt Enable.
1 = enable. 
0 = disable. 
Setting this bit enables interrupts on time-out of 
Timer 3 Counter Register (T3CNTR, Section 5.6.8).

Bits 26:24 GPTPRI General-Purpose Timer Interrupt Priority.
Same values as Bits 2:0. 

Bit 27 GPTDEN General-Purpose Timer Interrupt Enable.
1 = enable.
0 = disable. 
Setting this bit enables interrupts on time-out of 
Timer 2 Counter Register (T2CNTR, Section 5.6.6). 

Bits 30:28 LBRTDPRI Local-Bus Ready Timer Interrupt Priority.
Same values as Bits 2:0. 
This bit enables interrupts on time-out of the 12-bit 
counter in the SUBSCWID+CONWID fields of the 
Local Bus Chip Select Registers (LCSTn, Section 
8.6.2). This interrupt applies to both reads and writes 
on the Local Bus. 



Bit 31 LBRTDEN Local-Bus Ready Interrupt Enable.
1 = enable. 
0 = disable. 

Bits 34:32 INTAPRI PCI Interrupt Signal INTA# Priority.
Same values as Bits 2:0. 

Bit 35 INTAEN PCI Interrupt Signal INTA# Enable.
1 = enable. 
0 = disable. 

Bits 38:36 INTBPRI PCI Interrupt Signal INTB# Priority.
Same values as Bits 2:0. 

Bit 39 INTBEN PCI Interrupt Signal INTB# Enable.
1 = enable. 
0 = disable. 

Bits 42:40 INTCPRI PCI Interrupt Signal INTC# Priority.
Same values as Bits 2:0. 

Bit 43 INTCEN PCI Interrupt Signal INTC# Enable.
1 = enable. 
0 = disable. 

Bits 46:44 INTDPRI PCI Interrupt Signal INTD# Priority.
Same values as Bits 2:0. 

Bit 47 INTDEN PCI Interrupt Signal INTD# Enable.
1 = enable. 
0 = disable. 

Bits 50:48 INTEPRI PCI Interrupt Signal INTE# Priority.
Same values as Bits 2:0. 

Bit 51 INTEEN PCI Interrupt Signal INTE# Enable.
1 = enable. 
0 = disable. 

Bits 55:52 reserved Hardwired to 0.

Bits 58:56 PCISPRI PCI SERR# Interrupt Priority.
Same values as Bits 2:0. 

Bit 59 PCISEN PCI SERR# Interrupt Enable.
1 = enable. 
0 = disable. 

Bits 62:60 PCIEPRI PCI Internal Error Interrupt Priority.
Same values as Bits 2:0. This field sets the priority of 
interrupts enabled by the PCIEEN bit, described 
immediately below. A PCI Internal Error indicates 
that something bad happened during a PCI transac-
tion; the fault could lie either with the PCI device or 
the controller. 

Bit 63 PCIEEN PCI Internal Error Interrupt Enable.
1 = enable. 



0 = disable. 
This bit is a global enable for all PCI interrupt 
sources that are individually enabled by bits 53:48 of 
the PCI Control Register (PCICTRL), Section 7.11.1. 
See PCI-Master Parity Detection (Section 7.4.5) and 
PCI-Target Parity Detection (Section 7.5.4) for 
details. 

5.5.3

Interrupt Status 
Register 0 (INTSTAT0)

Each 16-bit halfword of this register indicates which of the 16 sources are requesting 
an interrupt for the lower four non-maskable interrupts to the CPU, Int#[3:0].

Bits 15:0 IL0STAT CPU Int#[0] Status.

Bits 31-16 IL1STAT CPU Int#[1] Status.
Same values as Bits 15:0. 

Bits 47:32 IL2STAT CPU Int#[2] Status.
Same values as Bits 15:0. 

Bits 63:48 IL3STAT CPU Int#[3] Status.
Same values as Bits 15:0. 

5.5.4

Interrupt Status 1/CPU 
Interrupt Enable 
Register (INTSTAT1)

Each of the lower three 16-bit halfwords of this register indicates which of the 16 
sources are requesting an interrupt for the upper two non-maskable interrupts to the 
CPU, Int#[5:4], and the non-maskable interrupt to the CPU, NMI#. The upper portion of 
this register has the enables for controller interrupt output buffers.

Bits 15:0 IL4STAT CPU Int#[4] Status.
Same values as Bits 15:0 of INTSTAT0 register. 

Bits 31-16 IL5STAT CPU Int#[5] Status.
Same values as Bits 15:0 of INTSTAT0 register. 

Status Bit Source of Interrupt

0 CPU parity-check error (even parity)

1 CPU no-target decode

2 Memory Check Error

3 DMA Controller

4 UART

5 Watchdog timer

6 General-purpose timer

7 Local Bus read time-out

12:8 PCI interrupts INTE# through INTA#

13 reserved

14 PCI SERR#

15 PCI internal error. 



Bits 47:32 NMISTAT CPU NMI# Status.
Same values as Bits 15:0 of INTSTAT0 register. 

Bit 48 IL0OE Int#[0] Controller Output Enable.
1 = enable. 
0 = disable. 

Bit 49 IL1OE Int#[1] Controller Output Enable.
enable.
1 = enable. 
0 = disable. 

Bit 50 IL2OE Int#[2] Controller Output Enable.
enable.
1 = enable. 
0 = disable. 

Bit 51 IL3OE Int#[3] Controller Output Enable.
enable.
1 = enable. 
0 = disable. 

Bit 52 IL4OE Int#[4] Controller Output Enable.
enable.
1 = enable. 
0 = disable. 

Bit 53 IL5OE Int#[5] Controller Output Enable.
enable.
1 = enable. 
0 = disable. 

Bit 54 NMIOE NMI# Controller Output Enable.
buffer enable.
1 = enable. 
0 = disable. 

Bit 63:55 reserved Hardwired to 0.

5.5.5

Interrupt Clear 
Register (INTCLR)

Writing a 1 to any of these bits causes the corresponding interrupt source to be 
cleared, but only if the interrupt is edge-triggered. All of the controller’s interrupt out-
puts to the CPU, Int[5:0], are level-sensitive. PCI interrupts can be specified as level-
sensitive or edge-triggered in the PCI Interrupt Control Register (INTPPES), Section 
5.5.6. Writing a 0 to any of these bits has no effect. The bits always read 0. 



Bit 15:0 ISCLR Clear Interrupt. 

1 = clear interrupt. 
0 = writing 0 has no effect. The bits always read 0. 

Bit 63:16 reserved Hardwired to 0.

5.5.6

PCI Interrupt Control 
Register (INTPPES)

Bit 0 INTAPOL INTA# Signal Polarity. 
1 = active-Low.
0 = active-High (reset value).

Bit 1 INTAEDGE INTA# Signal Edge. 
1 = level-sensitive.
0 = edge-triggered (reset value). 

Bit 2 INTBPOL INTB# Signal Polarity.
1 = active-Low.
0 = active-High (reset value).

Bit 3 INTBEDGE INTB# Signal Edge. 
1 = level-sensitive.
0 = edge-triggered (reset value). 

Bit 4 INTCPOL INTC# Signal Polarity.
1 = active-Low.
0 = active-High (reset value).

Bit 5 INTCEDGE INTC# Signal Edge. 
1 = level-sensitive.
0 = edge-triggered (reset value). 

Bit 6 INTDPOL INTD# Signal Polarity.
1 = active-Low.
0 = active-High (reset value).

Bit 7 INTDEDGE INTD# Signal Edge. 
1 = level-sensitive.
0 = edge-triggered (reset value). 

Clear Bit Source of Interrupt

0 CPU parity-check error (even parity)

1 CPU no-target decode

2 Memory-Check Error

3 DMA Controller

4 UART

5 Watchdog timer

6 General-purpose timer

7 Local Bus read time-out

12:8 PCI interrupt signals, INTE# through INTA#

13 reserved (always 0)

14 PCI SERR#

15 PCI internal error 



Bit 8 INTEPOL INTE# Signal Polarity.
1 = active-Low.
0 = active-High (reset value).

Bit 9 INTEEDGE INTE# Signal Edge. 
1 = level-sensitive.
0 = edge-triggered (reset value). 

Bit 63:10 reserved Hardwired to 0.

5.6

Timer Registers
The controller has four timers: 

� SDRAM Refresh Timer (Timer0): A 16-bit timer that causes an SDRAM refresh 
when it expires. The controller automatically reloads this free-running timer.

� CPU-Bus Read Timer (Timer1): A 24-bit timer used to determine CPU bus read 
time-outs in a multi-controller configuration. See the description of the TMODE 
field in the CPU Status Register (CPUSTAT, Section 5.5.1). When a CPU read 
begins, this timer is automatically loaded and begins to count, if enabled.

� General-Purpose Timer (Timer2): A 32-bit timer that generates a CPU interrupt 
when it expires, if the interrupt is enabled in the Interrupt Control Register 
(INTCTRL, Section 5.5.2). The controller automatically reloads this free-running 
timer.

� Watchdog Timer (Timer3): A 32-bit timer that generates a CPU interrupt when it 
expires, if the interrupt is enabled in the Interrupt Control Register (INTCTRL, 
Section 5.5.2). The controller automatically reloads this free-running timer.

Normally these timers count SysClock ticks, but one timer can be specified as a pres-
cale input to another timer. To be used as a prescaler, the timer must be enabled. 

The Local-Bus also has a ready-signal timer. This is configured in the Local Bus Chip-
Select Timing Registers (LCSTn), Section 8.6.2.

5.6.1

SDRAM Refresh 
Control Register 
(T0CTRL)

This register is initialized to 0x1 0000 0186 at reset.

Bits 15:0 T0RLVAL Timer 0 Refresh Counter Reload Value. 
This value, in SysClock ticks, is automatically re-
loaded into the refresh counter after the counter 
reaches zero. The refresh counter counts down from 

Table 16: Timer Registers

Register Symbol Offset R/W Reset Value Description

SDRAM Refresh Control T0CTRL 0x01C0 R/W 0x0000 0001 0000 0186 SDRAM refresh control.

SDRAM Refresh Counter T0CNTR 0x01C8 R/W 0x0000 0000 0000 0000 SDRAM refresh counter.

CPU-Bus Read Time-Out Control T1CTRL 0x01D0 R/W 0x0000 0000 0000 0000 CPU-bus read time-out control.

CPU-Bus Read Time-Out Counter T1CNTR 0x01D8 R/W 0x0000 0000 0000 0000 CPU-bus read time-out counter.

General-Purpose Timer Control T2CTRL 0x01E0 R/W 0x0000 0000 0000 0000 General-purpose timer control.

General-Purpose Timer Counter T2CNTR 0x01E8 R/W 0x0000 0000 0000 0000 General-purpose timer counter.

Watchdog Timer Control T3CTRL 0x01F0 R/W 0x0000 0000 0000 0000 Watchdog timer control.

Watchdog Timer Counter T3CNTR 0x01F8 R/W 0x0000 0000 0000 0000 Watchdog timer counter.



this value. Thus, the time of the count cycle corre-
sponds to 1 plus this register’s value. The default 
value (0x186 = 390) is the refresh rate for an SDRAM 
chip that requires 4096 refresh cycles every 32 ms 
(i.e., one refresh every 7.8125 microseconds) for 
SysClock running at 50 MHz. This is very conserva-
tive but it allows for successful boot, after which the 
reload value can be increased. 

Bits 31-16 reserved Hardwired to 0.

Bit 32 T0EN Timer 0  Enable.
1 = enable (reset value).
0 = disable.
Enabling the timer starts it counting. 

Bit 33 T0PREN Timer 0 Prescale Enable.
1 = enable.
0 = disable (reset value).
If the prescaler is enabled, the controller only starts 
counting when the prescaler reaches zero. 

Bits 35:34 T0PRSRC Timer 0 Prescale Source. 
00 = reserved
01 = Timer 1.
10 = Timer 2.
11 = Timer 3.

Bits 63:36 reserved Hardwired to 0.

5.6.2

SDRAM Refresh 
Counter Register 
(T0CNTR)

Bits 15:0 T0VAL Timer 0 Current Timer Value. 
The timer value, in SysClock ticks. Refresh is gener-
ated upon reaching 0. 

Bits 63:16 reserved Hardwired to 0.

5.6.3

CPU-Bus Read Time-
Out Control Register 
(T1CTRL)

This timer is used to time-out CPU read requests to which no resource responds. The 
timer functions differently, depending on whether the TMODE field in the CPU Status 
Register (CPUSTAT), Section 5.5.1, specifies a single-controller or multi-controller 
configuration and whether the MAINCTRL field in CPUSTAT specifies a Main Control-
ler. 

Bits 23:0 T1RLVAL Timer 1 Counter Reload Value. 
If the TMODE field in CPUSTAT specifies a single-
controller configuration (TMODE = 0x0 or 0x1) or if 
this controller is not the Main Controller in a multi-
controller configuration (TMODE = 0x2 or 0x3 and 
MAINCTRL = 0), the timer is free-running: the 
T1RLVAL value, in SysClock ticks, is automatically 
re-loaded into the counter after the counter reaches 



zero. The counter starts counting when it is enabled 
by the T1EN bit and counts down from this value. 
Thus, the time of the count cycle corresponds to 1 
plus this register’s value. 
If the TMODE field in CPUSTAT specifies a multi-
controller configuration and this is the Main Control-
ler (TMODE = 0x2 or 0x3 and MAINCTRL = 1), the 
T1RLVAL value is loaded at the beginning of any 
CPU read cycle, and the counter only counts while 
the read is in progress. 

Bits 31:24 reserved Hardwired to 0.

Bit 32 T1EN Timer 1 Enable.
1 = enable.
0 = disable (reset value).
Enabling the timer starts it counting. 

Bit 33 T1PREN Timer 1 Prescale Enable.
1 = enable.
0 = disable.
If the prescaler is enabled, the controller only starts 
counting when the prescaler reaches zero. 

Bits 35:34 T1PRSC Timer 1 Prescale Source. 
00 = Timer 0.
01 = reserved
10 = Timer 2.
11 = Timer 3.

Bits 63:36 reserved Hardwired to 0.

5.6.4

CPU-Bus Read Time-
Out Counter Register 
(T1CNTR)

Bits 23:0 T1VAL Timer 1 Current Timer Value. 
A CPU-bus read time-out is generated when this 
value, in SysClock ticks, reaches 0. CPU-bus read 
time-outs are controlled by the TMODE bits of the 
CPU Status Register (Section 5.5.1). The T1VAL 
value should be greater than the worst-case 
response time required by your slowest device; if a 
slow device returns data after the T1VAL time-out, 
the state of hardware may become corrupt, requiring 
a reset. 

Bits 63:24 reserved Hardwired to 0.

5.6.5

General-Purpose 
Timer Control Register 
(T2CTRL)

Bits 31:0 T2RLVAL Timer 2 Counter Reload Value. 
This timer is free-running: the T2RLVAL value, in 
SysClock ticks, is automatically re-loaded into the 
counter after the counter reaches zero. The counter 
starts counting when it is enabled by the T2EN bit 
and counts down from this value. Thus, the time of 



the count cycle corresponds to 1 plus this register’s 
value. 

Bit 32 T2EN Timer 2 Enable.
1 = enable.
0 = disable (reset value).
Enabling the timer starts it counting. 

Bit 33 T2PREN Timer 2 Prescale Enable.
1 = enable.
0 = disable.
If the prescaler is enabled, the controller only starts 
counting when the prescaler reaches zero. 

Bits 35:34 T2PRSRC Timer 2 Prescale Source. 
00 = Timer 0.
01 = reserved
10 = Timer 2.
11 = Timer 3.

Bits 63:36 reserved Hardwired to 0.

5.6.6

General-Purpose 
Timer Counter 
Register (T2CNTR)

Bits 31:0 T2VAL Timer 2 Current Timer Value. 
The general-purpose timer interrupt is generated 
upon reaching 0, if this interrupt has been enabled by 
setting the GPTDEN field of the Interrupt Control 
Register (Section 5.5.2).

Bits 63:32 reserved Hardwired to 0.

5.6.7

Watchdog Timer 
Control Register 
(T3CTRL)

Bits 31:0 T3RLVAL Timer 3 Counter Reload Value. 
This timer is free-running: the T3RLVAL value, in 
SysClock ticks, is automatically re-loaded into the 
counter after the counter reaches zero. The counter 
starts counting when it is enabled by the T3EN bit 
and counts down from this value. Thus, the time of 
the count cycle corresponds to 1 plus this register’s 
value. 

Bit 32 T3EN Timer 3 Enable.
1 = enable.
0 = disable (reset value).
Enabling the timer starts it counting. 

Bit 33 T3PREN Timer 3 Prescale Enable.
1 = enable.
0 = disable.
If the prescaler is enabled, the controller only starts 
counting when the prescaler reaches zero. 

Bits 35:34 T3PRSRC Timer 3 Prescale Source. 
00 = Timer 0.



01 = Timer 1.
10 = Timer 2.
11 = reserved

Bits 63:36 reserved Hardwired to 0.

5.6.8

Watchdog Timer 
Counter Register 
(T3CNTR)

Bits 31:0 T3VAL Timer 3 Current Timer Value. 
The watchdog timer interrupt is generated upon 
reaching 0, if this interrupt has been enabled by set-
ting the WDOGEN field of the Interrupt Control Reg-
ister (Section 5.5.2).

Bits 63:32 reserved Hardwired to 0.



6.0 Main-Memory Interface and Registers

The controller’s memory interface runs at the SysClock frequency (up to 100 MHz). It 
supports dword and block (burst) accesses to one or two physical banks of SDRAM 
main memory. Several types of SDRAM chips are supported (each with two to four on-
chip virtual banks). A 16-bit counter supports programmable refresh rates. 

The CPU, PCI-Bus masters, and Local-Bus masters can access SDRAM memory 
directly in the system memory space, or they can configure the controller’s DMA regis-
ters for DMA transfers, as described in Section 9.0. Memory accesses by the CPU, 
PCI-Bus masters, and DMA cause the memory interface to prefetch. The controller pri-
oritizes requests on the basis of which physical memory bank is currently open, and 
thus which request can be serviced most quickly. 

The controller generates and checks byte-wide parity or ECC (single-error correction, 
double-error detection) with 64+8 bits of SDRAM. There is no performance penalty for 
this generation and checking. The controller also supports Flash or ROM devices for 
boot or other memory spaces. 

6.1

Memor y 
Confi guration and 
Monitorin g

Software configures and monitors the memory interface using the following registers:

� Physical Device Address Registers (PDARs), Section 5.4 on page 45.

� Interrupt Control Register (INTCTRL), Section 5.5.2 on page 52.

� Interrupt Status Register 0 (INTSTAT0), Section 5.5.3 on page 55.

� Interrupt Status 1/CPU Interrupt Enable Register (INTSTAT1), Section 5.5.4 on 
page 55.

� Interrupt Clear Register (INTCLR), Section 5.5.5 on page 56.

� SDRAM Refresh Control Register (T0CTRL), Section 5.6.1 on page 58.

� SDRAM Refresh Counter Register (T0CNTR), Section 5.6.2 on page 59.

� Memory-Interface Registers, Section 6.6 on page 72.

6.2

Physical Loads
At 100 MHz, the memory interface typically supports up to three physical loads on each 
data bit, depending on the quality of board layout and the electrical characteristics of 
the devices used (including any sockets). These loads can be any three of the follow-
ing address-decode ranges specified by the Physical Device Address Registers 
described in Section 5.4:

� SDRAM Bank 0 (PDAR = SDRAM0)

� SDRAM Bank 1 (PDAR = SDRAM1)

� Boot ROM (PDAR = BOOTCS, sometimes referred to as Memory Bank 2)

� Memory or Local-Bus Device 8 (PDAR = DCS8)

� Memory or Local-Bus Device 7 (PDAR = DCS7)

� Memory or Local-Bus Device 6 (PDAR = DCS6)

� Memory or Local-Bus Device 5 (PDAR = DCS5)

� Memory or Local-Bus Device 4 (PDAR = DCS4)



� Memory or Local-Bus Device 3 (PDAR = DCS3)

� Memory or Local-Bus Device 2 (PDAR = DCS2)

� A row of transceiver/buffers with DCS[8:2] and BOOTCS behind it. 

The SDRAM in the first two address ranges, SDRAM0 and SDRAM1, can be bank-
interleaved. Any of the other address ranges can be populated with Flash or ROM 
memory. 

When the controller is configured for 32-bit PCI operation (PCI64# negated), the boot 
memory and the seven DCS[8:2] devices can be individually configured by the MEM/
LOC bit in the PDAR (Section 5.4) to appear on the memory bus or the Local Bus. 
When the controller is configured for 64-bit PCI operation (PCI64# asserted), these 
devices must be on the memory bus. The BOOTCS# and DCS#[8:2] chip-selects for 
these loads need not be buffered, because each of these bits supports only a single 
load. Figure 3 on page 14 shows an example of buffered loads on the memory bus. 

If more than three loads are placed on the memory bus, the bus will slow down. Such 
configurations (e.g., Figure 4 on page 15) require either a slower SysClock or buffering 
on the data, address, and write-enable signals to those devices, so that the controller 
only sees three physical loads—two SDRAM loads and one additional load for the buff-
ers. 

6.3

Write FIFOs
The memory interface has the following internal write FIFOs, each of which holds 64 
bytes of data plus associated address and command bits:

� 8-dword (64-byte) CPU Write FIFO.

� 8-dword (64-byte) PCI Write FIFO. 

� 8-dword (64-byte) DMA Write FIFO.

These FIFOs are each capable of accepting writes at a maximum speed of 640MB/
sec. For each of these sources, two addresses, one to each of the two physical banks, 
can be buffered. All of these addresses can be writes (single dword writes or 4-dword 
block writes), allowing up to six 4-dword block write requests (address and command) 
and data to be held in the three 8-dword write FIFOs. 

6.4

Boot- ROM and 
External-Device 
Addressing

Boot ROM can be located either on the memory bus or on the Local Bus, as specified 
by Bit 256 of the controller initialization data (Section 12.4.2) and in the MEM/LOC bit 
of the BOOTCS PDAR (Section 5.4). If PCI64# asserted, indicating a 64-bit PCI Bus, 
Boot ROM must be located on the memory bus, because the Local Bus cannot exist 
when a 64-bit PCI Bus is implemented. If PCI64# negated at reset, the controller’s 
default CPU-initialization location for Boot ROM is the Local Bus. 

The Boot ROM bus width is set by the Serial Mode EEPROM initialization data stream 
(Table 34 on page 154). If you have no Serial Mode EEPROM, the default width is 8 
bits. You can change this after boot, but you cannot boot without a Serial Mode 
EEPROM if the default is wrong. 

Flash memory may be used for Boot ROM. Boot memory, or a row of buffers bridging 
the controller to a secondary bank of memory or devices, is sometimes called the third 



memory bank or memory bank 2. The first and second physical banks, SDRAM0 and 
SDRAM1, are the main-memory banks. 

6.4.1

Memory-Bus 
Addressing Of Boot 
ROM and External 
Devices

The address signals for the two main-memory physical banks, MAbank0[14:0] and 
MAbank1[14:0], may also be used to address Boot ROM and other devices located on 
the memory bus—those devices associated with the BOOTCS and DCS8:2 PDARs. 
The address signals for the two physical banks of main memory must be concatenated 
on the motherboard to obtain a linear 30-bit address for the boot memory or other 
devices. This 30-bit address bus can support devices up to 64 bits in width, as follows: 

� Address bits 29:0 for 8-bit devices.

� Address bits 30:1 for 16-bit devices.

� Address bits 31:2 for 32-bit devices.

� Address bits 32:3 for 64-bit devices. 

Figure 11 shows an example of a Flash device being used for Boot ROM, plus two 
physical banks of SDRAM main memory. 

The selection of width for Boot ROM and other devices is controlled by the WIDTH field 
in the BOOTCS and DCS8:2 PDARs. The controller’s MWE#[0] and MWE#[1] signals 
serve as the memory-chips’ write-enable (WE) and output-enable (OE), respectively. 
The MCS#[1:0], MRAS#[1:0], and the MCAS#[1:0] signals are negated during 
accesses to Boot ROM and external devices, so as to disable the SDRAMs. 

When BOOTCS and DCS8:2 devices are located on the Local Bus, rather than the 
memory bus, they are addressed with the LOC_AD[31:0] signals, as described in Sec-
tion 8.0. Much greater timing control is available when DCS8:2 devices are located on 
the Local Bus rather than the Memory Bus. There is also potentially severe SDRAM-
performance degradation during accesses to DCS8:2 devices that are located on the 
Memory Bus. 

6.4.2

Boot-Memory Timing
Boot memory timing and the enabling of the MRDY# input signal are specified in the 
Memory Access Timing Register (ACSTIME), Section 6.6.2. 



Figure 11:   Bank-Interleaved SDRAM Main Memory With Flash Boot Memory
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6.5

SDRAM Main 
Memory

Main memory consists of two physical banks of SDRAM configured by two PDARs, 
SDRAM0 and SDRAM1. Both banks support only SDRAM chips, and they both must 
be populated by the same type of SDRAM chip running at SysClock or greater from 
among the following types: 

� 256 Mb, 4-bank, including but not limited to:

• 64M word x 4 bit x 4 bank

• 32M word x 8 bit x 4 bank

• 16M word x 16 bit x 4 bank

• 8M word x 32 bit x 4 bank

� 64 Mb, 4-bank, including but not limited to:

• 16M word x 4 bit x 4 bank

• 8M word x 8 bit x 4 bank

� 64 Mb, 2-bank, including but not limited to:

• 16M word x 4 bit x 2 bank

• 8M word x 8 bit x 2 bank

� 16 Mb, 2-bank, including but not limited to:

• 4M word x 4 bit x 2 bank

• 2M word x 8 bit x 2 bank

• 1M word x 16 bit x 2 bank

The SDRAMTYP field of the MEMCTRL register (Section 6.6.1) specifies the type of 
SDRAM chips installed. 

All SDRAM accesses are full-dword (64 bit) accesses. The controller internally imple-
ments partial-dword (less than 64-bit) write requests as read-merge-writes: it first 
reads from the write address, then merges the partial-dword write data into the read 
data, then writes the full dword to memory. Because of this, partial-dword writes take 
longer than full-dword writes. 

6.5.1

Bank-Interleaving
In the context of systems containing SDRAM memory, the term bank has two different 
meanings. Sets of SDRAM chips connected to the controller’s MAbank0[14:0] and 
MAbank1[14:0] address signals are called physical banks, but individual SDRAM chips 
are organized internally into virtual banks. 

� Physical Banks: Physical-bank interleaving provides a performance boost 
because accesses can be under way to both banks simultaneously. Unless 
otherwise stated, the term bank-interleaving refers to the interleaving of physical 
banks. Figure 11 shows a bank-interleaved SDRAM configuration with a Flash 
device for boot memory. 

� Virtual Banks: The virtual banks internal to SDRAM chips can also provide some 
performance boost by allowing the controller to have multiple virtual banks open 
simultaneously (two or four virtual banks for each physical bank), thus providing a 
greater chance of a page hit on a memory access. In the list of SDRAM types at 
the beginning of Section 6.5, the “bank” in “256 Mb, 4-bank” refers to virtual 
banks, not physical banks. 

The remaining discussion in this data sheet (except as noted) refers to physical banks, 
not virtual banks.



SDRAM in main memory can be located all in one physical bank (0 or 1) or in both 
physical banks. If both banks are populated, both must be populated with the same 
type of SDRAM chips, from among the types listed at the beginning of Section 6.5. The 
two physical banks can be bank-interleaved to improve performance. Bank-interleav-
ing is specified in the ILEAVD filed of the MEMCTRL register (Section 6.6.1). If only 
one bank is populated, the other bank can, for example, be configured for field-
upgrades by providing a SIMM or DIMM connector, as long as the SDRAM chips in 
both banks are of the same type. 

If bank-interleaving is enabled in a two-bank configuration, the two address ranges 
defined by the PDARs for these banks (SDRAM0 and SDRAM1) are split between the 
two physical SDRAM rows, so that half of each physical row corresponds to one of the 
memory banks. If bank-interleaving is disabled in this configuration, the address 
ranges correspond to physical rows 0 and 1. 

6.5.2

SDRAM Chip 
Initialization

The controller automatically configures the Mode Registers inside each SDRAM chip 
when the ENABLE bit is set in the Memory Control Register (MEMCTRL), Section 
6.6.1. Accesses to SDRAM are held off until initialization is complete. The values writ-
ten to the Mode Registers inside each SDRAM chip are fixed at:

� CAS latency = 3.

� Burst length = 4.

� Wrap type = interleaved.

These values will work with any type of 100 MHz SDRAM that uses 3-tick latency. The 
CAS latency is set to 3 because of the 100 MHz speed of the Memory Bus (a CAS 
latency of 2 can only be used with 66 MHz bus speed). 

6.5.3

Direct Connections, 
SIMMs, and DIMMs

The controller is designed for direct connection to one or two banks of identical 
SDRAM chips, with no additional pipeline stages on the memory bus. SIMM or DIMM 
connectors can be used on either or both banks, but the SIMM or DIMM SDRAM chips 
must be identical, and the clock speed and board layout will determine whether exter-
nal buffering is needed for the clock and control signals. SIMMs and DIMMs with exter-
nal register stages are not supported.

6.5.4

Address-Multiplexing 
Modes

The controller supports address multiplexing by staggering the address lines, as 
shown in Table 17. The mapping is different, depending on whether or not the physical 
banks (SDRAM0 and SDRAM1 PDARs) are interleaved. 

The physical banks are selected by the SysAD[13] signal. The virtual banks within 
each SDRAM chip are selected by the SysAD[12:11] signals. When physical-bank 
interleaving is implemented, four or eight virtual banks are visible to the controller (two 
or four virtual banks for each physical bank). 



6.5.5

Performance
The speed of SDRAM memory accesses is determined by the type, speed and inter-
leaving of the memory devices installed. Table 18 lists simulated memory performance 
for a 100 MHz memory bus. 

Table 17: MAbank-to-SysAD Address Mapping

MAbank
Signals

Bank-Interleaved SysAD Mapping Non-Bank-Interleaved SysAD Mapping

16Mb SDRAM 64Mb SDRAM 256Mb SDRAM 16Mb SDRAM 64Mb SDRAM 256Mb SDRAM

Row Column Row Column Row Column Row Column Row Column Row Column

0 10 3 10 3 10 3 10 3 10 3 10 3

1 14 4 14 4 14 4 14 4 14 4 14 4

2 15 5 15 5 15 5 15 5 15 5 15 5

3 16 6 16 6 16 6 16 6 16 6 16 6

4 17 7 17 7 17 7 17 7 17 7 17 7

5 18 8 18 8 18 8 18 8 18 8 18 8

6 19 9 19 9 19 9 19 9 19 9 19 9

7 20 PDAR 
number a

20 PDAR 
number a

20 PDAR 
number a

20 13 20 13 20 13

8 21 23 21 25 21 26 21 23 21 25 21 26

9 22 24 22 26 22 27 22 24 22 26 22 27

10 11 b0 23 b0 23 b0 11 b0 23 b0 23 b0

11 12 12 24 27 24 28 12 12 24 27 24 28

12 b0 b0 11 11 25 29 b0 b0 11 11 25 29

13 12 12 12 12 11 11 12 12 12 12 11 11

14 11 11 11 11 12 12 11 11 11 11 12 12

a. SDRAM is 0 or 1, as determined by SysAD[13].

Table 18: Main Memory Performance for 100 MHz SDRAM

Bypass
Activation a

Bank-
Inter-
leaving

RAS Page
Hit/Miss

R/W
CPU
Access
Type

Clocks b
Total Memory
Bandwidth Used
(MB/sec)

First
Access

Second
Access

Min Max

CPU Access to Non-Bank-Interleaved Memory

No No Hit R Single 13 11

Burst 11+4 11+4

Miss Single 27 11

Burst 24+4 11+4

N/A W Single 368 400

Burst 504 560

Yes No N/A R Single 16 11

Burst 16+4 11+4

W Single 344 400

Burst 520 560

CPU Access to Bank-Interleaved Memory



Accesses to SDRAM are all pipelined for high performance, and SDRAM bank-inter-
leaving results in higher performance. However, the use of Flash memory or other non-
SDRAM devices can reduce this performance, because the SDRAM pipeline stalls 
during the slower accesses to such memory. Flash memory can be placed on the 
memory bus or on the Local Bus, except that the Local Bus cannot be implemented 
while a 64-bit PCI Bus is implemented. If Flash memory devices must be placed on the 
memory bus (which would be the case in a 64-bit PCI Bus implementation), perfor-
mance can be maximized by copying the contents of Flash, after boot, to SDRAM 
memory, and accessing from the SDRAM.

No No N/A R Single 49 11

Burst 14+4 11+4

W Single 150 160

Burst 528 544

No Yes N/A R Single 20 11

Burst 18+4 11+4

W Single 368 400

Burst 504 560

DMA Reads and Writes to a Single Memory Bank, with CPU Accessing the Same Memory Bank

No No N/A R Single 43 11

Burst 28+4 21+4

W Single 320 400

Burst 480 736

DMA Reads and Writes to Memory Bank 1, with CPU Accessing Memory Bank 0

No No N/A R Single 22 16

Burst 76+4 62+4

W Single 464 552

Burst 688 784

DMA Writes to Memory Bank 1, with CPU Accessing Memory Bank 0

No No N/A R Single 35 16

Burst 32+4 15+4

W Single 424 512

Burst 736 800

No Yes N/A R Single 43 10

Burst 23+4 13+4

W Single 296 408

Burst 480 736

a. Bypass activation occurs when a CPU request arrives while the CPU and memory inter-
faces are both idle.

b. For single-dword reads, this is the latency from the assertions of CPUValid# to Cntr-
Valid#. For burst reads this is given as x+y where x is the initial latency and y is the num-
ber of clocks to transfer the four dwords in the burst.

Table 18: Main Memory Performance for 100 MHz SDRAM  (continued)

Bypass
Activation a

Bank-
Inter-
leaving

RAS Page
Hit/Miss

R/W
CPU
Access
Type

Clocks b
Total Memory
Bandwidth Used
(MB/sec)

First
Access

Second
Access

Min Max



If a non-SDRAM device is on the memory bus, the worst-case latency from CPU to 
SDRAM occurs for is a block access (32-bytes) to a byte-wide device. This takes 32 
individual accesses, each one lasting up to approximately 31 clocks. This gives a 
latency of close to 1000 clocks for the CPU.

If only SDRAM is on the memory bus, the worst-case latency from CPU to SDRAM 
occurs when DMA and PCI keep memory busy. In this case, worst-case total latency 
from CPU to SDRAM is 76 clocks.

6.5.6

Memory Timing
The controller is designed for 100 MHz SDRAM chips using a 100 MHz SysClock. 
However, the board layout is critical. Some layouts may require faster SDRAM chips to 
ensure proper timing margins. The timing associated with SDRAMs is fixed by the sys-
tem clock and a 3-clock RAS and CAS latency (3-clock latency from RAS to CAS, and 
3-clock latency from CAS to data on reads). Thus, SDRAM SIMMs with external regis-
ter stages are not supported. 

Figure 12 shows minimum timing of 10 clocks for a CPU read with bypass enabled and 
memory interface idle. The total SDRAM latency from address-valid to first-data-valid 
is 10 SysClocks, of which 6 are due to SDRAM latency, 1 to error-correction, 1 to driv-
ing the SDRAM bus, 1 to driving the CPU bus, and 1 to internal controller latency. See 
Section 14.0 for timing diagrams. 

Figure 12:   CPU-To-SDRAM Read Timing

6.5.7

Memory Refresh
The controller supports SDRAM refresh using CAS-before-RAS refresh on all of the 
SDRAM types. The rate of the refresh clock is determined by a programmable 16-bit 
counter, the SDRAM Refresh Counter Register (T0CNTR), Section 5.6.2. The refresh 
logic requests access to the SDRAM each time the counter expires. This counter 



resets to a conservative default value and may be changed in the SDRAM Refresh 
Control Register (T0CTRL, Section 5.6.1) after reset. Refresh is interspersed with all 
other memory accesses. The refresh logic can accumulate a maximum of two refresh 
requests while waiting for access to the memory. 

6.5.8

Error Checking
The controller checks even byte-parity or 8-bit ECC on data cycles during memory 
reads, and it generates even byte-parity or 8-bit ECC on data cycles during memory 
writes. The CHKMODE and CHKDIS bits of the Memory Control Register (MEMC-
TRL), Section 6.6.1, enable these functions. Errors or reported in the Memory Check 
Error Status Register (CHKERR), Section 6.6.3. 

All accesses to SDRAM are full dword (64-bit). Any partial-dword write (less than 64-
bit) requires a read, internal merge, and write. This works whether you are using ECC 
or byte-parity. You cannot implement byte-parity and support byte writes with SDRAM, 
because there is no way to do individual bit writes to the parity RAM. Instead, you must 
do read-modify-writes, which the controller does in its error checking. 

Memory dwords that have correctable ECC errors are not reported as bad parity on the 
CPU bus. Only memory dwords that have uncorrectable (multi-bit) ECC errors are 
reported as bad parity on the CPU bus. For details on how parity errors are reported on 
the CPU bus, see Section 5.2.4.

6.5.9

Memory Sharing in 
Multi-Controller 
Configurations

In multi-controller configurations (Section 5.3), SDRAM memory attached to one con-
troller can be accessed by a bus master associated with another controller (CPU, PCI-
Bus master, Local-Bus master, or DMA) if both controllers connect to a PCI Bus, so 
that the access can be made via the PCI Bus. Alternatively, the CPU can be used to 
copy or move data from one controller’s memory to another controller’s memory. 

6.6

Memor y-Interface 
Registers

6.6.1

Memory Control 
Register (MEMCTRL)

Bit 1:0 SDRAMTYP SDRAM Type. 

The SDRAM memory controller supports two inter-

Table 19: Main Memory Control Registers

Register Symbol Offset R/W RESET VALUE Description

Memory Control MEMCTRL 0x00C0 R/W 0x0000 0000 0000 0080 Miscellaneous main memory control.

Memory Access Timing ACSTIME 0x00C8 R/W 0x0000 0000 0000 001F Main memory access timing.

Memory Check Error Status CHKERR 0x00D0 R 0x0000 0000 0000 0000 Main memory check error status.

Value SDRAM Type

0x0 16Mb SDRAM, 2-bank

0x1 64Mb SDRAM, 2-bank

0x2 64Mb SDRAM, 4-bank

0x3 256Mb SDRAM, 4-bank



leaved memory-space banks. The SDRAM chips in 
both banks must all be the same type. The term bank 
in the SDRAMTYP table above refers not to such 
bank-interleaving of the memory space, but rather to 
banks inside the SDRAM chips themselves. See 
Section 6.5 for an explanation of this terminology. 
SDRAMTYP must not be changed after the ENABLE 
bit (bit 4) is set. 

Bit 2 CHKMODE Error Checking Mode. 
1 = 8-bit ECC on MD[63:0]. 
0 = even parity on each byte of MD[63:0].
Selects the type of error generation and checking on 
data cycles. ECC generation and checking is single-
error correction, double-error detection (SECDED). 
The MDC[7:0] signals carry the check data.

Bit 3 CHKDIS Memory-Check Disable.
1 = disable.
0 = enable. 
Setting this bit disables memory checks on reads 
and writes, forces zeros on outbound MDC[7:0] 
check bits, and disables generation of memory-
check interrupts, which are enabled by the MCEEN 
bit of the Interrupt Control Register (INTCTRL, Sec-
tion 5.5.2).

Bit 4 ENABLE Memory Controller Enable.
1 = enable. 
0 = disable. 
The controller automatically configures the Mode 
Registers in each SDRAM chip when the ENABLE 
bit is set. The values written to the Mode Register are 
described in Section 6.5.2. Accesses to SDRAM are 
held off until initialization is complete. If the memory 
PDAR is initialized but the ENABLE bit is not set, any 
access to memory will hang indefinitely. 

Bit 5 reserved Hardwired to 0. 

Bit 6 ILEAVD Bank-Interleaving. 
1 = enable bank-interleaving, based on the low 
address bit, SysAD[13].
0 = disable bank-interleaving.
With bank-interleaving enabled, any access with 
SysAD[13]=0 goes to physical SDRAM bank 0 
(addressed by the MAbank0[14:0] bus), and any 
access with SysAD[13]=1 goes to physical SDRAM 
bank 1 (addressed by the MAbank1[14:0] bus). 
When bank-interleaving is disabled, any access to 
the SDRAM0 PDAR goes to physical bank 0, and 



any access to the SDRAM1 PDAR goes to physical 
bank 1. 

Bit 7 HOLDLD Memory Output Hold-Latch Disable. 
1 = disable.
0 = enable. 
On each output address and control bit, after the cor-
responding flip-flop, there is a latch before the output 
buffer. This latch-enable function is directly off the 
SysClock input signal and is not connected to the on-
chip system clock driven by the internal PLL. Thus, 
this latch can guarantee holds to external circuitry. 

Bit 63:8 reserved Hardwired to 0.

6.6.2

Memory Access 
Timing Register 
(ACSTIME)

This register controls the timing of non-SDRAM devices on the memory bus (called 
external devices on the memory bus), such as Flash or ROM. These devices corre-
spond to the BootCS# and DCS#[8:2] chip-select signals and to the BOOTCS and 
DCS[8:2] PDARs.

Bits 4:0 ACCT Access Cycle Time.
This field specifies the number of SysClocks 
required to read or write an external device on the 
main memory bus. MWE#[1] is used during reads as 
the output-enable signal (OE) of the external 
devices, and MWE#[0] is used as the read/write 
enable signal (WE) of the external devices. The min-
imum time that OE or WE will be Low is always one 
SysClock cycle. This register allows that time to be 
extended. This field resets to 0x1F, corresponding to 
a 310 nsec timing in a 100 MHz SysClock system. 

Bits 7:5 reserved Hardwired to 0.

Bit 8 DISMRDY Disable Memory Ready. 
1 = disable MRDY# signal. 
0 = enable MRDY# signal. 
When this bit is 0, the MRDY# input can terminate an 
external access. However, this access will also be 
terminated by ACCT count completion (bits 4:0, 
above). ACCT can be viewed as a bus time-out. 
Thus, MRDY# can be used to shorten the timing of 
an external device access on the main memory bus. 

Bits 63:9 reserved Hardwired to 0.

6.6.3

Memory Check Error 
Status Register 
(CHKERR)

Bit 35:0 CEADDR Memory-Check Error Address. 
The address at which the most recent memory-
check error occurred. 

Bit 47:36 reserved Hardwired to 0.



Bit 55:48 CESYN Memory-Check Error Syndrome. 
If the CHKMODE bit is set to ECC in the Memory 
Control Register (Section 6.6.1), this byte contains 
the syndrome from the data on which the check error 
occurred, as described in Table 20. If the memory 
CHKMODE is Parity, this byte contains the XORed 
even-parity check.

Table 20: ECC-Check Syndromes

Sorted By Syndrome Sorted By Bit Number

ECC 
Syndrome

Memory Bit
In Error

ECC 
Syndrome

Memory Bit
In Error

0x01 check bit 0 0x01 check bit 0

0x02 check bit 1 0x02 check bit 1

0x04 check bit 2 0x04 check bit 2

0x08 check bit 3 0x08 check bit 3

0x0B data bit 17 0x10 check bit 4

0x0E data bit 16 0x20 check bit 5

0x10 check bit 4 0x40 check bit 6

0x13 data bit 18 0x80 check bit 7

0x15 data bit 19 0xCE data bit 0

0x16 data bit 20 0xCB data bit 1

0x19 data bit 21 0xD3 data bit 2

0x1A data bit 22 0xD5 data bit 3

0x1C data bit 23 0xD6 data bit 4

0x20 check bit 5 0xD9 data bit 5

0x23 data bit 8 0xDA data bit 6

0x25 data bit 9 0xDC data bit 7

0x26 data bit 10 0x23 data bit 8

0x29 data bit 11 0x25 data bit 9

0x2A data bit 12 0x26 data bit 10

0x2C data bit 13 0x29 data bit 11

0x31 data bit 14 0x2A data bit 12

0x34 data bit 15 0x2C data bit 13

0x40 check bit 6 0x31 data bit 14

0x4A data bit 33 0x34 data bit 15

0x4F data bit 32 0x0E data bit 16

0x52 data bit 34 0x0B data bit 17

0x54 data bit 35 0x13 data bit 18

0x57 data bit 36 0x15 data bit 19

0x58 data bit 37 0x16 data bit 20

0x5B data bit 38 0x19 data bit 21

0x5D data bit 39 0x1A data bit 22

0x62 data bit 56 0x1C data bit 23

0x64 data bit 57 0xE3 data bit 24

0x67 data bit 58 0xE5 data bit 25

0x68 data bit 59 0xE6 data bit 26

0x6B data bit 60 0xE9 data bit 27

0x6D data bit 61 0xEA data bit 28



Bit 56 PCHKERR Parity-Check Error Occurred. 
1 =even-parity error occurred.
0 = error cleared. 
This bit is set by the controller when an error occurs. 
The bit is cleared by setting bit 2 of the Interrupt 
Source Clear Register (Section 5.5.5). 

Bit 57 ECHKERR ECC-Check Error Occurred. 
1 = error occurred.

0x70 data bit 62 0xEC data bit 29

0x75 data bit 63 0xF1 data bit 30

0x80 check bit 7 0xF4 data bit 31

0x8A data bit 49 0x4F data bit 32

0x8F data bit 48 0x4A data bit 33

0x92 data bit 50 0x52 data bit 34

0x94 data bit 51 0x54 data bit 35

0x97 data bit 52 0x57 data bit 36

0x98 data bit 53 0x58 data bit 37

0x9B data bit 54 0x5B data bit 38

0x9D data bit 55 0x5D data bit 39

0xA2 data bit 40 0xA2 data bit 40

0xA4 data bit 41 0xA4 data bit 41

0xA7 data bit 42 0xA7 data bit 42

0xA8 data bit 43 0xA8 data bit 43

0xAB data bit 44 0xAB data bit 44

0xAD data bit 45 0xAD data bit 45

0xB0 data bit 46 0xB0 data bit 46

0xB5 data bit 47 0xB5 data bit 47

0xCB data bit 1 0x8F data bit 48

0xCE data bit 0 0x8A data bit 49

0xD3 data bit 2 0x92 data bit 50

0xD5 data bit 3 0x94 data bit 51

0xD6 data bit 4 0x97 data bit 52

0xD9 data bit 5 0x98 data bit 53

0xDA data bit 6 0x9B data bit 54

0xDC data bit 7 0x9D data bit 55

0xE3 data bit 24 0x62 data bit 56

0xE5 data bit 25 0x64 data bit 57

0xE6 data bit 26 0x67 data bit 58

0xE9 data bit 27 0x68 data bit 59

0xEA data bit 28 0x6B data bit 60

0xEC data bit 29 0x6D data bit 61

0xF1 data bit 30 0x70 data bit 62

0xF4 data bit 31 0x75 data bit 63

Table 20: ECC-Check Syndromes  (continued)

Sorted By Syndrome Sorted By Bit Number

ECC 
Syndrome

Memory Bit
In Error

ECC 
Syndrome

Memory Bit
In Error



0 = error cleared. 
This bit is set by the controller when such an error 
occurs. The bit can be cleared by setting Bit 2 of the 
ISCLR field in the Interrupt Source Clear Register 
(Section 5.5.5). 

Bit 58 MCHKERR Multi-Bit ECC Check Error
1 = multi-bit ECC error occurred. 
0 = no such error. 
This bit is set by the controller when such an error 
occurs. The bit can be cleared by setting Bit 2 of the 
ISCLR field in the Interrupt Source Clear Register 
(Section 5.5.5). 

Bit 63:59 reserved Hardwired to 0.



7.0 PCI-Bus Interface and Registers

The controller’s PCI-Bus interface complies fully, both functionally and electrically, with 
the PCI Local Bus Specification, Revision 2.1. No external logic or buffering is neces-
sary. The interface implements 3.3 V PCI-compliant pads (5 V tolerant) using the NEC 
CB-C9 process technology. 

The interface operates at any of the following configurations: 

� 66 MHz, 64-bit bus (maximum sustained bandwidth 533 MB/sec)

� 66 MHz, 32-bit bus (maximum sustained bandwidth 267 MB/sec)

� 33 MHz, 64-bit bus (maximum sustained bandwidth 267 MB/sec)

� 33 MHz, 32-bit bus (maximum sustained bandwidth 133 MB/sec)

The controller can be a PCI-Bus master on behalf of the CPU, DMA, or Local-Bus mas-
ters. The controller can also be a PCI target, providing external PCI-Bus masters with 
access to controller resources (memory, Local-Bus devices, and internal controller reg-
isters such as those that configure DMA, UART, and timers). The controller supports 
external PCI-Bus masters with access to the PCI-Bus memory space, but not to the 
PCI I/O space. 

The controller supports burst transfers when it is both a PCI-Bus master and target. No 
wait states are required. Burst lengths of up to 2MB are supported for both reads and 
writes. The controller also supports 64-bit addressing (Dual Address Cycles), irrespec-
tive of whether a 64-bit or 32-bit PCI data bus is implemented, and it supports locked 
cycles (Exclusive Access) as PCI target and master. 

The controller can provide PCI Central Resource services for up to five other PCI 
devices. When the controller is not providing PCI Central Resource functions it is oper-
ating in PCI Stand-Alone Mode. Access to the controller’s PCI Configuration Space is 
supported when the controller is operating either as the PCI Central Resource or in 
Stand-Alone Mode. 

For details of PCI interrupt wiring, see Section 2.2.6 of the PCI Local Bus Specification. 

Throughout this document, dword or doubleword means 8 bytes and qword or quad-
word means 16 bytes. These definitions are MIPS-compatible and differ from those in 
the PCI Local Bus Specification, where a dword is 4 bytes and a qword is 8 bytes. 

7.1

PCI-Bus 
Confi guration and 
Monitorin g

Software configures and monitors the PCI-Bus interface using the following registers:

� Physical Device Address Registers (PDARs), Section 5.4 on page 45.

� Interrupt Control Register (INTCTRL), Section 5.5.2 on page 52.

� Interrupt Status Register 0 (INTSTAT0), Section 5.5.3 on page 55.

� Interrupt Status 1/CPU Interrupt Enable Register (INTSTAT1), Section 5.5.4 on 
page 55.

� Interrupt Clear Register (INTCLR), Section 5.5.5 on page 56.

� PCI Interrupt Control Register (INTPPES), Section 5.5.6 on page 57.

� PCI-Bus Registers, Section 7.11 on page 91.

� PCI Configuration Space Registers, Section 7.13 on page 105.



7.2

Read and Write 
Buffers

The PCI-Bus data paths are shown in Figure 13. These paths include the following 
buffers for addresses and data flowing into or out of the controller:

� 32-entry x 8-byte (256-byte) PCI Output FIFO (OUTFIFO) for addresses and data 
flowing from controller masters and resources to the PCI Bus.

� 32-entry x 8-byte (256-byte) PCI Input FIFO (INFIFO) for addresses and data 
flowing from the PCI Bus to controller masters and resources.

� 4-entry x 8-byte (32-byte) CPU Delayed Read Completion (DRC) Buffer for data 
flowing from the PCI Bus to the CPU.

� 4-entry x 8-byte (32-byte) DMA Delayed Read Completion (DRC) Buffer for data 
flowing from the PCI Bus to the DMA logic.

Both the OUTFIFO and INFIFO hold address and data in a multiplexed fashion. Each 
of the 32 entries holds 8 bytes for address or data, plus an additional 13 bits for trans-
action type, byte-enables, command and status information. Thus, each FIFO can hold 
several small write bursts or one large write burst. 

Interrupts on the PCI Bus are not stalled until the FIFOs empty. The controller can relay 
PCI interrupts to the CPU immediately. 



Figure 13:   PCI-Interface Data Paths

7.3

PCI Commands 
Supported

Table 21 summarizes the PCI commands supported by the controller as a master and 
target on the PCI Bus. 

Table 21: PCI Commands Supported

C/BE#[3:0] Command
As PCI Master
(Controller-to-PCI)

As PCI Target
(PCI-to-Controller)

0000 Interrupt Acknowledge Yes a ignored

0001 Special Cycle Yes a ignored

0010 I/O Read Yes ignored

0011 I/O Write Yes ignored

010x reserved — a ignored

0110 Memory Read Yes Yes, as Delayed Read

0111 Memory Write Yes Yes, as Posted Write

100x reserved — a ignored

1010 Configuration Read Yes Yes, as Delayed Read

1011 Configuration Write Yes Yes, as Delayed Write

1100 Memory Read Multiple Yes Yes, as Delayed Read



7.4

PCI Master 
Transactions 
(Controller-to-PCI)

The controller supports bidirectional data transfers between the CPU, DMA, or Local-
Bus masters and PCI-Bus memory and I/O targets by becoming a PCI-Bus master. 
The initiator of such a transaction (the CPU, DMA, or a Local-Bus master) accesses 
the PCI-Bus resource through a local physical address that corresponds to one of two 
PCI Address Windows. 

The controller can generate all PCI command types (Table 21) as a PCI-Bus master. 
For CPU instruction-cache fills (4-dword block), the controller reads 4 dwords from the 
PCI target, beginning with the first dword in the cache line (address = 0), and returns 
them to the CPU in the correct sub-block order. As Figure 13 shows, read data is 
assembled in the controller’s 4-entry x 8-byte CPU Delayed Read Completion (DRC) 
Buffer before being sent to the CPU. 

7.4.1

PCI Address Window 
Registers

PCI memory and I/O targets are accessed through the controller’s two PCI Address 
Windows. These windows are configured by the PCI Address Window Registers 
(PCIW0 and PCIW1, Section 5.4). The registers have two corresponding PCI Master 
(Initiator) Registers (PCIINIT0 and PCIINIT1, Section 7.11.3) which specify PCI 
address and other information regarding transactions initiated through the PCI 
Address Windows. 

Section 7.4.2 gives an example of how the controller decodes PCI-Bus addresses from 
the values on the SysAD[31:0] bus, the ADDR and MASK fields of the PCIW0 and 
PCIW1 PDARs, and the PCIADD fields of the PCIINITn registers. 

7.4.2

PCI Address Decoding 
Example

When the CPU generates a 36-bit physical address to a PCI device, the ADDR and 
MASK fields of the PDARs determine where that access goes. For example, suppose 
that the CPU address range 0x0_C000_0000 through 0x0_DFFF_FFFF should go to 
the PCI Bus through the PCI Address Window 0 (the PCIW0 PDAR). This is equivalent 
to saying that when the SysAD[35:29] address bits are b0000_110, the access should 
go to the PCI Bus.

In this example, the MASK and ADDR fields of the PDAR for PCI Address Window 0 
(PCIW0) would be programmed as follows:

� MASK = 0x7, which means only compare [35:29]

� ADDR[35:21] = b0000_110x_xxxx_xxx

The value in the ADDR field specifies the high-order address bits that must match the 
incoming address, and the MASK field specifies which ADDR bits are to be used in the 

1101 Dual Address Cycle Yes Yes

1110 Memory Read Line Yes Yes, as Delayed Read

1111 Memory Write and Invalidate Yes a Yes, as Posted Write

a. In normal operation, the controller does not generate these commands. However, for 
test purposes the TYPE field in the PCI Master (Initiator) Register (PCIINITn, Section 
7.11.3) can be written so as to generate any PCI command. 

Table 21: PCI Commands Supported  (continued)

C/BE#[3:0] Command
As PCI Master
(Controller-to-PCI)

As PCI Target
(PCI-to-Controller)



address comparison. In this example, a MASK value of 0x7 means only compare 
[35:29], and this is equivalent to a mask of b1111_1110_0000_000.

When the CPU generates a PCI-Bus access, the controller uses only address bits 
SysAD[28:0] from the CPU. These are the bits that were not masked by the PCIW0 
PDAR. A PCI device can have up to 64 address bits. The two PCIADD fields in the 
PCIINIT0 register (Section 7.11.3), PCIADD[63:36] and PCIADD[35:21], specify the 
remainder of the PCI address. Thus, in this example, the PCIADD[63:29] bits should 
be programmed with the upper PCI address bits, and the PCIADD[28:21] bits will be 
ignored. 

Figure 14:   PCI Address Decoding Example (64-Bit PCI Address)

7.4.3

PCI-Master Writes
The controller supports combining and byte-merging on writes to the PCI Bus. These 
functions are enabled in the PCI Master (Initiator) Control Registers (PCIINITn, Section 
7.11.3). The sections below describe the controller’s handling of these functions. See 
Section 3.2.6 of the PCI Local Bus Specification for more details.

7.4.3.1

Combining
When the COMBINING bit is set in the PCIINITn register, the controller combines 
writes to sequential 64-bit dwords into a single PCI-Bus burst write. The TYPE field in 
the PCIINITn register should contain the value b011 (Memory Write). 

Accesses do not need to be full dword writes in order to be combined. A byte write to 
address 0x0 (dword 0) followed by a byte write to address 0xF (dword 1) will be com-
bined into a PCI burst. Each dword in the burst will have only a single byte-enable 
asserted. If a 32-bit PCI Bus is implemented, the burst consists of four 32-bit words. 
The first word has one byte-enable asserted, the second and third have none asserted, 
and the fourth word has one asserted. 

7.4.3.2

Byte-Merging
When the MERGING bit is set in the PCIINITn register, the controller byte-merges a 
sequence of individual writes to the same 64-bit dword into a single PCI-Bus write. The 
TYPE field in the PCIINITn register should contain the value b011 (Memory Write). 
Byte-merging can be done in any order. A byte write to address 0x3, followed by a byte 
write to address 0x2, followed by a byte write to 0x0 could all be merged into a single 
write to dword 0x0.

If any byte in the upper half of a dword is written, subsequent writes to the lower half 
are not merged. Instead, the dword containing the modified upper half is written to the 
PCI Bus, and the subsequent write to the lower half of the dword is placed in the con-
troller’s merge buffer so that merging can continue. This prevents the potential reorder-
ing of writes on a 32-bit PCI Bus. 

6
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0 0 0 0 1 1 0 x x x x x x x x ADDR field of PCIW0

PCIADD[63:36] PCIADD[35:21] PCIADD fields of PCIINIT0

1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 MASK field of PCIW0

PCIADD[63:36] PCIADD[35:29] SysAD[28:0] Address placed on PCI Bus



If merging is enabled and a dword has only been partially written (i.e., one of the upper 
four bytes has not been written to), the dword stays in the merge buffer indefinitely, 
waiting for an additional write that might be merged into this dword. The write does not 
actually occur on the PCI Bus until a subsequent PCI Master cycle is requested. 

7.4.4

PCI-Master Reads
When a read request comes through the controller, as PCI-Bus master, it is issued onto 
the PCI Bus to the PCI target. The master from which the read originated (the CPU, 
DMA, or DMA on behalf of a Local-Bus master) is kept waiting until the read data is 
returned from the PCI target; several clocks elapse for the first data item, and the 
prefetching configuration (Section 7.4.4.2) determines latency for subsequent data 
items. The read data returns through the controller’s INFIFO and one of the two 4-entry 
x 8-byte Delayed Read Completion (DRC) Buffers shown in Figure 13, even though the 
read may be completed on the PCI Bus as a normal (not delayed) read. Thus, if the 
CPU issues a PCI read, the CPU will be stalled until the read data returns. But the DMA 
will not be affected by the CPU’s waiting. 

7.4.4.1

Retried Reads
If a read request coming through the controller, as PCI-Bus master, is retried by the tar-
get, the read request is resubmitted at the front of the INFIFO. This allows other 
requests currently in the INFIFO to be processed first. If a read request has transferred 
some but not all of the requested data and gets a target disconnect, the request is 
immediately retried.

7.4.4.2

Prefetching on PCI-
Master Reads

By default, the controller fetches the exact amount of data requested by the CPU, 
DMA, or Local-Bus master. If the TYPE field in the PCI Master (Initiator) Control Reg-
isters (PCIINITn, Section 7.11.3) is set to b011 (Memory Read) and the PREFETCH-
ABLE bit is set to 1, additional data is prefetched from the PCI Bus during reads. The 
Memory Read command is forced to Memory Read Line or Memory Read Multiple, 
depending on the amount of data to be prefetched, as follows:

� For CPU single-dword reads, the controller prefetches the rest of the current 4-
dword block, plus the number of additional 4-dword blocks specified by the 
SINGLE_PFB field of the PCIINITn register. If SINGLE_PFB is all 1s (0x1F), the 
controller prefetches forever.

� For CPU 4-dword block reads (CPU cache fills), the controller fetches the 
requested block, and it prefetches the number of additional blocks specified by the 
BLOCK_PFB field of the PCIINITn register. If BLOCK_PFB is all 1s (0x3F), the 
controller prefetches continuously.

� For DMA reads, the DMA logic indicates exactly how many dwords are needed to 
complete the current DMA. If the transfer is greater than 64 blocks, the controller 
prefetches forever. 

� No prefetching is done for reads by Local-Bus masters. 

A subsequent read by the same master is a prefetch hit if the PREFETCHABLE bit of 
the PCIINITn register is still set, and the address is consecutive with the end of the pre-
vious read. The subsequent read can be a dword, partial dword, or block, but its 
address must start on the dword following the last dword of the previous read.



Prefetching stops when:

� The prefetch block count has been fetched (unless prefetching forever).

� The INFIFO is full.

� The target disconnects or aborts the transaction.

� The address crosses a 2 MB boundary.

� The master does any write.

� The master does a read that is not a prefetch hit.

� The master does a read to the other PCI Address Window.

� Another master (CPU or DMA) does any PCI access. 

� A PCI target read is serviced (i.e., read data is placed in the OUTFIFO).

Prefetched data is discarded when:

� The master does any write.

� The master does a read that is not a prefetch hit.

� The master does a read to the other PCI Address Window.

� Another master (CPU or DMA) does any PCI access. 

� A PCI target read is serviced (i.e., read data is placed in the OUTFIFO).

� The master is idle and the INFIFO is full.

If the number of dwords to be fetched crosses a PCI cache-line boundary, as specified 
by the PCI Cache-Line Size Register (CLSIZ, Section 7.13.7), the Memory Read com-
mand is forced to a Memory Read Multiple command; otherwise the command is 
forced to a Memory Read Line command.

7.4.5

PCI-Master Parity 
Detection

If the controller, as PCI master, detects bad even parity on a read or write data cycle, 
the controller:

� Completes the access.

� Reports the parity error in the DPE bit of the PCI Status Register (PCISTS, 
Section 7.13.4).

� Generates a CPU interrupt, if enabled by the:

• PEREN bit in the PCI Command Register (PCICMD, Section 7.13.3), 

• PERIN bit in the PCI Control Register (PCICTRL, Section 7.11.1), and 

• PCIEEN bit in the Interrupt Control Register (INTCTRL, Section 5.5.2).

� On a read, asserts PERR#, if enabled by the:

• PEREN bit in the PCI Command Register (PCICMD, Section 7.13.3).

� On a CPU read, forces load parity to be returned to the CPU, if enabled by the:

• PEREN bit in the PCI Command Register (PCICMD, Section 7.13.3). 

� On a DMA read, causes the DMA transfer to stop and sets the PRDERR bit in the 
DMA Control Registers (DMACTRLn, Section 9.5.1), if enabled by the:

• PEREN bit in the PCI Command Register (PCICMD, Section 7.13.3). 

� Asserts SERR#, if enabled by the:

• SERREN bit in the PCI Command Register (PCICMD, Section 7.13.3), 



• PERSE bit in the PCI Control Register (PCICTRL, Section 7.11.1), and 

• PEREN bit in the PCI Command Register (PCICMD, Section 7.13.3).

7.4.6

PCI I/O Space Cycles
When the TYPE field of the PCI Master (Initiator) Control Registers (PCIINITn, Section 
7.11.3) contains the value b001, reads and writes on the PCI Bus by the controller, as 
PCI master, are to the PCI I/O Space. The PCI specification allows only 32-bit I/O 
accesses. Thus, the ACCESS_32 bit in the PCIINITn register should be set. 

Byte-merging can be used (i.e., the MERGING bit can be set in the PCIINITn register), 
but not combining (the COMBINING bit must be cleared in the PCIINITn register). Only 
individual 32-bit I/O accesses are supported. Do not attempt bursts to the PCI I/O 
Space. Combining must not be used. Do not attempt accesses greater than 32-bits 
(i.e. full dword).

The controller drives the low two bits of the PCI address correctly, according to which 
byte-enables are asserted. See Section 3.2.2 of the PCI Local Bus Specification for 
details.

7.5

PCI Target 
Transactions (PCI-
to-Controller )

As a target on the PCI Bus, the controller responds to PCI Memory and Configuration 
(but not PCI I/O) transactions. All of the controller’s resources (memory, Local-Bus 
devices, and internal controller registers such as those that configure DMA, UART, and 
timers) are accessible to PCI Bus masters. The controller accepts full-speed (no wait-
state) burst reads and writes but implements them as delayed reads and delayed or 
posted writes, as shown in Table 21 on page 80. 

The controller has eleven PCI target address ranges within which it responds as a tar-
get to PCI-Bus masters. These ranges are programmable through the PDARs (all 
except the two PCI Address Window PDARs, as described immediately below in Sec-
tion 7.5.1). A target address range is only visible on the PCI Bus when the VISPCI bit 
is set in its PDAR. 

Each PDAR, except the two PCI Address Window PDARs, has a corresponding Base 
Address Register (BAR) in PCI configuration space. Each BAR is 64-bits wide, with 
varying bits appearing hardwired to zero, as specified in the MASK field of the PDAR. 
The PDAR should be programmed before allowing a PCI master to access the BARs. 
When the controller decodes a PCI address for one of its BARs, it arbitrates with its 
internal CPU, DMA, and Local-Bus logic for access to the requested resource. Bursts 
are disconnected with a Target Disconnect if the address crosses a 2MB boundary, 
which is the smallest granularity a controller BAR can have. 

7.5.1

PCI Loop-Back 
Accesses

When the controller is a PCI-Bus master, it is possible for the controller to also be a 
PCI-Bus target. That is, the CPU, DMA, or a Local-Bus master can access another 
controller resource via a loop-back on the PCI Bus, by using a PCI Address Window 
rather than addressing the resource directly. However, the analogous type of loop-back 
access is not possible when the controller is responding as a PCI-Bus target to a 
request by a PCI-Bus master. That is, a PCI-Bus master cannot access a PCI-Bus tar-
get via a loop-back through the controller. 



Because the two PCI Address Window PDARs cannot be accessed by PCI-Bus mas-
ters, they have no corresponding Base Address Registers (BARs) in the controller’s 
PCI configuration space. 

7.5.2

PCI-Target Writes
The controller implements PCI target writes as delayed or posted writes. Addresses 
and data for posted writes are held in the INFIFO, shown in Figure 13. Any number of 
writes can be posted and up to four delayed transactions can be pending simulta-
neously. Any additional delayed transactions are unconditionally retried until one of the 
four currently pending transactions completes. 

Configuration writes are delayed writes. The address and data for a configuration write 
is placed in the INFIFO, and the PCI transaction is terminated with Retry. When the 
delayed write has been performed into the Configuration Register, the transaction is 
allowed to complete. 

7.5.3

PCI-Target Reads
The controller implements PCI target reads as delayed reads. Delayed reads are split 
into two parts: a delayed-read request part, issued by the PCI-Bus master, and a 
delayed-read completion part, which is the data returned by the targeted controller 
resource. Delayed reads have the advantage of freeing the PCI Bus for other transac-
tions while the target of the delayed read takes its time returning the read data. 

The delayed-read request (address and command) is placed in the INFIFO, and the 
PCI transaction is terminated with Retry. The appropriate controller resource is read 
from, and the delayed-read completion data is placed in the OUTFIFO. When the 
transaction is retried, the target data is driven onto the PCI Bus.

When prefetching data for PCI target reads, the controller considers the BAR 
PREFETCHABLE bit (Section 7.13.10), the PCI command, the incrementing type 
specified by PCI_AD[1:0], and the value in the PCI Cache Line Size Register (Section 
7.13.7), as shown in Table 22. If the PCI Prefetch Count exceeds 31 dwords, it is 
ignored and the controller prefetches forever.

Table 22: Prefetching Variables For PCI Target Reads 

BAR
PREFETCHABL
E Bit

PCI Command
Incrementing
Type Specified by 
PCI_AD[1:0]

Prefetch Count
(amount of data prefetched
from controller resource)

0 Memory Read Any None

1 Memory Read Linear remainder of PCI Cache Line

0 Memory Read Line Linear remainder of PCI Cache Line

1 Memory Read Line Linear remainder of PCI Cache Line
plus 1 more PCI Cache Line

0 Memory Read Multiple Linear remainder of PCI Cache Line
plus 1 more PCI Cache Line

1 Memory Read Multiple Linear remainder of PCI Cache Line
plus 2 more PCI Cache Lines

— Configuration Read — None

— Any Anything other than Linear None



Prefetching stops when:

� The OUTFIFO is full.

� The master terminates the transaction.

� The address crosses a 2Mbyte boundary.

� The Prefetch Count has been fetched (unless prefetching forever).

Unused prefetched data is discarded when:

� The master terminates the transaction.

� The Discard Timer for this delayed transaction expires.

7.5.4

PCI-Target Parity 
Detection

If the controller, as PCI target, detects bad even parity on an address cycle, the con-
troller:

� Reports the parity error in the DPE bit of the PCI Status Register (PCISTS, 
Section 7.13.4).

� Generates a CPU interrupt, if enabled by the:

• PEREN bit in the PCI Command Register (PCICMD, Section 7.13.3), 

• AERIN bit in the PCI Control Register (PCICTRL, Section 7.11.1), and 

• PCIEEN bit in the Interrupt Control Register (INTCTRL, Section 5.5.2).

� Asserts SERR#, if enabled by the:

• SERREN bit in the PCI Command Register (PCICMD, Section 7.13.3), and 

• AERSE bit in the PCI Control Register (PCICTRL, Section 7.11.1), and 

• PEREN bit in the PCI Command Register (PCICMD, Section 7.13.3).

� Ignores the access.

If the controller, as PCI target, detects bad even parity on a PCI target write data cycle, 
the controller: 

� Completes the write.

� Asserts PERR#, if enabled by the:

• PEREN bit in the PCI Command Register (PCICMD, Section 7.13.3).

� On a write to SDRAM, forces bad parity or ECC to be written to that address, if 
enabled by the:

• PEREN bit in the PCI Command Register (PCICMD, Section 7.13.3). 

� On a write to the controller’s internal registers, including timers, DMA, and UART, 
the data is ignored (not written), if enabled by the:

• PEREN bit in the PCI Command Register (PCICMD, Section 7.13.3). 

7.6

64-Bit PCI Bus
The controller optionally supports a 64-bit PCI Bus. In this case, the controller’s 32-bit 
Local Bus cannot be used, because the LOC_AD[31:0] signals and other Local-Bus 
signals are reallocated for use on the PCI Bus, as described in Section 8.5. 

Two functions are involved in this 64-bit PCI Bus support: the controller’s PCI-Bus 
width, and the PCI 64-bit Bus Extension, as defined in the PCI Specification. The two 
functions are enabled as follows:



� Controller’s 64-Bit PCI-Bus Width: Enabled when PCI64# is asserted during the 
assertion of PCIRST#.

� PCI 64-Bit Bus Extension (per PCI Specification): Enabled when REQ64# is 
asserted by the PCI Central Resource during the assertion of PCIRST#, and 
dynamically negotiated on a per-transaction basis using REQ64# and ACK64#. 

The possible configurations using these two signals are:

� If PCI64# is negated during PCIRST#, the controller implements a 32-bit PCI Bus, 
irrespective of the state of REQ64#. 

� If (a) PCI64# is asserted during the assertion of PCIRST#, (b) the controller is not 
the PCI Central Resource and the REQ64# input from the PCI Central Resource 
is negated during the assertion of PCIRST#, the controller’s 64-bit PCI behavior is 
disabled and the high 32 bits of the controller’s 64-bit PCI Bus are always driven 
to prevent them from floating. 

� If, during the assertion of PCIRST#, PCI64# is asserted and REQ64# is asserted 
(i.e., the PCI Central Resource asserts REQ64# to the controller or the controller 
itself is the PCI Central Resource), the controller attempts to initiate 64-bit data 
transactions whenever possible to improve performance. The controller also 
responds properly as a 64-bit target. 

When the controller is configured for 64-Bit PCI-Bus width, the controller only initiates 
32-bit transactions when the ACCESS_32 bit is set in the PCI Master (Initiator) Regis-
ters 0 and 1 (PCIINITn), Section 7.11.3. This bit must be set when the controller, as 
PCI-but master, accesses the PCI I/O Space or Configuration Space. The 
ACCESS_32 bit resets to 0.

7.7

Dual Address Cycle 
(DAC) Support

The controller supports Dual Address Cycles (DAC) as both a PCI master and target, 
thus supporting 64-bit addressing. As a PCI master, the controller automatically uses 
64-bit addressing when the high PCIADD field (bits 63:32 in the corresponding PCI-
INITn register) are non-zero. 

7.8

PCI Central 
Resource Support

Every PCI Bus must have a PCI Central Resource that provides special functions for 
that bus. In systems which have multiple PCI Buses, each PCI Bus must have its own 
Central Resource. The controller performs PCI Central Resource functions when the 
PCICR# input is asserted to the controller at reset. 

7.8.1

Central Resource 
Functions

The controller can optionally provide some or all of these PCI Central Resource func-
tions. These functions are enabled when PCICR# is asserted at reset and software 
configures various fields in the PCI Control Register (PCICTRL), Section 7.11.1, and 
PCI Arbiter Register (PCIARB), Section 7.11.2. 

When the PCICR# input is asserted to the controller at reset:

� PCI Clocks: The controller’s PCLK[4:0] signals are all outputs that can be 
connected to the CLK input on up to five other PCI devices. The controller itself 
always uses PCLK[0] as its PCI-Bus clock. See Section 7.9 for details. 

� PCI-Bus Arbitration: The controller’s REQ#[4:0] signals are all inputs that can be 
connected to the REQ# output from up to five other PCI devices, and its 
GNT#[4:0] signals are all outputs that can be connected to the GNT# inputs from 



these other PCI devices. 

� CPU Interrupts: The controller’s INTA# signal is bidirectional, rather than an 
output, so that the controller can accept up to five PCI interrupts on INTA# through 
INTE#. It forwards these interrupts to the CPU, as specified in Section 5.5.2. 

� PCI Reset: The controller’s PCIRST# signal is an output rather than input, and 
this signal can be connected to the RST# input on up to five other PCI devices. 
The controller asserts PCIRST# in any of the following cases:

• On Power-Up.

• When the CLDRST bit is set in the CPU Status Register (CPUSTAT), Section 
5.5.1.

• When the PCICRST or PCIWRST bit is set in the PCI Control Register 
(PCICTRL), Section 7.11.1.

� 64-Bit Bus Extension: The controller configures 64-bit PCI-Bus operation by 
asserting its REQ64# output at the end of reset. See Section 7.6 for details. 

� PCI Configuration Cycles: The controller is responsible for generating IDSEL 
inputs to other PCI devices on the same PCI Bus, during CPU accesses the PCI 
Configuration Space (Section 7.12). Section 7.12.3 illustrates how these IDSEL 
inputs may be generated. 

7.8.2

Central Resource 
Terminology

When the controller is not providing PCI Central Resource functions, it is operating in 
PCI Stand-Alone Mode. For example, in a system where there is already a CPU and 
controller providing host and Central Resource functions, additional memory or Local-
Bus capability can be provided by a second controller in PCI Stand-Alone Mode, as 
shown in Figure 5 on page 16 and Figure 6 on page 17. This capability is especially 
useful if the Main Controller has a 64-bit PCI, thus removing its Local Bus.

It is possible to have multiple controllers on a single CPU and have all controllers on 
the same PCI Bus. In this case, only one controller should provide the Central 
Resource functions and the others should operate in Stand-Alone Mode. The controller 
can support a CPU in Stand-Alone Mode. However, if the CPU is not the Main CPU in 
the system, care must be taken when configuring controller resources at boot time. For 
example, two CPUs should not simultaneously attempt to modify the controller config-
uration and control registers. The PCIWRST bit in the PCI Control Register (PCIC-
TRL), Section 7.11.1, must be used carefully in this case. 

The concepts of PCI Central Resource and Main Controller (Section 5.3.2) are unre-
lated. The controller can be a Main Controller for a given CPU, but that CPU might not 
be the Main CPU in the system, and the Main Controller for that CPU, or any other 
CPU in the system, might not provide the PCI Central Resource for the system. 

7.8.3

External Arbitration
External arbitration logic can be used. For example, it would be needed if more than 
five PCI devices need to arbitrate with the controller, or if a custom arbitration protocol 
is desired. Even with external arbitration logic, the controller can optionally perform all 
other PCI Central Resource functions. 

The controller’s arbiter is disabled by:

� Negating the PCICR# input, thus disabling all Central Resource functions by the 
controller, or 



� Setting the ARBDISABLE bit (bit 63) of the PCI Arbiter Registers (PCIARB, 
Section 7.11.2), thus disabling only the arbitration function, but leaving the other 
Central Resource functions enabled. 

When the controller’s internal arbiter is disabled, REQ#[0] is an output to the external 
arbiter, GNT#[0] is an input from the external arbiter, and REQ#[4:1] and GNT#[4:1] are 
unused inputs. 

7.9

PCI Clocking
The controller generates the PCI clocks, PCLK[4:0], based on either the external 
PCLKIN signal or a synchronous multiple of the CPU SysClock. The source for the 
controller’s generation of PCLK[4:0] is controlled by the CLKSEL[2:0] field in the PCI 
Control Register (PCICTRL, Section 7.11.1), as shown in Table 23. At reset, the CLK-
SEL[0] bit takes the state of the M66EN (66 MHz Enable) input signal, and the CLK-
SEL[2:1] bits are set via the Serial Mode EEPROM bits. These bits should only be 
changed while the PCI Bus is reset; otherwise, PCLK[4:0] may glitch. 

If the PCI clock is generated by external logic via the PCLKIN input, the external clock 
logic must follow the M66EN signal on the PCI Bus; i.e., it must only generate a clock 
greater than 33 MHz when M66EN is asserted. The clock skew between PCLKIN and 
the PCLK[4:0] outputs is several nanoseconds. 

The PCISYNC bit in the PCI Control Register (PCICTRL, Section 7.11.1) indicates 
whether PCLK[4:0] is synchronous to SysClock. This affects the performance of hand-
shake signals between the PCI logic and the rest of the controller. The controller clears 
this bit at reset. When it is set by software, it indicates that signals passing between the 
PCLK[4:0] and SysClock timing domains are synchronized and do not need re-syn-
chronization to avoid metastability. However, even if PCLK[4:0] are sourced from 
SysClock, and thus are a synchronous multiple of SysClock, PCLK[4:0] are not skew-
controlled and the edges are not aligned to SysClock, due to clock skew internal to the 
controller. Thus, it is generally not advisable to set the PCISYNC bit. 

The controller always uses the PCLK[0] input as its PCI clock, but the controller can 
either receive or generate the PCI clocking for the system. When the PCICR# input is 
negated (i.e. the controller is not providing PCI Central Resource functions), PCLK[0] 
is enabled as the PCI clock input, and PCLK[4:1] are floated. When PCICR# is 
asserted, PCLK[0] is enabled as the PCI clock input (for the controller’s PCI interface), 
and PCLK[4:0] are all enabled as outputs. In this Central Resource configuration, 
PCLK[4:0] are five separate, identical copies of the PCI clock. 

Table 23: PCLK[4:0] Source Specification

CLKSEL PCLK Source When used

000 PCLK frequency is 1/3 SysClock For 33 MHz PCI Bus with SysClock > 66 MHz

001 PCLK frequency is 2/3 SysClock For 66 MHz PCI Bus with SysClock > 66 MHz a

a. CLKSEL = 001 uses the controller’s internal 2x multiplying PLL. To stay within the spec-
ified operating range of this PLL, 112.5 MHz >= SysClock >= 67.5 MHz. 

010 PCLK frequency is 1/2 SysClock For 33 MHz PCI Bus with SysClock <= 66 MHz

011 PCLK frequency is equal to SysClock For 66 MHz PCI Bus with SysClock <= 66 MHz

10x PCLK is driven by signal PCLKIN Any combination of SysClock and PCLK

11x reserved



All devices on the PCI Bus must operate at the same clock speed. If different PCI clock 
speeds must be supported, this can be done in a multi-controller configuration (Section 
5.3). For example, two controllers can be connected to a single CPU, with one control-
ler running at 33 MHz and the other at 66 MHz, as shown in Figure 7 on page 18. 

7.10

PCI Locked Cycles
The controller’s bidirectional LOCK# signal provides a mechanism for obtaining exclu-
sive access to PCI targets, as defined in the PCI Local Bus Specification, Section 3.6. 
As a PCI master, the controller can assert LOCK#. As a PCI target, the controller 
responds to the assertion of LOCK#. 

To implement locking when the controller is the PCI master, software for the initiator 
(CPU or DMA) sets the LOCK bit in the PCI Master (Initiator) Registers 0 and 1 (PCI-
INITn), Section 7.11.3, and then performs a PCI-Bus read. This locks the 16-byte read 
region using the LOCK# protocol. No other PCI device is allowed to access that 16-
byte region during the read. 

You can use the PCI LOCK# protocol to maintain semaphores. However the PCI Local 
Bus Specification recommends against this, advising instead that a software protocol 
be used. This is mainly for compatibility reasons, because not all systems may imple-
ment LOCK# properly (if at all). Furthermore, using LOCK# may be inefficient. In par-
ticular, you cannot have multiple simultaneous locks. Only have one 16-byte region 
can be locked on the entire bus at any one time. 

This locking mechanism affects only PCI-Bus accesses. It does not prevent the CPU 
from accessing an area of the controller’s memory that is locked by a PCI-Bus master. 
However, the CPU can prevent PCI-Bus masters from accessing a 16-byte region of 
the controller’s memory by first setting the LOCK bit in the PCIINITn register and then 
accessing the controller’s memory with a loopback access. 

7.11

PCI-Bus Registers

7.11.1

PCI Control Register 
(PCICTRL)

Bit 0 PCISYNC PCI-Synchronized. 
1 = synchronized.
0 = not synchronized.
When set, this bit indicates that signals passing 
between the PCLK[4:0] and SysClock timing 

Table 24: PCI-Bus Registers

Register Symbol Offset R/W Reset Value Description

PCI Control PCICTRL 0x00E0 R/W 0x?000 0000 8000 000? a Miscellaneous PCI control.

PCI Arbiter PCIARB 0x00E8 R/W 0x0050 0011 1100 003F PCI arbiter control.

PCI Master (Initiator) 0 PCIINIT0 0x00F0 R/W 0x0000 0000 0000 8406 Control for PCI Address Window 0.

PCI Master (Initiator) 1 PCIINIT1 0x00F8 R/W 0x0000 0000 0000 8406 Control for PCI Address Window 1.

PCI Error PCIERR 0x00B8 b R/W 0x0000 0000 0000 0000 Address of PCI internal error.

a. The question marks (?) indicate that the reset value depends on the CLKSEL, PCIWRST and PLL_STBY fields of PCIC-
TRL, which in turn depend on external inputs during reset. 

b. Note the non-consecutive address.



domains are synchronized and do not need re-syn-
chronization to avoid metastability. Resets to 0. This 
bit is provided for testing purposes only. Do not set it 
to 1 for normal operation! Setting this bit will not pro-
vide a significant performance increase and may 
cause undesirable behavior. 

Bit 3:1 CLKSEL[2:0] PCLK[4:0] Output Source Selections. 

Even when PCLK[4:0] are a synchronous multiple of 
SysClock, they are not skew-controlled, and the 
edges are not aligned with SysClock. This field has 
no effect when PCICR# is negated because in that 
case the PCLK[4:0] outputs float. At reset, the CLK-
SEL[0] bit takes the state of the M66EN input signal, 
and the CLKSEL[2:1] bits are set via the Serial Mode 
EEPROM bits 260:259. 

Bit 7:4 CPUHOG Minimum Number of Accesses by CPU. 
The minimum number of consecutive CPU accesses 
to PCI resources through the PCI Output FIFO 
(OUTFIFO) before the CPU is forced to allow 
another controller resource to take control of the PCI 
Bus. 1 to 15 means 1 to 15 consecutive accesses, 0 
means 16 consecutive accesses. Resets to 0 (16 
accesses). The limit counter starts counting with the 
first CPU access, irrespective of when another con-
troller resource requests the PCI Bus. The PCI-Bus 
CPUHOG and DMAHOG fields are the software 
interface to the Programmable 2-Way Arbiter, shown 
in Figure 1 on page 12.

Bit 11:8 DMAHOG Minimum Number of Accesses by DMA. 
The minimum number of consecutive PCI-Bus 
accesses the DMA may perform through the PCI 
Output FIFO (OUTFIFO) before the DMA is forced to 
allow another controller resource to take control of 
the PCI Bus. 1 to 15 means 1 to 15 consecutive 
accesses, 0 means 16 consecutive accesses. 
Resets to 0 (16 accesses). The limit counter starts 
counting with the first DMA access, irrespective of 

CLKSEL 
Value

Description

000 PCLK[4:0] frequency is 1/3 SysClock

001 PCLK[4:0] frequency is 2/3 SysClock (uses 2x PLL)

010 PCLK[4:0] frequency is 1/2 SysClock

011 PCLK[4:0] frequency is equal to SysClock

10x PCLK[4:0] is driven by PCLKIN signal

11x reserved



when another controller resource requests the PCI 
Bus. This behavior of the limit counter differs from 
that of the CPUHOG, PCIHOG and DMAHOG fields 
in the Local Bus Configuration Register (LCNFG, 
Section 8.6.1). 

Bit 12 reserved Hardwired to 0.

Bit 13 FAPER Force Address-Parity Errors. 
1 = force even-parity errors on addresses when con-
troller is PCI master; i.e., generates odd parity.
0 = normal even-parity generation on addresses 
(reset value).

Bit 14 FDPER Force Data-Parity Errors. 
1 = force even-parity errors on data when controller 
is PCI master (writes) or target (reads); i.e., gener-
ates odd parity.
0 = normal even-parity generation on data (reset 
value).

Bit 15 FIFOSTALL PCI Output FIFO Stall. (read-only)
1 = PCI Output FIFO (OUTFIFO) is stalled.
0 = PCI Output FIFO (OUTFIFO) not stalled (reset 
value).

Bit 23:16 RTYLIM Retry Limit. 
Specifies how many consecutive retries the control-
ler accepts from a single target. 0 means no limit, 
non-zero values are multiplied by 28 (8-bit shifted) to 
derive the actual retry limit. Resets to 0 (no limit).

Bit 31:24 DISCTIM Discard Time-Out. 
When controller performs a delayed read as a PCI 
target, and the master does not repeat the request 
within the DISCTIM number of PCI clocks, 
PCLK[4:0], the controller discards the read data to 
prevent deadlocks. 0 means 216 clocks, non-zero 
values are multiplied by 28 (8-bit shifted) to derive the 
actual discard time-out. Resets to 0x80 (215 PCI 
clocks).

The following five bits enable the controller’s capture, into the PCI Error Register (Sec-
tion 7.11.4), of the PCI address at which a PCI error occurred. These are controller 
internal errors, in which the controller was the master and/or target of the PCI transac-
tion. All bits reset to 0.

Bit 32 TACH Target-Abort Address Capture.
1 = enable capture of target-abort address when 



controller is PCI master.
0 = disable this capture. 

Bit 33 MACH Master-Abort Address Capture.
1 = enable capture of master-abort address when 
controller is PCI master.
0 = disable this capture. 

Bit 34 RTYCH Retry-Limit Exceeded Address Capture. 
1 = enable capture of retry-limit-exceeded address 
when controller is PCI master.
0 = disable this capture. 

Bit 35 PERCH Data-Parity Error Address Capture. 
1 = enable capture of data-parity error address (on 
reads or writes) when controller is PCI master. 
0 = disable this capture. 
This bit is independent of the Parity Error Response 
(PEREN) bit in the PCI Configuration Command 
Register (Section 7.13.3).

Bit 36 DTIMCH Discard-Timer Expired Address Capture.
1 = enable capture of discard-timer expired address 
when controller is PCI target. 
0 = disable this capture. 
This is only an error when it occurs on reads in which 
the data is not prefetchable. If the data is prefetch-
able, then it is silently discarded. Data is prefetch-
able if the PREFETCHABLE bit in the PCI Base 
Address Register (BAR) for this device (Section 
7.13.10) is set, or the PCI command was a Memory 
Read Line or Memory Read Multiple.

Bit 39:37 ERRTYPE Error Type. (read-only)

Indicates the type of PCI error whose address was 
captured in the PCI Error Register (Section 7.11.4). 
Resets to 0. Cleared to 0 when the PCI Error Regis-
ter is cleared. 

ERRTYPE Meaning Controller was

000 No error

001 Target Abort Master

010 Master Abort Master

011 Retry Limit Exceeded Master

100 Data Read Parity Error Master

101 Data Write Parity Error Master

110 Discard Timer Expired Target

111 reserved



The following seven bits enable the assertion of SERR# as an output. All bits reset to 
0. The SERR# Enable (SERREN) bit in the PCI Command Register (Section 7.13.3) 
must be set in order to drive SERR#. 

Bit 40 TASE Target-Abort SERR# Enable.
1 = assert SERR# on target-abort when controller is 
PCI master.
0 = disable this assertion. 

Bit 41 MASE Master-Abort SERR# Enable.
1 = assert SERR# on master-abort when controller is 
PCI master.
0 = disable this assertion. 

Bit 42 RTYSE Retry-Limit-Exceeded SERR# Enable.
1 = assert SERR# on retry-limit-exceeded when con-
troller is PCI master.
0 = disable this assertion. 

Bit 43 PERSE Data-Parity Error SERR# Enable. 
1 = assert SERR# on data even-parity error (reads or 
writes) when controller is PCI master. 
0 = disable this assertion. 
Such data parity errors only occur if the Parity Error 
Response (PEREN) bit is set in the PCI Command 
Register (Section 7.13.3).

Bit 44 DTIMSE Discard-Timer Expired SERR# Enable. 
1 = assert SERR# on discard-timer expired when 
controller is PCI target. 
0 = disable this assertion. 
Discard-timer expired is only an error when it occurs 
on reads in which the data is not prefetchable. If the 
data is prefetchable, it is silently discarded. Data is 
prefetchable if the PREFETCHABLE bit in the PCI 
Base Address Register (BAR) for this device (Sec-
tion 7.13.10) is set, or the PCI command was a Mem-
ory Read Line or Memory Read Multiple.

Bit 45 AERSE Address-Parity Error SERR# Enable. 
1 = assert SERR# on address even-parity error for all 
PCI transactions. 
0 = disable this assertion. 
Address parity errors only occur if the Parity Error 
Response (PEREN) bit is set in the PCI Command 
Register (Section 7.13.3).

Bit 46 INT1SE Int#[1] SERR# Enable. 
1 = assert SERR# when Int#[1] is asserted. 
0 = disable this assertion. 
This function should only be enabled when the con-



troller needs to indicate a system error to a PCI host 
CPU, and the controller is not the Main CPU in the 
system. The function is independent of the state of 
the Int#[1] Controller Output Enable (IL1OE) bit in 
the Interrupt Status 1/CPU Interrupt Enable Register 
(Section 5.5.4). The PCI SERR# Interrupt Priority 
(PCISPRI) field of the Interrupt Control Register 
(Section 5.5.2) should not be equal to 0x1 (no loop-
back).

Bit 47 reserved Hardwired to 0.

The following six bits (53:48) enable the assertion of a PCI Internal Error interrupt, if 
such interrupts are enabled by the PCIEEN bit of the Interrupt Control Register (INTC-
TRL, Section 5.5.2). All six bits reset to 0. A PCI Internal Error indicates that something 
bad happened during a PCI transaction; the fault could lie either with the PCI device or 
the controller.

Bit 48 TAIN Target-Abort PCI Internal Error Enable.
1 = assert PCI internal error on target-abort when 
controller is PCI master.
0 = disable this assertion. 

Bit 49 MAIN Master-Abort PCI Internal Error Enable.
1 = assert PCI internal error on master-abort when 
controller is PCI master.
0 = disable this assertion. 

Bit 50 RTYIN Retry-Limit-Exceeded PCI Internal Error Enable.
1 = assert PCI internal error on retry-limit-exceeded 
when controller is PCI master.
0 = disable this assertion. 

Bit 51 PERIN Data-Parity Error PCI Internal Error Enable. 
1 = assert PCI internal error on data even-parity error 
(reads or writes) when controller is PCI master. 
0 = disable this assertion. 
This bit is independent of the Parity Error Response 
(PEREN) bit in the PCI Command Register (Section 
7.13.3).

Bit 52 DTIMIN Discard-Timer Expired PCI Internal Error Enable. 
1 = assert PCI internal error on discard-timer expired 
when controller is PCI target. 
0 = disable this assertion. 
Discard-timer expired is only an error when it occurs 
on reads in which the data is not prefetchable. If the 
data is prefetchable, it is silently discarded. Data is 
prefetchable if the PREFETCHABLE bit in the PCI 
Base Address Register (BAR) for this device (Sec-



tion 7.13.10) is set, or the PCI command was a Mem-
ory Read Line or Memory Read Multiple.

Bit 53 AERIN Address-Parity Error PCI Internal Error. 
1 = assert PCI internal error on address even-parity 
error for all PCI transactions. 
0 = disable this assertion. 
Address parity errors only occur if the Parity Error 
Response (PEREN) bit is set in the PCI Command 
Register (Section 7.13.3). 

Bit 55:54 reserved Hardwired to 0.

Bit 56 INTAEN Int#[0]-On-INTA# Enable.
1 = enable INTA# to be driven with Int#[0] value. 
0 = disable (reset value). 
This function should only be enabled when the con-
troller needs to interrupt the CPU when a PCI inter-
rupt occurs, and the controller is not the Main CPU in 
the system. The function is independent of the state 
of the Int#[0] Controller Output Enable (IL0OE) bit in 
the Interrupt Status 1/CPU Interrupt Enable Register 
(Section 5.5.4). The Interrupt Signal INTA# Priority 
(INTAPRI) field of the Interrupt Control Register 
(Section 5.5.2) should not be equal to 0x0 (no loop-
back).

Bit 58:57 reserved Hardwired to 0.

Bit 59 LATDIS Input-Latch Disable. 
1 = disable.
0 = enable (reset value).
The PCI signals have input latches which are nor-
mally closed when the PCI clock is High. This helps 
to ensure the 0-ns hold time on these inputs. When 
this bit is set, the input latches are transparent. 

Bit 60 PLL_SYNC PLL Synchronization. 
1 = resets the divide-by-2 at the output of the control-
ler’s internal 2x multiplying PLL. Used for test pur-
poses.
0 = no explicit synchronization (reset value).

Bit 61 PLL_STBY PLL Standby. 
1 = turn off the PLL (reset value).
0 = turn on the PLL. 
If PCICR# is asserted and the CLKSEL[2:0] field in 
the PCI Control Register (Section 7.11.1) is 001, the 
controller automatically clears this bit at the end of 
reset to enable its internal PLL. After the PLL is 



turned on, the system must give it time to lock up 
before clearing the PCI Warm Reset bit (bit 62, 
immediately below). The current PLL specification 
(CB-C9 Multiplying APLL Data Sheet) requires a tlock 
of 100ms.

Bit 62 PCIWRST PCI Warm Reset. 
1 = PCI warm reset.
0 = normal operation. 
This bit functions differently, depending on the con-
troller’s configuration, as shown in table below. 

Setting this bit allows the CPU to program the PCI 
Configuration Space Registers (Section 7.13) before 
making the controller visible as a PCI target. 

Bit 63 PCICRST PCI Cold Reset. 
1 = reset controller PCI logic and (if PCICR# is 
asserted) assert PCIRST#. 
0 = normal operation (reset value).
When this bit is set, all PCI configuration registers 
take their reset values, and all data and pending 
operations in the PCI FIFOs are lost.

7.11.2

PCI Arbiter Register 
(PCIARB)

This register controls the operation of the PCI arbiter when the controller performs the 
PCI Central Resource functions (PCICR# asserted). Up to six devices can request 
access to the PCI Bus: five request via the REQ#[4:0] signals and the sixth is the con-
troller itself as a PCI-Bus master (initiator). 

The controller implements three-level rotating priority arbitration. Each of the six 
requestors can be in any (or several) of three groups. For any given access, one group 
will have the highest priority, as shown in Table 25. For any group, the longest-pending 
request has priority. If there is no requestor in that group, then the longest-pending 
request at the next-lowest priority group wins.

PCICR# 
Signal

CPU
Present

Function of PCIWRST Bit

asserted always PCIRST# signal is asserted while this bit 
is set. Resets to 1.

negated yes All PCI accesses to controller as target 
are retried while this bit is set.
Resets to 1.

negated no All PCI accesses to controller as target 
are retried while this bit is set.
Resets to 0.



Bit 5:0 GROUP0 Requestors Allowed In Group 0. 

Resets to 0x3F (all 1s), which allows all requestors in 
Group 0.

Bit 7:6 reserved Hardwired to 0.

Bit 13:8 GROUP1 Requestors Allowed In Group 1. 
Same bit-values as the GROUP0 field. Resets to 
0x00, which allows no requestors in Group 1.

Bit 15:14 reserved Hardwired to 0.

Bit 21-16 GROUP2 Requestors Allowed In Group 2. 
Same bit-values as the GROUP0 field. Resets to 
0x00, which allows no requestors in Group 2.

Bit 23:22 reserved Hardwired to 0.

Bit 27:24 CONS0 Group 0 Highest-Priority Consecutive Accesses. 
The number of consecutive accesses for which 
Group 0 has highest priority. 1 to 15 means 1 to 15 
consecutive accesses, 0 means 16 consecutive 
accesses. Resets to 0x1. (See the example following 
Bit 63, below.)

Bit 31:28 CONS0n Group 0 Non-Highest-Priority Consecutive 
Accesses. 
The number of consecutive accesses for which 
Group 0 does not have highest priority. 1 to 15 
means 1 to 15 consecutive accesses, 0 means 16 
consecutive accesses. Resets to 0x1. (See the 
example following Bit 63, below.)

Bit 35:32 CONS1 Group 1 Highest-Priority Consecutive Accesses. 
Of the Group 0 non-highest-priority accesses, the 

Table 25: Three-Level Rotating PCI-Bus Arbitration Priority

when Highest-Priority Level Is: ... Middle-Priority Level Is: ... And Lowest-Priority Level Is:

Group 0 Group 1 Group 2

Group 1 Group 2 Group 0

Group 2 Group 0 Group 1

Bit Requestor

0 REQ#[0] allowed

1 REQ#[1] allowed

2 REQ#[2] allowed

3 REQ#[3] allowed

4 REQ#[4] allowed

5 Controller allowed



number of consecutive accesses for which Group 1 
has highest priority. 1 to 15 means 1 to 15 consecu-
tive accesses, 0 means 16 consecutive accesses. 
Resets to 0x1. (See the example following Bit 63, 
below.)

Bit 39:36 CONS2 Group 2 Highest-Priority Consecutive Accesses. 
Of the Group 0 non-highest-priority accesses, the 
number of consecutive accesses for which Group 2 
has highest priority. 1 to 15 means 1 to 15 consecu-
tive accesses, 0 means 16 consecutive accesses. 
Resets to 0x1. (See the example following Bit 63, 
below.)

Bit 43:40 PARK0 Group 0 Park Count (in PCI clocks).
If the current Group is 0, and the next-to-be-granted 
Group is also 0, and there are no Group 0 requests 
asserted, then instead of immediately granting 
access to a lower-priority-group requestor, arbitra-
tion is parked in Group 0 for this many PCI clocks. 
During this time, only Group 0 requestors are ser-
viced. Resets to 0.

Bit 47:44 PARK1 Group 1 Park Count (in PCI clocks).
Same parameter-type as PARK0. Resets to 0.

Bit 51:48 PARK2 Group 2 Park Count (in PCI clocks).
Same parameter-type as PARK0. Resets to 0.

Bit 54:52 DEFGNT Default Grant Device. 

This field specifies the device that is granted the bus 
when there are no requests asserted on REQ#[4:0] 
and the Park Counter (PARK2:0) has expired. 
Resets to 0x5 (controller is default). Asserting the 
default grant does not modify the rotating priority 
group.

Bit 62:55 reserved Hardwired to 0.

Bit 63 ARBDISABLE Arbitrator Disable.
1 = disable.
0 = enable (reset value).
Disables the internal arbiter, even if PCICR# is 

DEFGNT Value Default device

0 GNT#[0] device

1 GNT#[1] device

2 GNT#[2] device

3 GNT#[3] device

4 GNT#[4] device

5 Controller (reset value)

7:6 No default asserted



asserted. When this bit is set to 1 (disabled), the con-
troller uses REQ#[0] and GNT#[0] to communicate 
with an external arbiter.

The CONS0 through CONS2 fields are used to specify the number of PCI accesses in 
which each arbitration group has priority. Group 0 is highest priority for CONS0 con-
secutive accesses, followed by CONS0n consecutive accesses, split between Group 1 
and Group 2. Considering just the CONS0n accesses, Group 1 is highest priority for 
CONS1 consecutive accesses, followed by Group 2 highest for CONS2 consecutive 
accesses.

Here is an example: assume CONS0 = 5, CONS0n = 3, CONS1 = 4, CONS2 = 3. Then 
highest priority will be: 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 2, 2, 0, 0, 0, 0, 0, 2, 1, 1, 0, 
0, 0, 0, 0, 1, 1, 2...

� Total Arbitration Events = CONS0 + CONS0n.

� Fraction that Group 0 accesses gets PCI Bus = CONS0 / Total Arbitration Events.

� Fraction that non-Group 0 accesses gets bus = CONS0n / Total Arbitration 
Events.

� Fraction of non-Group 0 accesses that Group 1 gets bus = CONS1 / (CONS1 + 
CONS2).

� Fraction of non-Group 0 accesses that Group 2 gets bus = CONS2 / (CONS1 + 
CONS2).

7.11.3

PCI Master (Initiator) 
Registers 0 and 1 
(PCIINITn)

There are two PCI Master (Initiator) Registers, PCIINIT0 and PCIINIT1, one for each of 
the two PCI Address Windows specified by Physical Device Address Registers PCIW0 
and PCIW1 (Section 5.4), respectively. These address windows can be accessed by 
the CPU, DMA, or Local-Bus devices with the controller acting as the PCI-Bus master. 
The PCIINIT0 and PCIINIT1 registers both have the same format:

Bit 0 reserved Hardwired to 0.

Bit 3:1 TYPE PCI Command Type.
The upper three bits of the 4-bit PCI command type 
(Table 21) driven on C/BE#[3:0] at the beginning of 
the PCI access. Resets to b011 (Memory Read and 
Memory Write). The low bit of the command type is 0 
for reads and 1 for writes. As PCI-Bus master, the 
controller can access any PCI space and perform 
any valid PCI command. The PCI I/O Space, for 
example, can be accessed by programming the 
TYPE field to b001; the PCI Configuration Space can 
be accessed by programming the TYPE field to 
b101. See Section 7.4.3 for more information.

Bit 4 ACCESS_32 32-Bit Access.
1 = 32-bit.
0 = PCI-Bus width as initialized (32- or 64-bit). 



Setting this bit forces a PCI access to be a 32-bit, 
even if the 64-bit bus extension is implemented 
(PCI64# asserted at reset). Normally, when a 64-bit 
PCI Bus is implemented, the controller attempts a 
64-bit access and falls back to 32-bit only if the target 
requires it. This bit must be set when the controller, 
as PCI-Bus master, accesses the PCI I/O Space or 
Configuration Space. Resets to 0.

Bit 5 LOCK PCI LOCK#.
1 = acquire or maintain Exclusive Access.
0 = no lock (reset value). 
See Section 3.6 of the PCI Local Bus Specification 
for details on Exclusive Access and the LOCK# sig-
nal.

Bit 6 COMBINING Burst-Combining.
1 = combine bursts on memory writes. 
0 = do not combine bursts (reset value). 
Burst-combining consists of combining a sequence 
of burst writes to sequential locations into a single 
PCI-Bus transaction. See Section 7.4.3 for details. 

Bit 7 MERGING Byte-Merging.
1 = merge bytes on memory writes. 
0 = do not merge bytes (reset value). 
Byte-merging consists of merging a sequence of 
individual byte or word writes into a single dword 
PCI-Bus transaction. See Section 7.4.3 for details. 

Bit 8 PREFETCHABLE Prefetch Enable.
1 = enable prefetching on memory reads.
0 = disable (reset value). 
On reads, setting this bit enables the controller to 
prefetch additional data beyond that which is imme-
diately requested by the CPU or DMA. See Section 
7.4.4.2 for details.

Bit 9 CONFIGTYPE PCI Configuration-Space Access Type.
1 = type 1 access.
0 = type 0 access (reset value). 
When the controller initiates accesses to the PCI 
Configuration Space, this bit indicates whether they 
are Type 0 or Type 1 accesses. Type 0 accesses 
(PCI_AD[1:0] = 00) select a device on the same PCI 
Bus that the cycle is being run. Type 1 accesses 
(PCI_AD[1:0] = 01) pass the configuration request 
on to another PCI Bus. 

Bits 14:10 SINGLE_PFB Single-Dword Prefetchable.
For CPU-initiated single dword (non-block) Memory 
Read commands with the PREFETCHABLE bit set, 
this field specifies the number of 4-dword blocks to 



prefetch beyond the first block. See Section 7.4.4.2 
for details. Resets to 0x01.

Bits 20:15 BLOCK_PFB Block Prefetchable.
For CPU-initiated block Memory Read commands 
with the PREFETCHABLE bit set, this field specifies 
the number of 4-dword blocks to prefetch beyond the 
first block. See Section 7.4.4.2 for details. Resets to 
0x01.

Bits 35:21 PCIADD PCI Address (Lower).
The lower PCI physical address bits. These bits are 
to be masked by the MASK field of the PDAR (Sec-
tion 5.4). Resets to 0x0. The CPU provides the low-
est address bits—those from bit 0 up to the highest 
bit masked by the MASK field. See the PCI Address 
Decoding Example, Section 7.4.2. 

Bits 63:36 PCIADD PCI Address (Upper).
The upper PCI physical address bits. Resets to 0x0. 
See the PCI Address Decoding Example, Section 
7.4.2. 

7.11.4

PCI Error Register 
(PCIERR)

This register captures the PCI address of last uncleared PCI error, if address capture 
is enabled by bits 36:32 of the PCI Control Register (Section 7.11.1). Writing anything 
to this register clears it to 0, and also clears the PCI Control Register ERRTYPE to 0. 
Due to clock synchronization requirements, it may take several CPU clocks for this reg-
ister (and ERRTYPE) to be cleared after this register is written. 

Bit 0 IS_CPU Initiator Is CPU. 
1 = on PCI master error, master was CPU.
0 = on PCI master error, master was not CPU (reset 
value).
Five types of PCI master errors are reported by this 
bit. For PCI target errors (Discard Timer Expired) this 
bit is always 0. The type of master or target error is 
reported in the ERRTYPE field of the PCI Control 
Register (PCICTRL), Section 7.11.1. 

Bit 1 reserved Hardwired to 0.

Bit 63:2 ADDR PCI Error Address. 
The PCI address where an error occurred. Resets to 
0.

7.12

PCI Confi guration 
Space Cycles

The controller supports a PCI Configuration Space, as defined in the PCI Local Bus 
Specification. Only the Main CPU in a PCI system should run PCI Configuration Space 
cycles. When it does so, the PCI Central Resource (Section 7.8) is responsible for gen-
erating the IDSEL inputs (Section 7.12.3) to PCI devices. These IDSEL inputs are the 



chip-selects during PCI Configuration Space accesses by the Main CPU. The PCI 
Central Resource itself does not have a PCI Configuration Space. 

The registers that make up the PCI Configuration Space are described in Section 7.13. 
Setting the PCIWRST bit in the CPU Status Register (CPUSTAT), Section 5.5.1, allows 
the CPU to program the PCI Configuration Space registers before making the control-
ler visible as a PCI target. 

The concepts of PCI Configuration Space Cycles and Main Controller (Section 5.3.2) 
are unrelated. The controller can be a Main Controller for a given CPU, but that CPU 
might not be the Main CPU in the system, and the Main Controller for that CPU, or any 
other CPU in the system, might not provide the PCI Central Resource for the system. 
Only the Main CPU in a PCI system should run PCI Configuration Space Cycles. 

7.12.1

As PCI-Bus Master 
and Target

As a PCI-Bus master, the controller accesses the PCI Configuration Space when the 
TYPE field in the PCI Master (Initiator) Registers (PCIINITn, Section 7.11.3) contains 
the value b101. When this is done, reads and writes on the PCI Bus are Configuration 
Reads and Configuration Writes. As a PCI master, the controller can generate any 
arbitrary PCI Configuration Address, whether Type 0 or Type 1. 

As a PCI target, the controller responds only to PCI Configuration transactions (a) 
when its IDSEL input is asserted and (b) that are Type 0 (device on this bus) and Func-
tion Number 0. All PCI Configuration writes to the controller are delayed writes. The 
address and data for a configuration write is placed in the INFIFO, and the PCI trans-
action is terminated with Retry. When the delayed write has been performed into the 
Configuration Register, the transaction is allowed to complete. This mechanism is nor-
mally used to configure the controller when it is in PCI Stand-Alone Mode (i.e., when it 
is not the Central Resource), but it can also be used when the controller is the Central 
Resource; i.e. the controller can talk to itself in PCI Configuration Space. 

7.12.2

Configuration 
Mechanisms

The controller does not use the PCI Configuration Mechanism #1 or #2, described in 
Section 3.7.4.1 and 3.7.4.2 of the PCI Local Bus Specification. Because the VR5000 
CPU has more than 32 physical address bits, the entire Configuration Space can be 
memory-mapped into the normal CPU address space. Every 32-bit Configuration 
Address can be accessed directly by properly setting the PCIADD field in the PCIINITn 
register (Section 7.11.3). When this is done, the PCIADD field specifies the upper 
address bits and the CPU generates the lower address bits. Addresses are generated 
the same way for memory, I/O, and Configuration Space. 

During Configuration Space accesses, the low two bits of the PCI address specify the 
type of access. The type is controlled by the CONFIGTYPE field of the PCIINITn reg-
ister. For Type 0 (device on this bus) the low two address bits are b00. For Type 1 
(device across a bridge) the low two bits are b01. The Type 0 and Type 1 accesses are 
illustrated in Figure 3-19 of the PCI Local Bus Specification. 

Only 32-bit Configuration Space accesses are allowed by the PCI Local Bus Specifica-
tion; 64-bit accesses should not be attempted. The ACCESS_32 bit should be set in 
the PCIINITn register. Combining (Section 7.4.3.1) and Merging (Section 7.4.3.2) may 
be used.



7.12.3

Generating IDSEL 
Inputs

The IDSEL (Initialization Device Select) input to a PCI device is used as the chip-select 
during PCI Configuration Space accesses. These IDSEL inputs should be generated 
by the PCI Central Resource. This can be done by resistive coupling to the 
PCI_AD[31:16] signals. The controller is designed so that the Implementation Note: 
System Generation of IDSEL, in Section 3.7.4 of the PCI Local Bus Specification can 
be followed. 

The controller pre-drives addresses during Configuration Space cycles in order to pro-
vide additional time for the resistively coupled IDSEL signals to become valid before 
the controller asserts FRAME#. The address is driven 8 clocks before FRAME# is 
asserted. 

7.13

PCI Confi guration 
Space Registers

Table 26 summarizes the registers that make up the PCI Configuration Space. These 
registers are visible to the PCI Central Resource when the controller’s IDSEL input is 
asserted. The Configuration Space registers are also visible in the controller’s internal 
register address space (Table 8). The internal address is determined by adding an off-
set of 0x200 to the base address of the Controller Internal Registers and Devices 
(INTCS) PDAR, and then adding the offset of the Configuration Space register shown 
in Table 26. This provides two paths for accessing the same register.

Some register bits are writable only when accessed via the internal register space, and 
they appear read-only to PCI-Configuration-Space accesses. This allows flexibility in 
programming the controller and yet retains compatibility with the PCI specification.
.

Table 26: PCI Configuration Space Register Summary

Name Symbol Offset R/W Reset Value Description

PCI Vendor ID VID 0x01:0x00 R 0x1033 Vendor ID for NEC, assigned by PCI 
Special Interest Group.

PCI Device ID DID 0x03:0x02 R 0x005A Device ID for the controller, assigned by 
NEC.

PCI Command PCICMD 0x05:0x04 R/W 0x0000 or
0x0006 a

Coarse control of PCI interface.

PCI Status PCISTS 0x07:0x06 R/W 0x02A0 Status of PCI events.

PCI Revision ID REVID 0x08 R 0x01, 0x02, or 0x03 Device revision.

PCI Class Code CLASS 0x0B-0x09 R 0x06 0000 Device type.

PCI Cache Line Size CLSIZ 0x0C R/W 0x00 System cache-line size, in 32-bit words.

PCI Latency Timer MLTIM 0x0D R/W 0x00 Minimum guaranteed clocks for PCI Bus 
master.

PCI Header Type HTYPE 0x0E R 0x00 Configuration register layout.

BIST unimplemented 0x0F R 0x00 Hardwired to 0.

PCI Base Address 
Register Control

BARC 0x17:0x10 R/W 0x0000 0000 0000 0004 PCI base address of the controller’s 
internal control registers and devices. 
This register corresponds to the INTCS 
Physical Device Address Register 
(Section 5.4).

PCI Base Address 
Register 0

BAR0 0x1F-0x18 R/W 0x0000 0000 0000 0000 PCI base address of RAM bank 0. This 
register corresponds to the SDRAM0 
Physical Device Address Register 
(Section 5.4).



PCI Base Address 
Register 1

BAR1 0x27:0x20 R/W 0x0000 0000 0000 0000 PCI base address of RAM bank 1. This 
register corresponds to the SDRAM1 
Physical Device Address Register 
(Section 5.4).

PCI Cardbus CIS 
Pointer

unimplemented 0x2B-0x28 R 0x0000 0000 Hardwired to 0.

PCI Sub-System 
Vendor ID

SSVID 0x2D-0x2C R(W) b depends on various 
conditions

Read-only value set from Serial Mode 
EEPROM.

PCI Sub-System ID SSID 0x2F-0x2E R(W) b depends on various 
conditions

Read-only value set from Serial Mode 
EEPROM.

Expansion ROM 
Base Address

unimplemented 0x33:0x30 R 0x0000 0000 Hardwired to 0.

reserved — 0x3B-0x34 R 0x00 Hardwired to 0.

PCI Interrupt Line INTLIN 0x3C R/W 0xFF Interrupt-signal routing information.

PCI Interrupt Pin INTPIN 0x3D R 0x01 The controller drives INTA#

PCI Min_Gnt unimplemented 0x3E R 0x00 Hardwired to 0.

PCI Max_Lat unimplemented 0x3F R 0x00 Hardwired to 0.

PCI Base Address 
Register 2

BAR2 0x47:0x40 R/W 0x0000 0000 0000 0000 PCI base address of device selected by 
DCS#[2]. This register corresponds to 
the DCS2 Physical Device Address 
Register (Section 5.4).

PCI Base Address 
Register 3

BAR3 0x4F-0x48 R/W 0x0000 0000 0000 0000 PCI base address of device selected by 
DCS#[3]. This register corresponds to 
the DCS3 Physical Device Address 
Register (Section 5.4).

PCI Base Address 
Register 4

BAR4 0x57:0x50 R/W 0x0000 0000 0000 0000 PCI base address of device selected by 
DCS#[4]. This register corresponds to 
the DCS4 Physical Device Address 
Register (Section 5.4).

PCI Base Address 
Register 5

BAR5 0x5F-0x58 R/W 0x0000 0000 0000 0000 PCI base address of device selected by 
DCS#[5]. This register corresponds to 
the DCS5 Physical Device Address 
Register (Section 5.4).

PCI Base Address 
Register 6

BAR6 0x67:0x60 R/W 0x0000 0000 0000 0000 PCI base address of device selected by 
DCS#[6]. This register corresponds to 
the DCS6 Physical Device Address 
Register (Section 5.4).

PCI Base Address 
Register 7

BAR7 0x6F-0x68 R/W 0x0000 0000 0000 0000 PCI base address of device selected by 
DCS#[7]. This register corresponds to 
the DCS7 Physical Device Address 
Register (Section 5.4).

PCI Base Address 
Register 8

BAR8 0x77:0x70 R/W 0x0000 0000 0000 0000 PCI base address of device selected by 
DCS#[8]. This register corresponds to 
the DCS8 Physical Device Address 
Register (Section 5.4).

PCI Base Address 
Register BOOT

BARB 0x7F-0x78 R/W 0x0000 0000 0000 0004 PCI base address of the Boot ROM. This 
register corresponds to the BOOTCS 
Physical Device Address Register 
(Section 5.4).

reserved — 0xFF-0x80 R 0x00 Hardwired to 0.

a. PCICMD resets to 0x0000 when PCICR# is negated, or to 0x0006 when PCICR# is asserted. 
b. Read-only from PCI Configuration Space, read-write from the controller’s internal register space. 

Table 26: PCI Configuration Space Register Summary  (continued)

Name Symbol Offset R/W Reset Value Description



7.13.1

PCI Vendor ID 
Register (VID)

Bit 15:0 VID Hardwired to 0x1033 for NEC PCI devices. Assigned 
by PCI Special Interest Group (SIG).

7.13.2

PCI Device ID Register 
(DID)

Bit 15:0 DID Hardwired to 0x005A for the controller. Assigned by 
NEC.

7.13.3

PCI Command 
Register (PCICMD)

Bit 0 IOEN PCI I/O Space Target Enable. 
1 = (not valid)
0 = disable. (hardwired to 0)
As a PCI-Bus target, the controller responds only to 
PCI memory and configuration space accesses, not 
to PCI I/O space accesses (although it can perform 
accesses to PCI I/O space as a PCI-Bus master).

Bit 1 MEMEN PCI Memory Space Target Enable. 
1 = enable. (reset value when PCICR# asserted)
0 = disable. (reset value when PCICR# negated)
Enables the controller to respond to PCI memory 
space accesses as a PCI-Bus target. 

Bit 2 BMASEN PCI-Bus Master Enable. 
1 = enable. (reset value when PCICR# asserted)
0 = disable. (reset value when PCICR# negated)
Enables the controller to act as a master on the PCI 
Bus. 

Bit 3 SPCEN PCI Special Cycle Enable. 
1 = (not valid)
0 = disable. (hardwired to 0)
The controller ignores Special Cycles.

Bit 4 MWIEN Memory Write and Invalidate Enable. 
1 = (not valid)
0 = disable. (hardwired to 0)
In normal operation, the controller does not generate 
Memory Write and Invalidate accesses. However, for 
testing purposes the TYPE field in the PCI Master 
(Initiator) Register (PCIINITn, Section 7.11.3) can be 
programmed so as to generate any PCI command 
listed in Table 21. 

Bit 5 VGA VGA Palette Snoop. 
1 = (not valid)
0 = disable. (hardwired to 0)
The controller is not a VGA device.

Bit 6 PEREN Parity Error (PERR#) Enable. 
1 = respond to even-parity data error. 



0 = ignore such parity errors (reset value).
See PCI-Master Parity Detection (Section 7.4.5) and 
PCI-Target Parity Detection (Section 7.5.4) for 
details on parity-error handling. 

Bit 7 WCYC Wait-Cycle Control. 
1 = (not valid)
0 = no address or data stepping. (hardwired to 0)
The controller does not do address or data stepping 
(although it does pre-drive addresses during PCI 
Configuration Space Cycles so that IDSEL will be 
valid when the controller asserts FRAME#, as 
described in Section 7.12).

Bit 8 SERREN System Error (SERR#) Enable. 
1 = assert SERR# signal on system error. 
0 = disable SERR# assertion (reset value).
See Section 7.4.5, Section 7.5.4 and Section 7.11.1 
(bits 46:40) for details on parity-error handling. 

Bit 9 FBBEN Fast Back-to-Back Enable. 
1 = enable fast back-to-back transactions. 
0 = enable such transactions (reset value).
This bit specifies whether the controller, as master, is 
allowed to perform fast back-to-back PCI-Bus trans-
actions. 

Bit 15:10 reserved Hardwired to 0.

7.13.4

PCI Status Register 
(PCISTS)

These status bits are set to 1 when the indicated event occurs. Writing a 1 to a bit 
causes it to be cleared to 0. 

Bit 4:0 reserved Hardwired to 0.

Bit 5 66M 66 MHz Capable. 
1 = enabled. (hardwired to 1)
0 = (not valid) 

Bit 6 UDF User-Definable Features Supported. 
1 = (not valid)
0 = disable. (hardwired to 0)
The controller does not support User Definable Fea-
tures. 

Bit 7 FBBC Fast Back-to-Back Capable. 
1 = capable of fast back-to-back. (hardwired to 1)
0 = (not valid) 
This bit specifies whether the controller, as target, is 
capable of accepting fast back-to-back PCI-Bus 
transactions. 



Bit 8 DPR Data-Parity Error Reported. 
1 = master or target asserted PERR#.
0 = parity error cleared (reset value).
The controller sets this bit if the controller initiated a 
PCI transaction and asserted PERR# on a read or 
detected asserted PERR# by the target on a write. 
This bit can only be set if the PEREN bit is set in the 
PCI Command Register (Section 7.13.3). 

Bit 10:9 DEVSEL DEVSEL# Timing. 
Hardwired to 01, to specify that the controller uses 
medium response time (2 clocks after the address 
phase) when driving the DEVSEL# output signal as a 
PCI target. 

Bit 11 STA Signaled Target-Abort. 
1 = (not valid)
0 = no Target-Abort generated. (hardwired to 0)
The controller never generates Target Abort.

Bit 12 RTA Received Target-Abort. 
1 = controller, as master, received a Target-Abort.
0 = Target-Abort cleared (reset value).

Bit 13 RMA Received Master-Abort. 
1 = controller, as master, received a Master-Abort.
0 = Master-Abort cleared (reset value).

Bit 14 SSE Signaled System Error. 
1 = controller asserted SERR#. 
0 = system error cleared (reset value).
The controller sets this bit if the controller asserted 
SERR# (i.e. detected an address even-parity error or 
other system error). This bit can only be set if the 
SERREN bit is set in the PCI Command Register 
(Section 7.13.3). 

Bit 15 DPE Detected Parity Error. 
1 = controller detected an even-parity error. 
0 = parity error cleared (reset value).
This bit is set on any even-parity error (address or 
data, read or write) even if the PEREN bit is cleared 
in the PCI Command Register (Section 7.13.3).

7.13.5

PCI Revision ID 
Register (REVID)

Bit 7:0 REVID Revision ID. 
Hardwired to indicate the version of the controller.

Tapeout Revision ID

July 1997 0x01 (pre-production)

March 1998 0x02



7.13.6

PCI Class Code 
Register (CLASS)

Bit 7:0 PROGINT Programming Interface Code. 
Hardwired to 0x00.

Bit 15:8 SUBCL Sub-Class Code. 
Hardwired to 0x00 indicating a Host Bridge.

Bit 23:16 BASECL Base Class Code. 
Hardwired to 0x06 indicating a Bridge Device.

7.13.7

PCI Cache-Line Size 
Register (CLSIZ)

Bits 7:0 CLSIZ Cache-Line Size.
The PCI cache-line size, in units of 32-bit words. The 
controller uses this value to determine how much 
data to prefetch during PCI target reads, and for 
command coercion on prefetchable PCI master 
reads. Valid values are 0, 1, 2, 4, 8, 16, 32, 64, 128 
words. Writing anything else forces the value to 0. 
Resets to 0. 

7.13.8

PCI Latency Timer 
Register (MLTIM)

Bit 7:0 MLTIM Latency Timer.
This register specifies, in PCI clocks, the minimum 
number of PCI clocks that the controller can hold the 
bus as a master after its GNT#[n] is negated. Resets 
to 0.

7.13.9

PCI Header Type 
Register (HTYPE)

Bit 6:0 HTYPE Header Type.
Hardwired to 0x00, indicating header type 0.

Bit 7 SINGLEFN Single Function.
Hardwired to 0. The controller is a single-function 
PCI device.

7.13.10

PCI Base Address 
Registers (BARn)

The controller has 11 Base Address Registers (BARs), corresponding to 11of the 
PDARs (Section 5.4 on page 45). The BARs are used to control PCI-Bus master 
access to controller resources. The two PCI Address Window PDARs do not have cor-
responding BARs, as explained in Section 7.5.1. Thus, the BARs include: 

BARs must be programmed with non-overlapping PCI addresses. If the Visible on PCI 
Bus (VISPCI) bit is cleared in the corresponding PDAR, all BAR bits for the device are 
forced to 0, the bits cannot be written, and no access to the corresponding resource is 
allowed from the PCI Bus.

BAR PDAR(s)

Base Address Register 0 (BAR0) SDRAM0

Base Address Register 1 (BAR1) SDRAM1

Base Address Register8:2 (BAR8:2) DCS[8:2]

Base Address Register Boot (BARB) BOOTCS

Base Address Register Control (BARC) INTCS



Bit 0 SPACE Memory Space Indicator.
1 = PCI I/O space. (not valid)
0 = PCI memory space. (hardwired to 0)
As a PCI-Bus target, the controller responds only to 
PCI memory and configuration space accesses, not 
to PCI I/O space accesses (although it can perform 
accesses to PCI I/O space as a PCI-Bus master).

Bit 2:1 TYPE Type.
Hardwired to b10, indicating that the controller’s 
address space can be located anywhere in a 64-bit 
address space.

Bit 3 PREFETCHABLE Prefetchable.
1 = enable prefetching on reads to this region.
0 = disable prefetching in this region (reset value).
When set, this bit indicates that the device returns all 
bytes on reads, regardless of byte-enables, and that 
writes can be merged without causing errors. Read-
only via PCI Configuration Space (offset shown in 
Table 26. Read-write when accessed as an internal 
register (offset shown in Table 26, plus 0x200). 

Bit 63:4 BASEADDR Base Address.
The PCI starting address for this device. Bits 31:21 
are forced to 0, if masked by the MASK field in the 
corresponding PDAR (Section 5.4). Bits 20:4 are 
hardwired to 0. Resets to 0. 

7.13.11

PCI Sub-System 
Vendor ID (SSVID)

Bit 15:0 SSVID Sub-System Vendor ID. 
This ID is issued to sub-system or add-in board ven-
dors by the PCI Special Interest Group. It is intended 
to uniquely identify the board or sub-system where 
the PCI device resides. Reset value provided by 
Serial Mode EEPROM. Read-only via PCI Configu-
ration Space (offset shown in Table 26). Read-write 
when accessed as an internal register (offset shown 
in Table 26, plus 0x200). 

7.13.12

PCI Sub-System ID 
(SSID)

Bit 15:0 SSID Sub-System ID. 
This ID is vendor-specific, and can be used to iden-
tify board revisions. Reset value provided by Serial 
Mode EEPROM. Read-only via PCI Configuration 
Space (offset shown in Table 26. Read-write when 
accessed as an internal register (offset shown in 
Table 26, plus 0x200). 



7.13.13

PCI Interrupt Line 
Register (INTLIN)

Bit 7:0 INTLIN PCI Interrupt Line.
Holds the PCI interrupt-signal routing code for use by 
system software. See Section 2.2.6 of the PCI Local 
Bus Specification for an example. The controller 
ignores the contents of this register. Resets to 0xFF.

7.13.14

PCI Interrupt Pin 
Register (INTPIN)

Bit 7:0 INTPIN PCI Interrupt Pin.
Hardwired to 0x01, indicating that the controller uses 
INTA# to request a PCI interrupt.



8.0 Local-Bus Interface and Registers

The LOC_AD[31:0] and PCI_AD[63:32] signals, and a few other related signals, share 
the same pins on the controller package, so that when the controller’s PCI interface is 
configured for 32-bit operation, a 32-bit Local Bus is available for I/O and memory 
devices (such as boot memory). 

The Local-Bus interface consists of:

� LOC_CLK: a Local-Bus clock, which SysClock divided by 4 or 2.

� LOC_AD[31:0]: a 32-bit multiplexed address and data bus.

� LOC_A[4:0]: a 5-bit de-multiplexed low-address and byte-enable bus.

� LOC_ALE: Address latch enable.

� LOC_FR#: Frame indication.

� LOC_RD#, LOC_WR#: Read and write signals (or a single RD/WR# signal).

� LOC_RDY#: Ready (acknowledge).

� LOC_BR#, LOC_BG#, LOC_BGACK#: Bus arbitration (68000 or Intel mode). 

Two additional signals control devices that can be located either on the Local Bus or 
the memory bus:

� BootCS#: Boot ROM chip-select.

� DCS#[8:2]: 7 programmable chip-selects.

The controller can be a Local-Bus master (on behalf of the CPU, DMA, or PCI-Bus 
masters) or a Local-Bus target for accesses by masters on the Local-Bus. A Local-Bus 
master obtains control of the Local Bus through arbitration (68000 or Intel mode). 
When the controller grants control, it tri-states all of its Local-Bus outputs except 
LOC_CLK and LOC-BG#, so that the Local-Bus master can access other Local-Bus 
devices directly, or access controller resources (memory, PCI-Bus targets, or the con-
troller’s internal registers). When a Local-Bus master accesses controller resources, 
the controller’s DMA logic carries out the Local-Bus master’s request. Local-Bus mas-
ters cannot access Local-Bus targets through the controller; instead, they must do so 
directly on the Local Bus, without the help of the controller. 

The controller supports burst transfers on the Local Bus. See Section 8.3.2.2 and Sec-
tion 8.4.1 for details. 

8.1

Local-Bus 
Confi guration and 
Monitorin g

Software configures and monitors the Local-Bus interface using the following registers:

� Physical Device Address Registers (PDARs), Section 5.4 on page 45.

� Interrupt Control Register (INTCTRL), Section 5.5.2 on page 52.

� Interrupt Status Register 0 (INTSTAT0), Section 5.5.3 on page 55.

� Interrupt Status 1/CPU Interrupt Enable Register (INTSTAT1), Section 5.5.4 on 
page 55.

� Interrupt Clear Register (INTCLR), Section 5.5.5 on page 56.

� Local-Bus Registers, Section 8.6 on page 120.



Figure 16 shows an example of a Local-Bus configuration that implements SRAM and 
an external UART (in addition to the controller’s internal UART). The SRAMs respond 
to byte-enable signals, allowing single-byte granularity on writes. The connections to 
the external 16550 UART shows how the LOC_A[4:0] signals can be used directly for 
devices with small address spaces. 

8.2

Device Chip-Select 
Configuration

The seven programmable DCS[8:2] chip-selects can be used to access devices on the 
Local Bus or the Memory Bus, as specified in the MEM/LOC bit in the Physical Device 
Address Registers (PDAR, Section 5.4) for each chip-select. The chip-selects have a 
flexible address map, which allows from 2MB to 4GB per chip-select. The Local Bus’s 
control signals can be configured to customize the shape of a Local-Bus cycle in the 
Local-Bus Chip-Select Timing Register (LCSTn, Section 8.6.2). For example, the fields 
of the LCSTn register specify polarity of the chip-select and read/write (LOC_RD# or 
LOC_WR#) signals, the time from address-valid to chip-select asserted, the time from 
chip-select asserted to read/write asserted, the duration of read/write, read/write 
negated to chip-select negated, chip-select negated to address invalid, and bus idle 
time after chip-select negated. 

Ready (LOC_RDY#) support is available, per chip-select, for Local-Bus devices that 
do not respond in a fixed amount of time (as specified in the LCSTn register). 
LOC_RDY# may be sampled directly off the Local Bus or after undergoing double syn-
chronization by the controller. In LOC_RDY# mode, all bus signals are extended until 
LOC_RDY# is received from the target. The negation of the read/write command can 
be specified as relative to the assertion of LOC_RDY#, and the remaining bus signals 
can be specified as relative to the negation of read/write, as described above. A 12-bit 
programmable timer (up to 4K Local-Bus clocks) is available as a LOC_RDY# watch-
dog timer. This timer should be programmed to a value higher than the slowest device 
on the Local Bus. The timer begins counting down when a LOC_RDY#-response bus 
cycle begins. If a LOC_RDY# is not received before the timer reaches zero, the cycle 
terminates as though a LOC_RDY# were received, and an interrupt is generated, if 
enabled by the LBRTDEN bit of the Interrupt Control Register (INTCTRL, Section 
5.5.2).



Figure 15:   Example Local-Bus Configuration 
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8.3

Local-Bus Master 
Transactions 
(Controller-to-Local 
Bus)

The controller becomes the master of the Local Bus and initiates a Local Bus cycle by 
asserting LOC_FR#. When LOC_FR# is asserted, no other device may drive Local 
Bus signals, with the exceptions of providing response data to read requests and arbi-
trating for control of the bus by asserting LOC_BR#. 

8.3.1

Timing
During the first clock of a Local-Bus cycle, the LOC_AD[31:0] bus contains the address 
of the request. LOC_ALE is asserted for the first half of this clock cycle to enable exter-
nal latching of the Local-Bus address. The Local Bus supports byte-addressing in the 
local address space. Therefore, if a 16-bit device is used on the Local Bus, LOC_AD[1] 
would be the least-significant address bit wired to that device. Similarly, if a 32-bit 
device is used, LOC_AD[2] would be the least-significant address bit wired to that 
device. 

Also during the first clock of a Local-Bus cycle, the LOC_A[3:0] signals carry active-low 
byte-enables—in effect, BE#[3:0] for the Local Bus—while LOC_AD[31:0] carries the 
address. The LOC_ALE signal may also be used to externally latch both the address 
and the byte-enables. For example, when a 16-bit resource is accessed, LOC_A[1:0] 
are the byte-enables during the first Local-Bus clock. When a 32-bit resource is 
accessed, LOC_A[3:0] are the byte-enables. 

During the remainder of a non-block bus cycle, i.e. from the second Local-Bus clock 
through the end of the bus cycle, LOC_A[4:0] carries the five low-address bits (the 
same bits that were carried on LOC_AD[4:0] bits when LOC_ALE was active) while 
LOC_AD[31:0] carries the data. If all address spaces for Local-Bus devices are less 
than or equal to 32 bytes, the LOC_A[4:0] bits may be used in place of externally latch-
ing the address from the LOC_AD[4:0] bus.

During the remainder of the bus cycle, the appropriate DCS[8:2] chip-select and either 
the LOC_RD# or LOC_WR# signal are asserted, according to the polarity specified by 
the CON_POL bit of the device’s Local-Bus Chip-Select Timing Register (LCSTn, Sec-
tion 8.6.2). When LOC_RD# or LOC_WR# is negated, which is either a specified dura-
tion or after the detection of the LOC_RDY# signal (as specified in the CONWID and 
SUBSCWID fields of the LCSTn register), the cycle ends with the negation of 
LOC_FR#. A new cycle may begin, as indicated by the assertion of LOC_FR#, after 
the bus-idle time specified by the BUSIDLE field of the LCSTn register. 

Figure 16 shows an example read access on the Local Bus. The CSON, CSOFF, COF-
HOLD, CONSET, CONWID, and BUSIDLE values are software-configuration fields in 
the Local Bus Chip-Select Timing Registers (LCSTn), Section 8.6.2.

If you have only 32-bit devices on an external board, none of which use burst transfers, 
you can connect the LOC_AD[31:0] bus to the external board without connecting the 
LOC_A[4:0] bus. 



Figure 16:   Local-Bus Read

8.3.2

Dword vs. Block 
Requests

Requests to resources with data sizes larger than the width of the device cause multi-
ple bus cycles on the Local Bus. For example, a word request to a 16-bit device results 
in two Local-Bus cycles. However, multiple Local-Bus cycles resulting from a dword (or 
less) request look different than multiple Local-Bus cycles resulting from a Block 
request.

8.3.2.1

Dword Requests
Multiple Local-Bus cycles resulting from a dword (or less) request look like successive 
separate requests on the Local Bus. Each bus cycle has its own address, data (for 
writes) and control signals asserted. These requests differ from random requests in 
that they cannot be interrupted by requests from other internal controller masters (CPU 
or DMA) or from external Local-Bus masters. 

The number of local cycles resulting from a dword request varies, depending on the 
size of the resource and the size of the request. The controller’s Local-Bus interface 
performs only as many bus requests as necessary to complete the request. For exam-
ple, a tri-byte write by the CPU to a byte-wide Local-Bus device results in only three 
Local-Bus write cycles. The only additional delay for these types of accesses is one 
SysClock per byte, half-word, or word of data (depending on the size of the resource 
being addressed) for which no byte-enables are asserted. In the case of the tri-byte 
example, there would be five SysClock delays around and/or between Local-Bus 
cycles in which the controller inspects the byte-enables from the requester to deter-
mine if a bus cycle must be performed. 

8.3.2.2

Block Requests
Block requests (32-byte cache line requests) to Local-Bus devices always result in 
multiple requests on the Local Bus. A block request to a byte-wide device results in 32 



reads or writes. Block requests to half-word devices result in 16 reads or writes, and 
block requests to word devices result in 8 reads or writes. 

These are not separate Local-Bus cycles, as described above for the case of multiple 
cycles resulting from a dword request. Rather, these look like one, long Local-Bus 
cycle with multiple assertions of LOC_RD# or LOC_WR#. There is one LOC_FR#, one 
LOC_ALE during the first half of the bus clock, and the address and byte-enables are 
only on the LOC_AD[31:0] and LOC_A[4:0] buses during the first bus clock, as shown 
in Figure 17. The low-order address bits are driven on LOC_A[4:0] to indicate which 
part of the block is being transferred. The byte-enables must all be asserted, since a 
full port-size unit of data is to be read or written on each assertion of LOC_RD# or 
LOC_WR#. 

The LOC_A[4:0] bits must be connected to devices responding to block requests; dur-
ing block requests, these are the only address bits that increment after each unit of 
data is read or written. As described above, these bits contain byte addresses. There-
fore, LOC_A[0] is the least-significant address bit wired to a byte device, LOC_A[1] is 
the least-significant address bit wired to a half-word device, and LOC_A[2] is the least-
significant bit wired to a word device.

Figure 17 shows an example block write to a byte-wide device on the Local Bus. The 
CSON, CSOFF, COFHOLD, CONSET, CONWID, BUSIDLE, and SUBSCWID values 
are software-configuration fields in the Local Bus Chip-Select Timing Registers 
(LCSTn), Section 8.6.2.

Figure 17:   Local-Bus Block Write To Byte-Wide Device 

When the ARBEN bit is set in the Local Bus Configuration Register (LCNFG, Section 
8.6.1), external Local-Bus devices are allowed to arbitrate for and gain control of the 
Local Bus. 

8.4

Arbitration for 
Local-Bus Control

The ARBMODE bit in the Local Bus Configuration Register (LCNFG, Section 8.6.1) 
specifies one of two bus-arbitration modes. Based on this selection, the LOC_BR#, 
LOC_BG#, and LOC_BGACK# signals are configured to function as: 



� 68000 Mode: 

• LOC_BR# = bus request (BR#)

• LOC_BG# = bus grant (BG#)

• LOC_BGACK# = bus-grant acknowledge (BGACK#)

� Intel Mode: 

• LOC_BR# = bus hold (HOLD) 

• LOC_BG# = bus-hold acknowledge (HLDA)

When a Local-Bus master gains control of the bus, the controller tri-states all of its 
Local-Bus outputs except LOC_CLK and LOC-BG#. If multiple masters are imple-
mented on the Local Bus, external logic must arbitrate among those masters. If multi-
ple masters with different arbitration modes are implemented, external logic must 
arbitrate among those masters and present a single arbitration mode to the controller.

8.4.1

Signal Redefinition for 
Local-Bus Masters

When a Local-Bus master gains control of the Local Bus, the definitions of the 
LOC_A[4:0] signals change, as follows: 

� LOC_A[4]: Determines where the Local-Bus master’s request is targeted:

• LOC_A[4] = 1 requests a controller (non-Local-Bus) target. 

• LOC_A[4] = 0 requests a Local-Bus target. 

� LOC_A[3:0]: 

• For controller targets: The controller floats its LOC_A[3:0] signals and these 
bits become address bits [35:32] inside the controller. These bits are 
concatenated with the 30-bit address latched from the LOC_AD[31:2] bus to 
form a 36-bit physical address. LOC_AD[1:0] are assumed to be 0; all 
accesses to controller resources by Local-Bus masters are assumed to be 32-
bit accesses, because there are no byte-enable signals. This mechanism 
allows external Local-Bus masters to access the entire controller address 
space. LOC_AD[1:0] specify the length of the access. If LOC_AD[1:0] = 00, a 
single 32-bit word is transferred. If LOC_AD[1:0] = 01, a block of eight 32-bit 
words is transferred as a burst. On reads, the controller asserts LOC_RDY# 
to indicate when data is valid. 

• For Local-Bus targets: LOC_A[3:0] carry implementation-dependent 
information. 

Thus, the LOC_A[4] bit distinguishes two, separate address spaces, one for non-
Local-Bus controller resources (memory, PCI-Bus devices, or controller registers) and 
another for Local-Bus targets. Accesses by the Local-Bus master to controller 
resources are implemented by the DMA logic, as described in the next section. 
Accesses by the Local-Bus master to Local-Bus targets are implemented directly 
between the two devices, in a separate address space and without the assistance of 
the controller (except for LOC_CLK, which the controller continues to drive). 

8.4.2

Local-Bus Target 
Transactions (Local 
Bus-to-Controller)

When a Local-Bus master requests a controller resource, the controller’s DMA logic 
carries out that request. The DMA logic must be in a receptive state before the control-
ler grants the Local-Bus master control of the Local Bus. The controller does this, 
regardless of whether the request is targeted to an internal controller resource or to a 
Local-Bus device, because the target of the cycle is not known until the Local-Bus 



master’s bus cycle begins. The effect on non-Local-Bus DMA activity depends on 
whether the Local-Bus master is targeting a controller resource or a Local-Bus device:

� Controller-Resource Target, LOC_A[4] = 1: If the Local-Bus master is targeting a 
controller resource, non-Local-Bus DMA activity to/from that resource is delayed 
until the Local-Bus master’s request has completed. However, DMA activity to/
from other resources can continue in parallel with the Local-Bus master’s bus 
request. 

� Local-Bus Target, LOC_A[4] = 0: If the Local-Bus master is targeting a Local-Bus 
device, DMA activity is free to resume immediately because the DMA logic is not 
involved with the Local-Bus activity. 

The following types of accesses by Local-Bus masters are not supported: 

� Loop-Back Requests via the Controller. Requests to Local-Bus targets through 
the controller’s internal logic (i.e., when LOC_A[4] = 1) are not allowed, because 
these requests will cause a deadlock. As described above, a Local-Bus master’s 
request for controller resources is carried out via the DMA logic. When the DMA 
logic requests the Local Bus, it is held off until the Local Bus is free. But the Local 
Bus will not be free until the DMA completes its request. The result is deadlock. If 
such an access is attempted, the controller discards write data and terminates 
read requests by returning all 0s as data.

� Loop-Back Requests via a PCI-Bus Device. The same deadlock scenario 
described above would occur for loop-back requests via the PCI Bus. Such 
requests must not be attempted. 

� Non-Word Accesses: All requests by Local-Bus masters to controller resources 
are assumed to be 32-bit word width, because there are no byte-enable signals in 
this direction. Size information in the request is ignored. The controller always 
performs 32-bit operations.

8.5

Local Bus vs. 64-bit 
PCI Bus

When PCI64# is asserted, the controller implements a 64-bit PCI Bus. In this case, the 
controller reconfigures the functions of several Local-Bus signals, as follows:

� LOC_AD[31:0]: becomes PCI_AD[63:32]

� LOC_ALE: becomes REQ64#, request 64-bit transfer on PCI Bus.

� LOC_CLK: becomes ACK64#, acknowledge 64-bit transfer on PCI Bus.

� LOC_A[3:0]: become C/BE#[7:4], the byte-enables for PCI_AD[63:32]. 

� LOC_A[4]: becomes PAR64, the even-parity bit for PCI_AD[63:32] and C/
BE#[7:4].

Table 4 on page 27 lists all of these signal reconfigurations. If any of the seven Local-
Bus DCS#[8:2] chip-selects are to be used in this configuration, they must be accessed 
on the memory bus by setting the MEM/LOC bit in the Physical Device Address Reg-
isters (PDAR, Section 5.4). The location of the BOOTCS is automatically moved to the 
memory bus when PCI64# is asserted.

8.6

Local-Bus Registers
Local-Bus masters, if enabled to arbitrate for control of Local Bus by the ARBEN field 
of this register, may access the controller’s resources (memory, PCI-Bus devices, 
DMA, and the controller’s internal registers) or other Local-Bus devices. 



8.6.1

Local Bus 
Configuration 
Register (LCNFG)

Bit 0 ARBMODE Local-Bus Arbitration Mode. 
1 = 68000 mode (i.e. BR, BG, BGACK).
0 = Intel mode (i.e. HOLD, HLDA). 
For 68000 mode, the BR#, BG#, and BGACK# sig-
nals serve as the 68000 BR, BG, and BGACK sig-
nals, respectively. For Intel mode, the BR# and 
BGACK# signals serve as the Intel HOLD and HLDA 
signals, respectively. 

Bit 1 ARBEN Local-Bus Arbitration Enable. 
1 = enable Local-Bus masters to arbitrate for control 
of the Local Bus. 
0 = disable Local-Bus masters from controlling the 
Local Bus. 
Clearing this bit prevents access to controller 
resources. Setting the bit allows Local-Bus devices 
to arbitrate for control of the Local Bus, using the 
arbitration mode specified by the ARBMODE bit. 

Bits 3:2 reserved Hardwired to 0.

Bits 4 FLCLCLK Fast Clock. 
1 = LOC_CLK runs at SysClock divided by 2.
0 = LOC_CLK runs at SysClock divided by 4. 
This bit resets to 0. 

Table 27: Local-Bus Registers

Register Symbol Offset R/W Reset Value Description

Local Bus Configuration LCNFG 0x0100 R/W 0x0 0000 0000 Local Bus configuration 

reserved — 0x0108 R 0x0 0000 0000 —

Local Bus Chip-Select Timing 2 a LCST2 0x0110 R/W 0x0 0000 0000 Local Bus cycle timing for DCS#[2] signal.

Local Bus Chip-Select Timing 3 a LCST3 0x0118 R/W 0x0 0000 0000 Local Bus cycle timing for DCS#[3] signal.

Local Bus Chip-Select Timing 4 a LCST4 0x0120 R/W 0x0 0000 0000 Local Bus cycle timing for DCS#[4] signal.

Local Bus Chip-Select Timing 5 a LCST5 0x0128 R/W 0x0 0000 0000 Local Bus cycle timing for DCS#[5] signal.

Local Bus Chip-Select Timing 6 a LCST6 0x0130 R/W 0x0 0000 0000 Local Bus cycle timing for DCS#[6] signal.

Local Bus Chip-Select Timing 7 a LCST7 0x0138 R/W 0x0 0000 0000 Local Bus cycle timing for DCS#[7] signal.

Local Bus Chip-Select Timing 8 a LCST8 0x0140 R/W 0x0 0000 0000 Local Bus cycle timing for DCS#[8] signal.

reserved — 0x0148 R 0x0 0000 0000 —

Device Chip-Select Muxing and 
Output Enables

DCSFN 0x0150 R/W 0x0 0000 0000 Device CS source muxing and output-enables

Device Chip-Selects As I/O Bits DCSIO 0x0158 R/W 0x0 0000 0000 Device chip-select signals as I/O signals.

reserved — 0x0160 R 0x0 0000 0000 —

reserved — 0x0168 R 0x0 0000 0000 —

reserved — 0x0170 R 0x0 0000 0000 —

Local Boot Chip-Select Timing a BCST 0x0178 R/W 0x0 003F 8E3F Local-Bus cycle timing for BootCS# signal.

a. When the controller is configured for 32-bit PCI operation (PCI64# negated), the boot memory and the seven DCS 
devices can be individually configured by the MEM/LOC bit in the PDAR (Section 5.4) to appear on the memory bus or 
the Local Bus. When the controller is configured for 64-bit PCI operation (PCI64# asserted), these devices always 
appear on the memory bus. 



Bits 15:5 reserved Hardwired to 0.

Bits 19:16 DMAHOG Minimum Number of Accesses by DMA. 
The minimum number of consecutive Local-Bus 
cycles the DMA may perform before the DMA is 
forced to allow the CPU or a PCI-Bus master to take 
control of the Local Bus. 0x0 means 1 access, 0xF 
means 16 consecutive accesses. Resets to 0x0. The 
limit is only enforced when another resource 
requests the Local Bus. The Local-Bus DMAHOG, 
PCIHOG and CPUHOG fields are the software inter-
face to the Programmable 3-Way Arbiter, shown in 
Figure 1 on page 12.

Bits 23:20 PCIHOG Minimum Number of Accesses by PCI. 
The minimum number of consecutive PCI-interface 
accesses to Local-Bus resources before the PCI 
interface is forced to allow another controller 
resource to take control of the Local Bus. 0x0 means 
1 access, 0xF means 16 consecutive accesses. 
Resets to 0x0. The limit is only enforced once 
another resource requests the Local Bus.

Bits 27:24 CPUHOG Minimum Number of Accesses by CPU. 
The minimum number of consecutive CPU accesses 
to Local-Bus resources before the CPU is forced to 
allow another controller resource to take control of 
the Local Bus. 0x0 means 1 access, 0xF means 16 
consecutive accesses. Resets to 0x0. The limit is 
only enforced once another resource requests the 
Local Bus.

Bit 63:28 reserved Hardwired to 0.

8.6.2

Local Bus Chip-Select 
Timing Registers 
(LCSTn)

The eight identical LCSTn registers configure bus-cycle timing characteristics on the 
Local Bus. The seven LCST8:2 registers correspond to the DCS#[8:2] device chip-
select signals, which themselves are configured in their PDARs (Section 5.4). One 
more register, BCST, corresponds to the BootCS# signal, which is also configured by 
its PDAR. 

Bit 0 CSON Chip-Select On (Asserted). 
1 = assert DCS#[n] one clock after valid address. 
0 = assert DCS#[n] with valid address. 
The valid address referred to is on the 
LOC_AD[31:0] bus. Asserting DCS#[n] with the valid 
address means in the clock that LOC_FR# is 
asserted. Be careful when using LOC_A[4:0] with 
CSON cleared to 0, because DCS#[n] will assert 
while LOC_A[4:0] drives byte-enables, one clock 
before LOC_A[31:0] drives the address. 



Bits 2:1 CONSET Command-On Set. 
The number of clocks, after the assertion of 
DCS#[n], that the LOC_RD# or LOC_WR# signal is 
asserted. When zero, the command (LOC_RD# or 
LOC_WR#) is asserted coincident with DCS#[n]. 

Bits 8:3 CONWID Command-On Width (or Local-Bus Ready Timer). 
When the RDYMODE bit (bit 22) is cleared, this field 
specifies the duration of LOC_RD# or LOC_WR# 
signal assertion. The CONWID value can range from 
1 to 64 LOC_CLKs. The duration of assertion is the 
CONWID value, plus 1. For example, a CONWID 
value of 000000b specifies a 1-clock duration of the 
read or write command. A CONWID value of 
000111b specifies an 8-clock assertion, and so on. 

When the RDYMODE bit (bit 22) is set, indicating the 
LOC_RDY# signal is being used, the CONWID field 
is concatenated with the SUBSCWID field to form a 
12-bit Local-Bus Ready Timer for LOC_RDY#, with 
CONWID being the lower 6 bits. Interrupts based on 
this timer are enabled by the LBRTDEN bit of the 
Interrupt Control Register (INTCTRL, Section 5.5.2).

Bits 14:9 SUBSCWID Subsequent Command-On Width (or Local-Bus 
Ready Timer). 
When the RDYMODE bit (bit 22) is cleared, this field 
specifies the duration of LOC_RD# or LOC_WR# 
signal (command) assertion for subsequent portions 
of a block-transfer cycle. The CONWID value can 
range from 1 to 64 LOC_CLKs. The duration of 
assertion is the CONWID value, plus one. 

When the RDYMODE bit (bit 22) is set, indicating the 
LOC_RDY# signal is being used, the SUBSCWID 
field is concatenated with the CONWID field to form 
a 12-bit Local-Bus Ready Timer for LOC_RDY#, with 
SUBSCWID being the upper 6 bits. If used, this timer 
should be programmed to a value higher than the 
slowest device on the Local Bus. The timer begins 
counting down when a LOC_RDY#-response bus 
cycle begins. If a LOC_RDY# is not received before 
the timer reaches zero, the cycle terminates as 
though a LOC_RDY# were received, and an inter-
rupt is generated, if enabled by the LBRTDEN bit of 
the Interrupt Control Register (INTCTRL, Section 
5.5.2).

Bits 16:15 CSOFF Chip-Select Off. 
This field specifies the number of LOC_CLKs, after 
LOC_RD# or LOC_WR# is negated, that DCS#[n] is 



negated. When zero, DCS#[n] is negated coincident 
with the read or write signal. When non-zero, 
DCS#[n] is negated that number of clocks after the 
read or write signal is negated.

Bits 18:17 COFHOLD Command-Frame Hold. 
This field specifies the number of LOC_CLKs, after 
DCS#[n] is negated, that the command-frame is 
extended (LOC_FR# held asserted). When zero, 
LOC_FR# is negated coincident with the negation of 
DCS#[n]. When non-zero, LOC_FR# is negated that 
number of clocks after the negation of DCS#[n].

Bits 21:19 BUSIDLE Bus Idle. 
This field specifies the minimum number of 
LOC_CLKs between the negation and re-assertion 
of LOC_FR# for a subsequent cycle. There is a two-
clock minimum imposed by the control logic. The idle 
time increases if the subsequent cycle is less than a 
dword and one or more of the least-significant byte-
enables from the master is negated (this delay is 
caused by logic that searches through the 
requestor’s byte-enables so that only necessary 
Local-Bus cycles are performed). 

Bit 22 RDYMODE Ready Mode. 
1 = LOC_RDY# determines access duration. 
0 = fixed timing for accesses, per bits 14:3. 
If RDYMODE is set, the CONWID and SUBSCWID 
fields (bits 14:3) become a Local-Bus Ready Timer 
for LOC_RDY#. This time-out timer works for both 
reads and writes on the Local Bus. 

Bit 23 RDYSYN LOC_RDY# Synchronize. 
1 = synchronize LOC_RDY# to SysClock.
0 = do not synchronize LOC_RDY# to SysClock.
If this bit is set, the LOC_RDY# signal is assumed to 
be asynchronous to SysClock, and the controller will 
synchronize it to SysClock. This imposes a 2-clock 
delay at the end of the access.

Bits 25:24 CONOFF Command Off.
This field specifies the number of LOC_CLKs, after 
LOC_RDY# is asserted, that the LOC_RD# or 
LOC_WR# signal (command) is negated. When 
zero, the command is negated coincident with the 
assertion of LOC_RDY# (or two clocks later if 
LOC_RDY# requires synchronization). When non-
zero, the command is negated that number of clocks 
after LOC_RDY# is asserted.



Bit 26 CS_POL Chip-Select Polarity.
1 = DCS#[n] is active-High.
0 = DCS#[n] is active-Low. 

Bit 27 CON_POL Command Polarity.
1 = LOC_RD# and LOC_WR# are active-High.
0 = LOC_RD# and LOC_WR# are active-Low. 

Bits 63:28 reserved Hardwired to 0.

8.6.3

Device Chip-Select 
Function Register 
(DCSFN)

This register specifies the functionality of the DCS#[8:2] signals. These signals can be 
used as device chip-selects, whose operation is controlled by the corresponding PDAR 
(Section 5.4) and Local-Bus Chip Select Timing Register (LCSTn, Section 8.6.2). Alter-
natively, they can be used for general-purpose I/O bits, additional UART modem con-
trol functions, or DMA hardware handshaking. 

The DCSFN register and the DCS[8:2] PDARs must be programmed before accessing 
devices selected by the DCS#[8:2] signals. 

Bits 2:0 DCSFN2 DCS#[2] Signal Function.

Bit 3 reserved Hardwired to 0.

 Binary Value Signal Function

b000 General-purpose input whose value can be 
read in the DCSL2IN field of the Device Chip-
Selects as I/O Bits Register (DCSIO), Section 
8.6.4. Reset value. 

b001 The controller’s memory interface or Local-
Bus interface drives the signal, depending on 
the MEM/LOC bit in Physical Device Address 
Register DCS2, Section 5.4.

b011 General-purpose output whose value is 
programmed by bit 8 of the DCSLOUT field in 
the Device Chip-Selects as I/O Bits Register 
(DCSIO), Section 8.6.4.

b101 The UART_RTS# output signal is enabled on 
the DCS#[2] pin.

All other values reserved



Bits 6:4 DCSFN3 DCS#[3] Signal Function.

Bit 7 reserved Hardwired to 0.

Bits 10:8 DCSFN4 DCS#[4] Signal Function.

Bit 11 reserved Hardwired to 0.

Bits 14:12 DCSFN5 DCS#[5] Signal Function.

 Binary Value Signal Function

b000 General-purpose input whose value can be 
read in the DCSL3IN field of the Device Chip-
Selects as I/O Bits Register (DCSIO), Section 
8.6.4. Reset value. 

b001 The controller’s memory interface or Local-
Bus interface drives the signal, depending on 
the MEM/LOC bit in Physical Device Address 
Register DCS3, Section 5.4.

b011 General-purpose output whose value is 
programmed by bit 9 of the DCSLOUT field in 
the Device Chip-Selects as I/O Bits Register 
(DCSIO), Section 8.6.4.

b110 The UART_CTS# output signal is enabled on 
the DCS#[3] pin.

All other values reserved

 Binary Value Signal Function

b000 General-purpose input whose value can be 
read in the DCSL4IN field of the Device Chip-
Selects as I/O Bits Register (DCSIO), Section 
8.6.4. Reset value. 

b001 The controller’s memory interface or Local-
Bus interface drives the signal, depending on 
the MEM/LOC bit in Physical Device Address 
Register DCS4, Section 5.4.

b011 General-purpose output whose value is 
programmed by bit 10 of the DCSLOUT field in 
the Device Chip-Selects as I/O Bits Register 
(DCSIO), Section 8.6.4.

b110 The UART_DCD# output signal is enabled on 
the DCS#[4] pin.

All other values reserved

 Binary Value Signal Function

b000 General-purpose input whose value can be 
read in the DCSL5IN field of the Device Chip-
Selects as I/O Bits Register (DCSIO), Section 
8.6.4. Reset value. 

b001 The controller’s memory interface or Local-
Bus interface drives the signal, depending on 
the MEM/LOC bit in Physical Device Address 
Register DCS5, Section 5.4.



Bit 15 reserved Hardwired to 0.

Bits 18:16 DCSFN6 DCS#[6] Signal Function.

Bit 19 reserved Hardwired to 0.

Bits 22:20 DCSFN7 DCS#[7] Signal Function.

Bit 23 reserved Hardwired to 0.

b011 General-purpose output whose value is 
programmed by bit 11 of the DCSLOUT field in 
the Device Chip-Selects as I/O Bits Register 
(DCSIO), Section 8.6.4.

b110 The UART_XIN output signal is enabled on the 
DCS#[5] pin.

All other values reserved

 Binary Value Signal Function

b000 General-purpose input whose value can be 
read in the DCSL6IN field of the Device Chip-
Selects as I/O Bits Register (DCSIO), Section 
8.6.4. Reset value. 

b001 The controller’s memory interface or Local-
Bus interface drives the signal, depending on 
the MEM/LOC bit in Physical Device Address 
Register DCS6, Section 5.4.

b011 General-purpose output whose value is 
programmed by bit 12 of the DCSLOUT field in 
the Device Chip-Selects as I/O Bits Register 
(DCSIO), Section 8.6.4.

b101 The DMA hardware handshaking DMA_ACK# 
output signal is enabled on the DCS#[6] pin. 
See Section 9.4.

All other values reserved

 Binary Value Signal Function

b000 General-purpose input whose value can be 
read in the DCSL7IN field of the Device Chip-
Selects as I/O Bits Register (DCSIO), Section 
8.6.4. Reset value. 

b001 The controller’s memory interface or Local-
Bus interface drives the signal, depending on 
the MEM/LOC bit in Physical Device Address 
Register DCS7, Section 5.4.

b011 General-purpose output whose value is 
programmed by bit 13 of the DCSLOUT field in 
the Device Chip-Selects as I/O Bits Register 
(DCSIO), Section 8.6.4.

b110 The DMA hardware handshaking DMA_REQ# 
input signal is enabled on the DCS#[7] pin. 
See Section 9.4.

All other values reserved

 Binary Value Signal Function



Bits 26:24 DCSFN8 DCS#[8] Signal Function.

Bits 63:27 reserved Hardwired to 0.

8.6.4

Device Chip-Selects 
as I/O Bits Register 
(DCSIO)

The DCSIO register is used to read input and write output when any of the DCS#[8:2] 
signals are specified to be used for general-purpose I/O in the Device Chip-Select 
Function Register (DCSFN, Section 8.6.3). Bits 6:0 of the DCSIO register represent 
inputs on the DCS[8:2] signals. Bits 14:8 represent outputs on the DCS[8:2] signals. 
The input bits are synchronized internally by the controller to SysClock. 

Bit 0 DCSL2IN DCS#[2] Input Synchronized.
The input value on DCS#[2], synchronized internally 
to SysClock.

Bit 1 DCSL3IN DCS#[3] Input Synchronized.
The input value on DCS#[3], synchronized internally 
to SysClock.

Bit 2 DCSL4IN DCS#[4] Input Synchronized.
The input value on DCS#[4], synchronized internally 
to SysClock.

Bit 3 DCSL5IN DCS#[5] Input Synchronized.
The input value on DCS#[5], synchronized internally 
to SysClock.

Bit 4 DCSL6IN DCS#[6] Input Synchronized.
The input value on DCS#[6], synchronized internally 
to SysClock.

Bit 5 DCSL7IN DCS#[7] Input Synchronized.
The input value on DCS#[7], synchronized internally 
to SysClock.

 Binary Value Signal Function

b000 General-purpose input whose value can be 
read in the DCSL8IN field of the Device Chip-
Selects as I/O Bits Register (DCSIO), Section 
8.6.4. Reset value. 

b001 The controller’s memory interface or Local-
Bus interface drives the signal, depending on 
the MEM/LOC bit in Physical Device Address 
Register DCS8, Section 5.4.

b011 General-purpose output whose value is 
programmed by bit 14 of the DCSLOUT field in 
the Device Chip-Selects as I/O Bits Register 
(DCSIO), Section 8.6.4.

b110 The DMA hardware handshaking DMA_EOT# 
input signal is enabled on the DCS#[8] pin. 
See Section 9.4.

All other values reserved



Bit 6 DCSL8IN DCS#[8] Input Synchronized.
The input value on DCS#[8], synchronized internally 
to SysClock.

Bit 7 reserved Hardwired to 0.

Bits 14:8 DCSLOUT DCS#[8:2] Value.
The value to drive on DCS#[8:2] if these signals are 
enabled by the DCSOE[8:2] bits in the DCSFN regis-
ter (Section 8.6.3).

Bits 63:15 reserved Hardwired to 0.

8.6.5

Local Boot Chip-
Select Timing Register 
(BCST)

This register has the same format at the LCST8:2 registers (Section 8.6.2). The reset 
value for the BCST register is 0x0 003F 8E3F. So, at reset the timing parameters for 
the Boot Chip-Select (BOOTCS) Physical Device Address Register (Section 5.4) are:

Reset 
Value

Bit 0 CSON 1

Bits 2:1 CONSET 3

Bits 8:3 CONWID 7

Bits 14:9 SUBSCWID 7

Bits 16:15 CSOFF 3

Bits 18:17 COFHOLD 3

Bits 21:19 BUSIDLE 7

Bit 22 RDYMODE 0

Bit 23 RDYSYN 0

Bits 25:24 CONOFF 0

Bit 26 CS_POL 0

Bit 27 CON_POL 0

Bits 63:28 reserved 0

This configures BOOTCS for the slowest possible boot ROM. After boot, you may con-
figure this register to allow faster access, depending on the timing requirements for 
your boot ROM. 



9.0 DMA Controller and Registers

The controller supports DMA transfers, from any physical address to any physical 
address, on two chainable channels. Thus, DMA transfers can occur:

� From: 

• Memory,

• PCI-Bus device,

• Local-Bus device, or

• Controller’s internal registers

� To:

• Memory,

• PCI-Bus device,

• Local-Bus device, or

• Controller’s internal registers

The DMA logic includes a 32-entry x 8-byte (256-byte) DMA FIFO that is used to buffer 
transfers. The controller is capable of performing unaligned read and write transfers 
from and to main memory at a maximum rate of 640Mb/s. The controller is also capa-
ble of transferring from and to the PCI Bus at the maximum PCI transfer rate of 533 
MB/sec (64-bit, 66 MHz), 266 MB/sec (64-bit, 33 MHz or 32-bit, 66 MHz), or 133 MB/
sec (32-bit, 33 MHz). 

9.1

DMA Confi guration 
and Monitorin g

Software configures and monitors the DMA logic using the following registers:

� Interrupt Control Register (INTCTRL), Section 5.5.2 on page 52.

� Interrupt Status Register 0 (INTSTAT0), Section 5.5.3 on page 55.

� Interrupt Clear Register (INTCLR), Section 5.5.5 on page 56.

� DMA Registers, Section 9.5 on page 133.

� Device Chip-Select Function Register (DCSFN), Section 8.6.3 on page 125.

9.2

DMA Transfer 
Mechanism

The DMA transfer mechanism is configured by software and operates autonomously 
thereafter. If both DMA channels are configured for transfers, the second channel will 
automatically begin transferring when the first channel completes. This is called chain-
ing. 

9.2.1

Configuration and 
Enabling

The controller contains two sets of DMA registers, for Channel 0 and Channel 1 (Sec-
tion 9.5). Each register set controls a separate DMA transfer. One set of registers may 
be written or read while the other set is controlling a transfer. Active registers can be 
read, but writing of the active registers is limited to the writing of only the DMA Reset 
(DRST) and Suspend DMA (SU) bits in the DMA Control Register (Section 9.5.1). 
Transfers on the two channels can be chained (linked), so that the completion of a 
transfer on one channel causes the second channel to begin transferring. 

The controller’s DMA registers can be configured by any master attached to any of 
controller interfaces. Typically this is the CPU, but it may be any device on the PCI or 
Local Bus. To begin a DMA transfer, software specifies the source address, destination 



address, length of transfer, end-of-transfer interrupt, and transfer enable (the GO bit) in 
the DMA Control Register for that channel. 

9.2.2

Operation
When the transfer has been enabled, the controller begins by acquiring access to the 
resource that is the source of the data transfer. When access to the source is granted, 
the controller begins reading data at the highest rate supported by the source and plac-
ing the data in its 32 x 8-byte DMA FIFO. When the FIFO reaches its high-water mark, 
the controller requests access to the destination of the transfer. When access to the 
destination is granted, the controller begins writing the data at the highest rate possible 
supported by the destination. 

If, during a transfer, the DMA FIFO becomes full, the controller releases control of the 
data source until the FIFO is emptied to its low-water mark. The controller then reac-
quires the data source and continues filling the FIFO. If the FIFO becomes empty, the 
controller releases the data destination until the FIFO has been filled to its high-water 
mark. The controller then reacquires the data destination and continues emptying the 
FIFO. 

When the correct number of bytes has been read from the source, the controller stops 
filling the FIFO but continues emptying the FIFO until the last transfer completes. Then 
the controller issues a DMA-complete interrupt to the CPU, if enabled as described in 
the next section, below.

9.2.3

Completion
When a transfer finishes, the controller generates an interrupt to the CPU, if the inter-
rupt is enabled by the DMAEN bit in the Interrupt Control Register (INTCTRL, Section 
5.5.2) and the IE field in the DMA Control Register for that DMA channel (DMACTRL, 
Section 9.5.1). The controller checks the status of the other set of DMA control regis-
ters to determine if another transfer is configured (chained); if so, the next DMA trans-
fer begins automatically.

If any error occurs, the controller stops the current DMA transfer, sets one of the 
Stopped On An Error (bits 34:32) in the DMA Control Register for that DMA channel 
(DMACTRL, Section 9.5.1), and generates an interrupt, if enabled. 

9.3

Data Ali gner
The controller automatically handles unaligned DMA transfers. The aligner supports 
block reads and writes even when both the source and destination addresses are not 
aligned on dword boundaries. 

The aligner packs data into the DMA FIFO in the alignment required by the destination 
address. Figure 18 shows the operation of the aligner for a DMA transaction starting 
from source address 0003 to starting destination address 0007. 



Figure 18:   Unaligned DMA Transfer Example 

9.4

DMA Hardware 
Handshakin g

DMA transfers can be initiated either entirely in software, or in software accompanied 
by hardware handshaking. When the Hardware Handshake Enable (HHSEN) bit is set 
to 1 in the DMA Control Register (DMACTRLn, Section 9.5.1), and the DCSFNn and 
DCSOEn fields in the Device Chip-Select Function Register (DCSFN, Section 8.6.3) 
contains the appropriate values, the controller implements hardware handshaking by 
reconfiguring the functions of the DCS#[8:6] signals, as follows:

� DCS#[6] becomes DMA_ACK# (output).

� DCS#[7] becomes DMA_REQ# (input).

� DCS#[8] becomes DMA_EOT# (input).
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9.4.1

External DMA 
Requests

An external device can use the DMA_REQ# input by itself to request a transfer. If the 
device uses the DMA_ACK# output, the device must also use the DMA_REQ# input. 
Using the DMA_REQ# input by itself, without the DMA_ACK# output, may cause diffi-
culties in determining when it is safe to negate DMA_REQ#. The Hardware Handshake 
Destination (HHSDEST) bit in the DMA Control Register specifies whether the source 
or destination does the hardware handshake with the controller. 

An external device requests a DMA transfer by asserting DMA_REQ#. The controller 
responds by asserting DMA_ACK# and begins reading data from the source and writ-
ing it to the destination. When the external device negates DMA_REQ#, the controller 
negates DMA_ACK#. For each of these assertion/negation cycles, one block of data 
(32 bytes) is read until the DMA transfer count goes to zero. 

Blocks are aligned on 32-byte boundaries. The first and last transfers may be less than 
32 bytes, because they may only transfer part of a block. If the requesting device can 
source or sink another block, the device can re-assert DMA_REQ# one clock after 
negating it. 

9.4.2

End Of Transfer
The external device can use the DMA_EOT# input to abort a DMA transfer, but only if 
the DMA source is doing the handshaking (HHSDEST=0 in DMACTRLn). DMA errors 
may be reported by assertion of the DMA_EOT# input, if this function is enabled by the 
HHSEOT bit in the DMA Control Register. When such an error is reported, the control-
ler aborts the associated DMA transfer, treating it as if the DMA transfer count had 
gone to zero. This is the DMA_EOT# input’s only function. 

9.5

DMA Registers
The controller contains two sets of DMA registers, for Channel 0 and Channel 1, each 
of which controls a separate DMA transfer. One set of registers may be written or read 
while the other set is active (controlling a transfer). Active registers can be read, but 
writing of the active registers is limited to the DMA Reset (DRST) and Suspend DMA 
(SU) bits in the DMA Control Register (Section 9.5).

9.5.1

DMA Control 
Registers 0 and 1 
(DMACTRLn)

Bits 19:0 BLKSIZE Block Size. 
The number of bytes (up to 1 MB) to be transferred. 
0 = 1 MB.

Bits 21:20 reserved Hardwired to 0.

Table 28: DMA Control Registers

Register Symbol Offset R/W Reset Value Description

DMA Control 0 DMACTRL0 0x0180 R/W 0x0000 0000 0000 0000 DMA control set 0.

DMA Source Address 0 DMASRCA0 0x0188 R/W 0x0000 0000 0000 0000 DMA source address set 0.

DMA Destination Address 0 DMADESA0 0x0190 R/W 0x0000 0000 0000 0000 DMA destination address set 0.

DMA Control 1 DMACTRL1 0x0198 R/W 0x0000 0000 0000 0000 DMA control set 1.

DMA Source Address 1 DMASRCA1 0x01A0 R/W 0x0000 0000 0000 0000 DMA source address set 1.

DMA Destination Address 1 DMADESA1 0x01A8 R/W 0x0000 0000 0000 0000 DMA destination address set 1.

reserved — 0x01B0 R 0x0000 0000 0000 0000 —

reserved — 0x01B8 R 0x0000 0000 0000 0000 —



Bit 22 HHSDEST Hardware Handshake By Source or Destination.
1 = destination handshakes with controller. 
0 = source handshakes with controller. 
When the DCSFN[8:6] fields in the Device Chip-
Select Muxing and Output-Enables Register 
(DCSFN, Section 8.6.3) contain the value 0x2, the 
DCS#[8:6] signals become the DMA_EOT#, 
DMA_REQ#, and DMA_ACK# signals, respectively. 
These signals are used for DMA handshaking with 
the controller. The HHSDEST bit specifies whether 
the source or destination of the DMA transfer does 
the hardware handshake. The HHSDEST bit is valid 
only if handshaking is enabled by the HHSEN bit.

Bit 23 HHSEN Hardware Handshake Enable.
1 = enable. 
0 = disable. 
This bit is valid only when at least one of the 
DCSFN[8:6] fields in the Device Chip-Select Muxing 
and Output-Enables Register (DCSFN, Section 
8.6.3) contains the value 0x2 and the corresponding 
DCSOEn bit is set in the DCSFN register. 

Bit 24 DRST DMA Reset. 
1 = reset.
0 = no reset.
When this bit is set to 1, any DMA in process is ter-
minated and reset after completion of the bus cycle 
in process. This bit automatically clears to 0 after the 
DMA channel has been successfully reset. This bit 
takes precedence over all other bits in the DMA Con-
trol Registers; values written to other bits in the reg-
ister are disregarded when the DRST bit is set.

Bit 25 SRCINC Source-Address Incrementing. 
1 = increment source address.
0 = do not increment source address.
Setting this bit causes the controller to increment the 
DMA source address for each read.

Bit 26 DESINC Destination-Address Incrementing. 
1 = increment destination address.
0 = do not increment destination address.
Setting this bit causes the controller to increment the 
DMA destination address for each write.

Bit 27 SU Suspend DMA. 
1 = suspend current transfer.
0 = restart suspended transfer.
This bit suspends the current DMA transfer after 
completion of current cycle. All register values are 
preserved. The suspended transfer may be restarted 



by clearing the SU bit. This bit may be set and 
cleared without consideration of the other bits in this 
register, except the DMA Reset (DRST) bit; changing 
bits other than SU and DRST have no effect after a 
DMA transfer has started. 

Bit 28 GO Start Transfer.
1 = start DMA transfer.
0 = (no effect).
When set to 1, this bit causes DMA to begin with the 
parameters specified in the DMA Control Registers. 
The bit automatically resets after the transfer com-
pletes. Clearing the bit in software has no effect; the 
DMA transfer will continue.

Bit 29 IVLD Interrupt Valid. 
1 = this DMA channel generated an interrupt on com-
pletion of it’s last transfer. 
0 = clear interrupt. 
This bit automatically resets when the GO bit is set 
for a new transfer. 

Bit 30 IE Interrupt Enable. 
1 = enables interrupt on completion of the transfer 
specified by this channel.
0 = disable such interrupts. 
The DMAEN field in the Interrupt Control Register 
(INTCTRL, Section 5.5.2) is a global enable for the 
IE fields in the two DMA Control Registers. If the 
transfer in either DMA channel completes, and 
DMAEN is set, the controller generates an interrupt 
to the CPU. The IVLD bit, above, specifies which 
channel caused the interrupt. 

Bit 31 BZ Busy. (read only)
1 = a DMA controlled by this register is currently in 
process. 
0 = DMA not in process. 
This bit may be polled.

Bit 32 MRDERR Memory Read Error.
1 = transfer stopped on a memory read error.
0 = no such error.

Bit 33 PRDERR PCI Read Error.
1 = transfer stopped on a PCI-Bus read error.
0 = no such error.

Bit 34 UDRDERR Undecodable Read Error.
1 = transfer stopped on an undecodable read error.
0 = no such error.



Bit 35 HHSEOT Hardware Handshake Error.
1 = DMA stopped on DMA_EOT assertion. 
0 = no such error.

Bits 63:36 reserved Hardwired to 0.

9.5.2

DMA Source Address 
Register 0 and 1 
(DMASRCAn)

Bits 35:0 DMASRCA DMA Source Starting Address.
The starting source (read) address for this transfer. 
This register remains static throughout the DMA 
transfer, although setting the SRCINC bit of the DMA 
Control Register (Section 9.5.1) causes source 
(read) addresses to be incremented. 

Bits 63:36 reserved Hardwired to 0.

9.5.3

DMA Destination 
Address Register 0 
and 1 (DMADESAn)

Bits 35:0 DMADESA DMA Destination Starting Address.
The starting destination (write) address for this trans-
fer. This register remains static throughout the DMA 
transfer, although setting the DESINC bit of the DMA 
Control Register (Section 9.5.1) causes destination 
(write) addresses to be incremented. 

Bits 63:36 reserved Hardwired to 0.



10.0 Serial Port and Registers

The controller implements one serial port with the NEC NY16550L UART Mega Func-
tion. This UART is functionally identical to the National Semiconductor NS16550D. 
Details of its function can be found in the CB-C8VX/VM ASIC Family 0.5 micron Stan-
dard Cell User’s Manual, Mega Function NY16550L UART, Preliminary, 4 October 
1996. 

10.1

Serial-Port 
Confi guration and 
Monitorin g

Software configures and monitors the serial-port logic using the following registers:

� Interrupt Control Register (INTCTRL), Section 5.5.2 on page 52.

� Interrupt Status Register 0 (INTSTAT0), Section 5.5.3 on page 55.

� Interrupt Clear Register (INTCLR), Section 5.5.5 on page 56.

� Serial-Port Registers, Section 10.4 on page 139.

� Device Chip-Select Function Register (DCSFN), Section 8.6.3 on page 125.

At reset, the UART_DTR# and UART_TxDRDY# signals define the controller’s ID in a 
multi-controller configuration, as described in Section 12.0. However, this configuration 
does not affect the operation of the UART itself. 

10.2

Additional UART 
Signals

The controller pinouts always carry the UART_DSR#, UART_DTR#, 
UART_RxDRDY#, UART_TxDRDY# signals. After reset, however, the DCS#[5:2] sig-
nals can be reconfigured to provide the following additional UART modem-control sig-
nals:

� DCS#[2] becomes UART_RTS# (output). 

� DCS#[3] becomes UART_CTS# (input). 

� DCS#[4] becomes UART_DCD# (output). 

� DCS#[5] becomes UART_XIN (input). 

These additional signals are implemented when software writes the appropriate values 
to the DCSFNn and DCSOEn fields in the Device Chip-Select Function Register 
(DCSFN, Section 8.6.3). 



10.3

UART Clocking
The UART can be clocked from either an external input or by an internally-generated 
clock. The internal clock has a frequency of SysClock divided by 12. To achieve a 
desired baud rate, the UART Divisor Latch (see Section 10.4.4 and Section 10.4.5) 
must be properly programmed. The relationship between UART clock frequency, baud 
rate, and divisor value is: 

baud_rate = UART_clock_frequency/(divisor_value * 16)

where for internally-generated clock: 

UART_clock_frequency = SYS_CLK_freq / 12

Table 29 gives divisor values for several different input clock frequencies. The actual 
baud rate may vary significantly from the desired baud rate.

Table 29: UART Clock-Rate Divisor Values

Internal
Clock Source

External
Clock Source

UART_XIN = 1.8432MHz SysClock = 99.5328MHz SysClock = 88.4736MHz SysClock = 73.728MHz

Baud Rate Divisor 
Percent 
Error

Divisor 
Percent 
Error

Divisor 
Percent 
Error

Divisor 
Percent 
Error

50 2304 10368 9216 7680

75 1536 6912 6144 5120

110 1047 0.026% 4713 0.006% 4189 0.002% 3491 0.003%

134.5 857 0.058% 3854 0.007% 3426 0.001% 2855 0.001%

150 768 3456 3072 2560

300 384 1728 1536 1280

600 192 864 768 640

1200 96 432 384 320

1800 64 288 256 213 0.156%

2000 58 0.690% 259 0.077% 230 0.174% 192

2400 48 216 192 160

3600 32 144 128 107 0.312%

4800 24 108 96 80

7200 16 72 64 53 0.629%

9600 12 54 48 40

19200 6 27 24 20

38400 3 14 3.571% 12 10

57600 2 9 8 7 4.762%



10.4

Serial-Port 
Registers

10.4.1

UART Receiver Data 
Buffer Register 
(UARTRBR)

This register holds receive data. It is only accessed when the Divisor Latch Access Bit 
(DLAB) is cleared to 0 in the UART Line Control Register (UARTLCR), Section 10.4.8.

Bits 7:0 UDATA UART Receive Data. (read-only)

Bits 63:8 reserved Hardwired to 0.

10.4.2

UART Transmitter 
Data Holding Register 
(UARTTHR)

This register holds transmit data. It is only accessed when the Divisor Latch Access Bit 
(DLAB) is cleared to 0 in the UART Line Control Register (UARTLCR), Section 10.4.8.

Bits 7:0 UDATA UART Transmit Data. (write-only)

Bits 63:8 reserved Hardwired to 0.

10.4.3

UART Interrupt Enable 
Register (UARTIER)

This register is used to enable UART interrupts. It is only accessed when the Divisor 
Latch Access Bit (DLAB) is set to 1 in the UART Line Control Register (UARTLCR), 
Section 10.4.8. The UARTEN field in the Interrupt Control Register (INTCTRL, Section 
5.5.2) is a global enable for interrupt sources enabled by this register. 

Bit 0 ERBFI Enable Receive-Buffer-Full Interrupt.
1 = enable receive-data-available interrupt.
0 = disable such interrupt.
The receive-buffer-full state is reported in the UART 
Line Status Register (UARTLSR, Section 10.4.10).

Table 30: Serial-Port Register Summary

Register Symbol Offset R/W Reset Value Description

UART Receiver Data Buffer UARTRBR 0x0300 R 0x0000 0000 0000 00XX UART receiver data DLAB a = 0

UART Transmitter Data Holding UARTTHR 0x0300 W 0x0000 0000 0000 00XX UART transmit data DLAB a = 0

UART Interrupt Enable UARTIER 0x0308 R/W 0x0000 0000 0000 0000 UART interrupt enable DLAB a = 0

UART Divisor Latch LSB UARTDLL 0x0300 R/W 0x0000 0000 0000 00XX UART divisor latch LSB DLAB a = 1

UART Divisor Latch MSB UARTDLM 0x0308 R/W 0x0000 0000 0000 00XX UART divisor latch MSB DLAB a = 1

UART Interrupt ID UARTIIR 0x0310 R 0x0000 0000 0000 0001 UART interrupt ID

UART FIFO Control UARTFCR 0x0310 W 0x0000 0000 0000 0000 UART FIFO control 

UART Line Control UARTLCR 0x0318 R/W 0x0000 0000 0000 0000 UART line control

UART Modem Control UARTMCR 0x0320 R/W 0x0000 0000 0000 0000 UART modem control

UART Line Status UARTLSR 0x0328 R/W 0x0000 0000 0000 0060 UART line status

UART Modem Status UARTMSR 0x0330 R/W 0x0000 0000 0000 0000 UART modem status

UART Scratch UARTSCR 0x0338 R/W 0x0000 0000 0000 00XX UART scratch 

a. Divisor Latch Access Bit (DLAB) in the UART Line Control Register (Section 10.4.8)



Bit 1 ETBEI Enable Transmitter-Buffer-Empty Interrupt.
1 = enable transmit-buffer-empty interrupt.
0 = disable such interrupt.
The transmit-buffer-empty state is reported in the 
UART Line Status Register (UARTLSR, Section 
10.4.10).

Bit 2 ELSI Enable Line-Status Interrupts. 
1 = enable line-status-error interrupt.
0 = disable such interrupts.
Line status errors are reported in the UART Line Sta-
tus Register (UARTLSR, Section 10.4.10). 

Bit 3 EDSSI Enable Modem-Status Interrupts. 
1 = enable modem-status-change  interrupt.
0 = disable such interrupts.
Modem status changes are reported in bits 3:0 of the 
UART Modem Status Register (UARTMSR, Section 
10.4.11).

Bits 63:4 reserved Hardwired to 0.

10.4.4

UART Divisor Latch 
LSB Register 
(UARTDLL)

This register is only accessed when the Divisor Latch Access Bit (DLAB) is set to 1 in 
the UART Line Control Register (UARTLCR), Section 10.4.8.

Bits 7:0 DIVLSB UART Divisor Latch Least-Significant Byte (LSB).
See the 16550 data sheet for details on the relation 
between divisor values and baud rate. 

Bits 63:8 reserved Hardwired to 0.

10.4.5

UART Divisor Latch 
MSB Register 
(UARTDLM)

This register is only accessed when the Divisor Latch Access Bit (DLAB) is set to 1 in 
the UART Line Control Register (UARTLCR), Section 10.4.8.

Bits 7:0 DIVMSB UART Divisor Latch Most-Significant Byte (MSB).
See the 16550 data sheet for details on the relation 
between divisor values and baud rate. 

Bits 63:8 reserved Hardwired to 0.

10.4.6

UART Interrupt ID 
Register (UARTIIR)

Bit 0 INTPENDL UART Interrupt Pending. (read-only)
1 = no interrupt pending.
0 = interrupt pending. 



Bits 3:1 UIID UART Interrupt ID. (read-only) 

Bits 5:4 reserved Hardwired to 0.

Bits 7:6 UFIFOEN UART FIFO Enabled. (read-only)
Both of these bits are set to 1 when the transmit/
receive FIFO is enabled in the UFIFOEN0 bit is set in 
the UART FIFO Control Register (UARTFCR, Sec-
tion 10.4.7).

Bits 63:8 reserved Hardwired to 0.

10.4.7

UART FIFO Control 
Register (UARTFCR)

Bit 0 UFIFOEN0 UART FIFO Enable. (write-only)
1 = enable receive and transmit FIFOs.
0 = disable and clear receive and transmit FIFOs.

Bit 1 URFRST UART Receiver FIFO Reset. (write-only)
1 = clear receive FIFO and reset counter.
0 = no clear.

Bit 2 UTFRST UART Transmitter FIFO Reset. (write-only)
1 = clear transmit FIFO and reset counter.
0 = no clear.

Bits 5:3 reserved Hardwired to 0.

Interrupt 
ID#

Priority Source of Interrupt

0x3 Highest Receiver Line Status: Overrun Error, 
Parity, Framing Error, or Break 
Interrupt. The interrupt is cleared when 
the UART Line Status Register 
(UARTLSR) is read. 

0x2 Second Received Data Available: Receiver 
Data Available or Trigger Level 
Reached. The interrupt is cleared when 
the UART Receiver Data Buffer 
Register (UARTRBR) is read. 

0x6 Second Character Time-Out Indication: No 
change in receiver FIFO during the last 
four character times and FIFO is not 
empty. The interrupt is cleared when 
the UART Receiver Data Buffer 
Register (UARTRBR) is read. 

0x1 Third Transmitter Holding Register Empty: 
The interrupt is cleared when the 
UART Transmitter Data Holding 
Register (UARTTHR) is written or this 
UART Interrupt ID Register (UARTIIR) 
is read. 

0x0 Fourth Modem Status: CTS#, DSR#, or 
DCD#. The interrupt is cleared when 
the UART Modem Status Register 
(UARTMSR) is read. 



Bits 7:6 URTR UART Receive FIFO Trigger Level.

When the trigger level is reached, a Receive-Buffer-
Full interrupt is generated, if enabled by the ERBFI 
bit in the UART Interrupt Enable Register (UARTIER, 
Section 10.4.3).

Bits 63:8 reserved Hardwired to 0.

10.4.8

UART Line Control 
Register (UARTLCR)

Bits 1:0 WLS Word Length Select.
11 = 8 bits.
10 = 7 bits.
01 = 6 bits.
00 = 5 bits.

Bit 2 STB Stop Bits.
1 = 2 bits (except 1.5 stop bits for 5-bit words).
0 = 1 bit.

Bit 3 PEN Parity Enable.
1 = generate parity on writes, check it on reads.
0 = no parity generation or checking. 
For the UART, even or odd parity can be generated 
or checked, as specified in Bit 4 (EPS). This is unlike 
parity on the CPU, memory and PCI Bus interfaces, 
which is always even parity. 

Bit 4 EPS Even-Parity Select.
1 = even parity.
0 = odd parity.

Bit 5 USP Stick Parity.
1 = force generated and checked parity to EPS. 
0 = normal parity generation and checking. 
This bit is only valid when parity is enabled (PEN bit 
set). 

Bit 6 USB Set Break.
1 = force UART_TxDRDY# signal output Low (0). 
0 = normal operation of UART_TxDRDY# signal out-
put. 

Bit 7 DLAB Divisor Latch Access Bit.
1 = access baud-rate divisor at offset 0x0300:308. 
0 = access TxD/RxD and IE at offset 0x0300:308 
When this bit is set, the UART accesses the UART 

Receive Trigger Level Number of Bytes in Receiver FIFO

0x0 01

0x1 04

0x2 08

0x3 14



Divisor Latch LSB Register (UARTDLL, Section 
10.4.4) at offset 0x0300, and the UART Divisor Latch 
MSB Register (UARTDLM, Section 10.4.5) at offset 
0x308. When the bit is cleared, the UART accesses 
the UART Receiver Data Buffer Register (UAR-
TRBR, Section 10.4.1) on reads at offset 0x0300, the 
UART Transmitter Data Holding Register (UART-
THR, Section 10.4.2) on writes at offset 0x0300, and 
the UART Interrupt Enable Register (UARTIER, Sec-
tion 10.4.3) on any access at offset 0x0308.

Bits 63:8 reserved Hardwired to 0.

10.4.9

UART Modem Control 
Register (UARTMCR)

This register controls the state of external UART_DTR# and UART_RTS# modem-
control signals and of the loop-back test. 

Bit 0 DTR Data Terminal Ready.
1 = negate UART_DTR# signal.
0 = assert UART_DTR# signal.

Bit 1 RTS Request To Send.
1 = negate UART_RTS# signal.
0 = assert UART_RTS# signal.
This bit has an effect only if the DCS#[2] pin has 
been programmed, after reset, to carry the 
UART_RTS# signal. See Section 10.2.

Bit 2 OUT1 Out 1.
1 = OUT1# state active.
0 = OUT1# state inactive (reset value).
This is a user-defined bit that has no associated 
external signal. Software can write to the bit, but this 
has no effect. 

Bit 3 OUT2 Out 2.
1 = OUT2# state active.
0 = OUT2# state inactive (reset value).
This is a user-defined bit that has no associated 
external signal. Software can write to the bit, but this 
has no effect. 

Bit 4 LOOP Loop-Back Test.
1 = loop-back.
0 = normal operation.
This is an NEC internal test function.

Bits 63:5 reserved Hardwired to 0.



10.4.10

UART Line Status 
Register (UARTLSR)

This register reports the current state of the transmitter and receiver logic. 

Bit 0 DR Receive-Data Ready.
1 = receive data buffer full.
0 = receive data buffer not full. 
Receive data is stored in the UART Receiver Data 
Buffer Register (UARTRBR, Section 10.4.1). 

Bit 1 OE Receive-Data Overrun Error.
1 = overrun error on receive data. 
0 = no such error. 

Bit 2 PE Receive-Data Parity Error.
1 = parity error on receive data.
0 = no such error. 

Bit 3 FE Receive-Data Framing Error.
1 = framing error on receive data.
0 = no such error. 

Bit 4 BI Break Interrupt.
1 = break received on UART_RxDRDY# signal.
0 = no break. 

Bit 5 THRE Transmitter Holding Register Empty.
1 = transmitter holding register empty.
0 = transmitter holding register not empty. 
Transmit data is stored in the UART Transmitter Data 
Holding Register (UARTTHR, Section 10.4.2). 

Bit 6 TEMT Transmitter Empty.
1 = transmitter holding and shift registers empty.
0 = transmitter holding or shift register not empty.

Bit 7 RFERR Receiver FIFO Error.
1 = parity, framing, or break error in receiver buffer.
0 = no such error.

Bits 63:8 reserved Hardwired to 0.

10.4.11

UART Modem Status 
Register (UARTMSR)

This register reports the current state of and changes in various control signals. 

Bit 0 DCTS Delta Clear To Send.
1 = UART_CTS# state changed since this register 
was last read.
0 = no such change.

Bit 1 DDSR Delta Data Set Ready.
1 = UART_DSR# input signal changed since this 
register was last read.
0 = no such change.



Bit 2 TERI Trailing Edge Ring Indicator.
1 = RI# state changed since this register last read.
0 = no such change.
RI# is not implemented as an external signal, so this 
bit is never set by the controller. 

Bit 3 DDCD Delta Data Carrier Detect.
1 = UART_DCD# state changed since this register 
was last read.
0 = no such change.

Bit 4 CTS Clear To Send.
1 =UART_CTS# state active.
0 = UART_CTS# state inactive.
This bit is the complement of the UART_CTS# input 
signal. If the LOOP bit in the UART Modem Control 
Register (UARTMCR), Section 10.4.9, is set to 1, the 
CTS bit is equivalent to the RTS bit in the UART-
MCR. 

Bit 5 DSR Data Set Ready.
1 = UART_DSR# state active.
0 = UART_DSR# state inactive.
This bit is the complement of the UART_DSR# input 
signal. If the LOOP bit in the UART Modem Control 
Register (UARTMCR), Section 10.4.9, is set to 1, the 
DSR bit is equivalent to the DTR bit in the UART-
MCR. 

Bit 6 RI Ring Indicator.
1 = not valid.
0 = always reads 0.
This bit has no associated external signal. 

Bit 7 DCD Data Carrier Detect.
1 =UART_DCD# state active.
0 = UART_DCD# state inactive.
This bit is the complement of the UART_DCD# input 
signal. If the LOOP bit in the UART Modem Control 
Register (UARTMCR), Section 10.4.9, is set to 1, the 
DCD bit is equivalent to the OUT2 bit in the UART-
MCR. 

Bits 63:8 reserved Hardwired to 0.

10.4.12

UART Scratch 
Register (UARTSCR)

This register contains a UART reset bit plus 8 bits of space for any software use. 

Bits 7:0 USCR UART Scratch Register.
Available to software for any purpose. 



Bit 8 URESET UART Reset.
1 = reset UART.
0 = no reset. 
This bit always reads 0. 

Bits 63:9 reserved Hardwired to 0.



11.0 Interrupts

The controller supports interrupts to the CPU on its Int# or NMI# inputs from a variety 
of causes, and it supports re-routing of interrupts to a PCI host CPU. The following reg-
isters are used to configure, report status, and clear interrupts:

� Interrupt Control Register (INTCTRL), Section 5.5.2 on page 52

� Interrupt Status Register 0 (INTSTAT0), Section 5.5.3 on page 55

� Interrupt Status 1/CPU Interrupt Enable Register (INTSTAT1), Section 5.5.4 on 
page 55

� Interrupt Clear Register (INTCLR), Section 5.5.5 on page 56

� PCI Interrupt Control Register (INTPPES), Section 5.5.6 on page 57

� Watchdog Timer Control Register (T3CTRL), Section 5.6.7 on page 61

� General-Purpose Timer Control Register (T2CTRL), Section 5.6.5 on page 60

� Memory Control Register (MEMCTRL), Section 6.6.1 on page 72

� Memory Check Error Status Register (CHKERR), Section 6.6.3 on page 74

� PCI Control Register (PCICTRL), Section 7.11.1 on page 91

� PCI Error Register (PCIERR), Section 7.11.4 on page 103

� PCI Command Register (PCICMD), Section 7.13.3 on page 107

� PCI Status Register (PCISTS), Section 7.13.4 on page 108

� PCI Interrupt Line Register (INTLIN), Section 7.13.13 on page 112

� PCI Interrupt Pin Register (INTPIN), Section 7.13.14 on page 112

� PCI Control Register (PCICTRL), Section 7.11.1 on page 91

� Local Bus Chip-Select Timing Registers (LCSTn), Section 8.6.2 on page 122

� DMA Control Registers 0 and 1 (DMACTRLn), Section 9.5.1 on page 133

� UART Interrupt Enable Register (UARTIER), Section 10.4.3 on page 139

� UART Interrupt ID Register (UARTIIR), Section 10.4.6 on page 140

� UART Line Status Register (UARTLSR), Section 10.4.10 on page 144

� UART Modem Status Register (UARTMSR), Section 10.4.11 on page 144

For details on wiring PCI interrupts, see Section 2.2.6 of the PCI Local Bus Specifica-
tion. 

On reset, all interrupts are enabled onto Int#0 by default. After reset, each interrupt can 
be separately enabled and programmed to interrupt the CPU on any of its seven inter-
rupts, Int#[5:0] and NMI#. Most of the interrupt configuration is done in the Interrupt 
Control Register (INTCTRL), although other registers must also be configured for 
some of the interrupts. Each of the seven CPU interrupts are separately enabled. 

Each CPU interrupt has a 16-bit status field in the Interrupt Status Register 0 
(INTSTAT0) or Interrupt Status 1/CPU Interrupt Enable Register (INTSTAT1). The sta-
tus field shows which interrupt source or sources are requesting service for a particular 



CPU interrupt level. A clear bit is available for each interrupt source, although these 
bits only function for edge-triggered interrupts.

When the controller is the PCI Central Resource (PCICR# asserted at reset), the con-
troller’s INTA# signal is bidirectional, rather than an output, so that the controller can 
accept up to five PCI interrupts on INTA# through INTE#. It forwards these interrupts to 
the CPU, as specified in Interrupt Control Register (INTCTRL), Section 5.5.2. When 
the controller is not the PCI Central Resource (PCICR# negated at reset), interrupts 
may be serviced by a PCI host CPU. CPU Interrupt Level 0 (Int#[0]) may be driven onto 
PCI interrupt signal INTA#, and CPU Interrupt Level 1 (Int#[1]) may be driven onto the 
PCI system error signal, SERR#. 

Table 31 summarizes the registers used to configure and monitor the causes of these 
interrupts. For details, see the register descriptions referenced in this table. 

Table 31: Interrupt Configuration and Reporting Registers

Interrupt Type Interrupts Configured In: Interrupt Status Reported In: Interrupts Cleared In:

CPU Parity Errors INTCTRL (Section 5.5.2) INTSTST0 (Section 5.5.3)
INTSTST1 (Section 5.5.4)

INTCLR (Section 5.5.5)

CPU No-Target Decode INTCTRL (Section 5.5.2) INTSTST0 (Section 5.5.3)
INTSTST1 (Section 5.5.4)

INTCLR (Section 5.5.5)

Memory Errors
(parity or ECC)

INTCTRL (Section 5.5.2)
MEMCTRL (Section 6.6.1)

INTSTST0 (Section 5.5.3)
INTSTST1 (Section 5.5.4)
CHKERR (Section 6.6.3)

INTCLR (Section 5.5.5)

DMA Events INTCTRL (Section 5.5.2)
DMACTRLn (Section 9.5.1)

INTSTST0 (Section 5.5.3)
INTSTST1 (Section 5.5.4)
DMACTRLn (Section 9.5.1)

INTCLR (Section 5.5.5)

UART Events INTCTRL (Section 5.5.2)
UARTIER (Section 10.4.3)

INTSTST0 (Section 5.5.3)
INTSTST1 (Section 5.5.4)
UARTIIR (Section 10.4.6)
UARTLSR (Section 10.4.10)
UARTMSR (Section 10.4.11)

INTCLR (Section 5.5.5)

Watchdog Timer INTCTRL (Section 5.5.2)
T3CTRL (Section 5.6.7)

INTSTST0 (Section 5.5.3)
INTSTST1 (Section 5.5.4)

INTCLR (Section 5.5.5)

General-Purpose Timer INTCTRL (Section 5.5.2)
T2CTRL (Section 5.6.5)

INTSTST0 (Section 5.5.3)
INTSTST1 (Section 5.5.4)

INTCLR (Section 5.5.5)

Local-Bus Ready Timer INTCTRL (Section 5.5.2)
LCSTn (Section 8.6.5)

INTSTST0 (Section 5.5.3)
INTSTST1 (Section 5.5.4)

INTCLR (Section 5.5.5)

PCI Interrupts 
(INTE# through INTA#)

INTCTRL (Section 5.5.2)
INTPPES (Section 5.5.6)
PCICTRL (Section 7.11.1)
PCICMD (Section 7.13.3)
INTLIN (Section 7.13.13)
INTPIN (Section 7.13.14)

INTSTST0 (Section 5.5.3)
INTSTST1 (Section 5.5.4)
PCIERR (Section 7.11.4)
PCISTS (Section 7.13.4)

INTCLR (Section 5.5.5)

PCI SERR# (System Error) a INTCTRL (Section 5.5.2)
PCICTRL (Section 7.11.1)

INTSTST0 (Section 5.5.3)
INTSTST1 (Section 5.5.4)
PCIERR (Section 7.11.4)
PCISTS (Section 7.13.4)

INTCLR (Section 5.5.5)

PCI Internal Error b INTCTRL (Section 5.5.2)
INTPPES (Section 5.5.6)
PCICTRL (Section 7.11.1)

INTSTST0 (Section 5.5.3)
INTSTST1 (Section 5.5.4)
PCIERR (Section 7.11.4)
PCISTS (Section 7.13.4)

INTCLR (Section 5.5.5)

a. A PCI System Error is an address- or data-parity error on a PCI Special Cycle, or any other serious system error. 
b. A PCI Internal Error indicates that something bad happened during a PCI transaction; the fault could lie either with the 

PCI device or the controller. 



12.0 Reset and Initialization

At reset, the controller begins the CPU initialization from Serial Mode EEPROM or by 
self-initialization. Immediately after this initialization, the controller’s Physical Device 
Address Registers (PDARs) and Boot ROM are located at the addresses described in 
Section 5.4.1. Only the address ranges for Boot ROM (BOOTCS) and the controller’s 
internal registers (INTCS) are accessible at reset. The address spaces of the two 
SDRAM banks, SDRAM0 and SDRAM1, and the address spaces of the device chip-
selects, DCS#[8:2], power up in the disabled state so that main memory and the 
devices associated with DCS#[8:2] are not accessible. After the boot sequence, soft-
ware may configure the PDARs to support memory accesses, as described in Section 
5.4.

12.1

Types of Reset
The controller supports the following types of reset:

� Power-Up Reset: When the VccOk input from external circuitry transitions 
between negated and asserted, the controller:

• resets its internal registers and state.

• asserts ColdReset# and Reset# to the CPU.

• asserts PCIRST# on the PCI Bus, if PCICR# is asserted to the controller. 

• samples the configuration signals described in Section 12.2, below. 

• runs the CPU initialization procedure described in Section 12.3, below. 

� Cold Reset: When the CLDRST bit is set in the CPU Status Register (CPUSTAT), 
Section 5.5.1, the controller performs the same actions as for Power-Up Reset, 
above.

� Warm Reset: When the WARMRST bit is set in the CPU Status Register 
(CPUSTAT), Section 5.5.1, the controller:

• asserts Reset# to the CPU.

� PCI Cold Reset: When the PCICRST bit is set in the PCI Control Register 
(PCICTRL), Section 7.11.1, the controller:

• resets its PCI logic, including resetting all PCI configuration registers to their 
reset values (all data and pending operations in the PCI FIFOs are lost). 

• if PCICR# is asserted, asserts PCIRST# on the PCI Bus. 

� PCI Warm Reset: When the PCIWRST bit is set in the PCI Control Register 
(PCICTRL), Section 7.11.1, the controller functions differently, depending on the 
controller’s configuration:

• if PCICR# is asserted, the controller asserts PCIRST# on the PCI Bus.

• if PCICR# is negated, all PCI accesses to the controller as PCI target are 
retried. 

The remaining parts of this chapter relate only to the first two types of reset—Power-Up 
and Cold Reset. 



12.2

Power-Up and Cold 
Reset Configuration 
Signals

Several signals are sampled at Power-Up and Cold Reset to determine the following 
properties of the controller’s operation:

� Endian Mode: The CPU interface can operate in little-endian or big-endian mode. 
(The memory, PCI-Bus, and Local-Bus interfaces always operate in little-endian 
mode).

� PCI-Bus and Local-Bus Width: Either a 64-bit PCI Bus and no Local Bus, or a 32-
bit PCI Bus and a 32-bit Local Bus.

� PCI Central Resource Function: The controller can operate either as the PCI 
Central Resource or in the PCI Stand-Alone Mode. 

� Base Address of Controller Registers and Boot ROM: The default base addresses 
for controller internal registers and Boot ROM are 0x0 1FA0 0000 and 
0x0 1FC0 0000, respectively. However, these base addresses are different if 
multiple controllers are used in a system. 

� Controller ID in Multi-Controller Configurations: When multiple controllers are 
used in a system, each controller has its own ID number. 

The controller drives the CPU's Reset# and ColdReset# signals. Alternatively, software 
can cause a CPU cold and warm reset by writing to the CLDRST or WARMRST bit in 
the CPU Interface Registers (Section 5.5 on page 50).

Table 32 and Table 33 show the signals that the controller samples on reset. The con-
troller samples the two UART signals for this purpose only on the rising edge of Cold-
Reset#. The other signals (BigEndian, PCI64# and PCICR#) must be static at all times. 

Table 32: Endian and PCI Reset Configuration Signals

Signal Sampled
at Reset

When Negated
At Reset

When Asserted 
At Reset

BigEndian  a The controller implements a Little-Endian 
CPU interface. 

The controller implements a Big-Endian 
CPU interface. 

PCI64# The controller implements a 32-bit PCI 
Bus:
• REQ64# becomes LOC_ALE.

• ACK64# becomes LOC_CLK.

• C/BE#[7:4] becomes LOC_A[3:0].

• PAR64 becomes LOC_A[4].

• PCI_AD[63:32] becomes 
LOC_AD[31:0].

• The controller’s default location for 
Boot ROM is the Local Bus.

The controller implements a 64-bit PCI 
Bus:
• LOC_ALE becomes REQ64#.

• LOC_CLK becomes ACK64#.

• LOC_A[3:0] becomes C/BE#[7:4].

• LOC_A[4] becomes PAR64.

• LOC_AD[31:0] becomes 
PCI_AD[63:32].

• The controller’s default location for 
Boot ROM is the memory bus.

PCICR# The controller is not the PCI Central 
Resource:
• PCLK[0] is an input and PCLK[4:1] are 

floated.

• REQ#[0] is an output and REQ#[4:1] 
are unused inputs.

• GNT#[0] is an input and GNT#[4:1] are 
floated.

• INTA# is an output.

• PCIRST# is an input.

The controller is the PCI Central 
Resource:
• PCLK[4:0] are all outputs, and the 

controller uses PCLK[0] as its PCI-Bus 
clock. 

• REQ#[4:0] are all inputs.

• GNT#[4:0] are all outputs.

• INTA# is bidirectional.

• PCIRST# is an output.

• The controller configures 64-bit PCI 
operation with its REQ64# output.

• The controller generates PCI 
Configuration Space cycles. 



12.3

PCI Reset 
Sequencing

When PCICR# is asserted, the controller is the PCI Central Resource and drives 
PCIRST#. The PCI Bus is held in reset until the CPU clears the PCIWRST bit in the 
PCI Control Register (PCICTRL, Section 7.11.1).

When PCICR# is negated, and there is no CPU attached to the controller, the controller 
holds all of its logic in reset while the PCIRST# input is asserted. After PCIRST# is 
negated, the controller comes out of reset. All PCI accesses to the controller are retried 
until the controller completes reading the Serial Mode EEPROM. 

When PCICR# is negated, and a CPU is attached to the controller, all controller logic 
and the CPU are held in reset while the PCIRST# input is asserted. After PCIRST# is 
negated, the controller and the CPU are brought out of reset. All PCI accesses to the 
controller are retried until the controller completes reading the Serial Mode EEPROM, 
and the CPU has cleared the PCIRST bit in the PCI Control Register.

12.4

CPU and Controller 
Initialization

On both power-up and cold resets, the controller drives the CPU's ColdReset# signal. 
The controller also controls the CPU's serial mode-initialization sequence immediately 
after the CPU wakes up from power-up or cold reset. From the CPU’s point of view at 
reset, the controller pretends to be the CPU’s Serial Mode EEPROM (Section 12.4.2). 
If the system has no Serial Mode EEPROM, the controller generates a default data 
stream. If the system has a Serial Mode EEPROM, the controller is connected between 
it and the CPU and monitors the passing through of serial mode data, making any 
required corrections. 

12.4.1

Reset Signal Control
The controller needs external analog circuitry to provide the VccOk signal, as specified 
in the VR5000 Bus Interface User’s Manual. The controller’s internal PLL is held in 
reset as long as VccOk is negated. Between the time VccOk is asserted to the control-
ler, and the controller negates ColdReset# to the CPU, the internal controller PLL is 
locking up. The skew-controlled clock from the PLL is only used inside the controller 

a. The BigEndian signal is ORed with Endian Bit (EB) of the Serial Mode EEPROM initial-
ization sequence to determine the CPU’s endian mode.

Table 33: Base-Address and ID Reset Configuration Signals

Signal Sampled at Reset

Controller 
ID Number

Base Address 
Of Controller’s 
Internal Registers
After Reset
(PDAR = INTCS)

Base Address 
Of Boot ROM After 
Reset
(PDAR = BOOTCS)

UART_DTR# UART_TxDRDY#

0 0 00
(Main Controller)

0x0 1FA0_0000 a

a. This is the base address for all single-controller configurations, and for the Main Control-
ler in a multi-controller configuration.

0x0 1FC0 0000

0 1 01 0x0 1F80_0000 disabled

1 0 10 0x0 1F60_0000 disabled

1 1 11 0x0 1F40_0000 disabled



after ColdReset# is negated. Before then, all active logic is running off an unbuffered 
raw clock. 

The controller internally synchronizes VccOk to SysClk. If the assertion of VccOk 
meets setup and hold times, VccOk needs be asserted for a minimum of only one 
SysClk. 

When the external circuit asserts VccOk, the controller continues to asset ColdReset# 
to the CPU and begins to read the initialization sequence (Section 12.4.2) while still 
holding the CPU in reset. After the controller reads a byte of mode information, it 
asserts CntrVccOk to the CPU and counts 64K SysClocks before synchronously 
negating ColdReset#. 64 SysClocks later, the controller negates Reset#. When a cold 
software reset occurs, the same sequence takes place, although the reset indication 
originates internally.

When a warm software reset occurs, the controller synchronously asserts Reset# for 
64 SysClocks. The ColdReset# signal remains negated throughout a warm software 
reset and the controller’s other operations are unaffected.

12.4.2

Initialization Sequence
The CPU needs a serial stream of initialization data, as defined in Sections 5.2 and 5.3 
of the VR5000 Bus Interface User’s Manual. This data stream may come from a Serial 
Mode EEPROM or from the controller itself (self-initialization). 

If the Serial Mode EEPROM alternative is chosen, the SGS-Thomson M93C46-W or 
the Microchip Technology 93AA46 Serial EEPROM, or equivalent, must be used. The 
EEPROM must support the following features:

� 64 x 16 configuration.

� Sequential read operation.

� 3.3V supply voltage.

� Microwire bus interface.

� Clock frequency of 800 kHz (SysClock/128).

If the self-initialization alternative is chosen, the PROM_SD signal must be pulled up. If 
an alternate source is used, care must be taken to provide the CPU with controller-
compatible initialization data. 

12.4.2.1

Connecting the Serial 
Mode EEPROM

The M93C46-W Serial EEPROM (or equivalent) has separate DATA-IN and DATA-
OUT signals, but the controller has only one bidirectional signal, PROM_SD, to which 
the EEPROM data signals should connect and on which both address and data 
appear. 

Figure 19 illustrates the connections. The EEPROM’s DATA-IN and DATA-OUT signals 
should be tied together and then connected to the controller's PROM_SD signal. (For 
details on how these signals should be tied together, see the SGS-Thomson Applica-
tion Note AN394 Microwire EEPROM Common I/O Operation.) The controller's 
PROM_CLK output should be connected to EEPROM's SERIAL_CLOCK input. The 
controller’s BigEndian signal should be connected to the EEPROM’s CHIP_SELECT 
signal and tied to either Vcc or GND through a resistor. The controller can then drive 
BigEndian to select the EEPROM and read its initialization data. After initialization, the 
controller uses BigEndian as an input to indicate the endian mode for the controller. 



Resistors RBE1 and RBE2 or RLE1 and RLE2 must be used to select the endian mode for 
the controller and the CPU; four resistors are is shown in Figure 19 but only two should 
be used. 

Figure 19:   Serial Mode EEPROM Signal Connections 

12.4.2.2

Initialization Data
Upon power-up or cold reset in the Serial Mode EEPROM initialization alternative, the 
controller sends a read command and an address (location 0) to the Serial Mode 
EEPROM to obtain a byte of mode information. The EEPROM will drive a 0 on its Data 
Out pin during the clock in which the controller is sending its final address bit. Since the 
controller is sending an address of 0, there is no bus conflict, and the EEPROM Data 
In and Data Out pins can be tied together.

Then, the controller asserts the CntrVccOk signal to the CPU and monitors the CPU’s 
ModeClock output. When ModeClock goes Low, the controller shifts the first initializa-
tion byte out of a holding register (corrected if necessary), drives it onto the ModeOut 
signal (to the CPU’s ModeIn), and reads the next byte from the Serial Mode EEPROM. 
This process continues until all mode information is read from the Serial Mode 
EEPROM and provided to the CPU. Since ModeClock runs at SysClock divided by 
256, and PROM_CLK runs at SysClock divided by 128, the controller can read mode 
data and provide a continuous uninterrupted stream to the CPU. 

The controller passes 256 bits of configuration data to the CPU, beginning with bit 0 of 
the serial data stream from the EEPROM. In addition, the EEPROM contains 37 bits of 



controller-specific configuration data. Table 34 shows the complete set of CPU and 
controller initialization data. 

12.4.3

In-Circuit 
Programming of the 
Serial Mode EEPROM

The Serial Mode EEPROM cannot be written under CPU control. However, with appro-
priate external circuitry, in-circuit programming of the EEPROM can be accomplished 
when the VccOk signal is Low. At that time, the controller is in reset with its PROM_SD 
bidirectional signal tri-stated and its PROM_CLK output driven Low. To program the 

Table 34: Serial Initialization Data Stream

Bit Function

Default Value 
Generated By 
Controller When No 
Serial Mode EEPROM 
Is Present

Restrictions 
Enforced By 
Controller a

Description

0 reserved, Must be 0. 0 none First bit shifted out of Serial Mode EEPROM.

4:1 XmitDatPat 0 (DDDD) Bits 4:3 forced to 0 See Section 5.3 of the VR5000 Bus Interface 
User’s Manual,

7:5 SysCkRatio 0 (multiply by 2) none See Section 5.3 of the VR5000 Bus Interface 
User’s Manual,

8 EndBit 0 (little-endian) none See Section 5.3 of the VR5000 Bus Interface 
User’s Manual,

10:9 Non-Block Write 2 (pipelined writes) Forced to 2 See Section 5.3 of the VR5000 Bus Interface 
User’s Manual,

11 TmrIntEn 0 (timer interrupt 
enabled)

none See Section 5.3 of the VR5000 Bus Interface 
User’s Manual,

12 Secondary Cache Enable 0 (secondary cache 
disabled)

none See Section 5.3 of the VR5000 Bus Interface 
User’s Manual,

14:13 DrvOut 2 (100%) none See Section 5.3 of the VR5000 Bus Interface 
User’s Manual,

15 reserved, Must be 0. 0 none See Section 5.3 of the VR5000 Bus Interface 
User’s Manual,

17:16 Secondary Cache Size 0 (512Kbyte) none See Section 5.3 of the VR5000 Bus Interface 
User’s Manual,

255:18 reserved, Must be 0. 0 none See Section 5.3 of the VR5000 Bus Interface 
User’s Manual,

256 Controller Boot ROM 
Location

0 if PCI64# negated
1 if PCI64# asserted

none 0 = Local Bus
1 = Memory Bus
See description of MEM/LOC bit in PDAR 
(Section 5.4).

258:257 Controller Boot ROM Size 0 (8 bits) none 0 = 8 bits
1 = 16 bits
2 = 32 bits
3 = 64 bits
See description of WIDTH field in PDAR (Section 
5.4).

260:259 Controller PCI Clock Speed 0 none See description of CLKSEL field in PCICTRL 
(Section 7.11.1).

276:261 Controller PCI SSVID 0 none See description of SSVID register (Section 
7.13.11). 

292:277 Controller PCI SSID 0 none See description of SSID register (Section 
7.13.12). 

a. If a Serial Mode EEPROM is present, the controller monitors and if necessary corrects the values of certain parameters. 
This function ensures that the CPU-controller interface operates as intended.



EEPROM in-circuit, hold VccOk Low, OR the external EEPROM clock with 
PROM_CLK from the controller, and drive the data into the EEPROM. Drive the exter-
nal EEPROM clock Low upon completion, and tri-state the external data source. Alter-
natively, jumpers can be used to connect PROM_SD, PROM_CLK, and the BigEndian 
chip-select for this in-circuit programming configuration. 

When the controller is the Main Controller in a multi-controller configuration (Section 
5.3.1), it is the only controller that can drive PROM_CLK; the other controllers tri-state. 
Therefore, a third technique of in-circuit programming is to hold VccOk Low to this Main 
Controller and temporarily drive its UART_TxDRDY# or UART_DTR# input High. By 
doing this, the controller thinks it is not the Main Controller, and both PROM_CLK and 
PROM_SD are tri-state. External circuitry can then drive these signals such that in-cir-
cuit EEPROM programming can proceed.



13.0 Endian-Mode Software Issues

13.1

Overview
The native endian mode for MIPS processors, like Motorola and IBM 370 processors, 
is big-endian. However, the native mode for Intel (which developed the PCI standard) 
and VAX processors is little-endian. For PCI-compatibility reasons, most PCI periph-
eral chips, including the VRC5074 controller, operate natively in little-endian mode. 

While the VRC5074 controller is natively little-endian, it supports either big- or little-
endian mode on the CPU interface. The state of the BigEndian signal at reset or the 
Big Endian (BE) bit of the Serial Mode EEPROM initialization sequence (Section 12.0) 
determines this endian mode. However, there are important considerations when using 
the controller in a mixed-endian design. The most important aspect of the endian issue 
is which byte lanes of the SysAD bus are activated for a particular address. 

If the big-endian mode is implemented for the CPU interface, the controller swaps 
bytes within words and halfwords that are coming in and going out on the SysAD bus. 
All of the controller’s other interfaces operate in little-endian mode. There are a number 
of implications associated with this:

� Data in memory is always ordered in little-endian mode, even with a big-endian 
CPU interface. 

� Little-endian bit-fields and other data structures that span two or more bytes (such 
as bit-fields within registers or FIFOs) are fragmented when the CPU interface is 
big-endian. The contents of these data structures are byte-swizzled, so that the 
bits are arranged [7:0], [15:8], [23:16], [31:24], [39:32], [47:40], [55:48], [63:56], 
rather than [63:0]. 

� Big-endian devices on the PCI Local Bus or the I/O Local Bus must be byte-
swapped external to the controller.

The sections below view the endian issue from a programmer’s perspective. They 
describe how to implement mixed-endian designs and how to make code endian-inde-
pendent. 

13.2

Endian Modes
The endian mode of a device refers to its word-addressing method and byte order: 

� Big-Endian devices address data items at the big end (most-significant bit 
number). The most-significant byte (MSB) in an addressed data item is at the 
lowest address. 

� Little-Endian devices address data items at the little end (least-significant bit 
number). The most-significant byte (MSB) in an addressed data item is at the 
highest address. 

Figure 20 shows the bit and byte order of the two endian modes, as it applies to bytes 
within word-sized data items. The bit order within bytes is the same for both modes. 
The big (most-significant) bit is on the left side, and the little (least-significant) bit is on 
the right side. Only the bit order of sub-items is reversed within a larger addressable 
data item (halfword, word, doubleword, quadword) when crossing between the two 
endian modes. The sub-items’ order of significance within the larger data item remains 
the same. For example, the least-significant halfword (LSHW) in a word is always to 
the right and the most-significant halfword (MSHW) is to the left. 



Figure 20:   Bit and Byte Order of Endian Modes

If the access type matches the data-item type, no swapping of data sub-items is nec-
essary. Thus, when making halfword accesses into a data array consisting of halfword 
data (Figure 21), no byte-swapping takes place. In this case, data-item bit order is 
retained between the two endian modes. The code that sequentially accesses the half-
word data array would be identical regardless of the endian protocol of its CPU. The 
code would be endian-independent. 

Figure 21:   Halfword Data-Array Example 
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However, when making halfword accesses into a data array consisting of word data 
(Figure 22), access to the more-significant halfword requires the address correspond-
ing to the less-significant halfword (and vice versa). Such code is not endian-indepen-
dent. A supergroup access (e.g. accessing two halfwords simultaneously as a word 
from a halfword data array) causes the same problem. Such problems also arise when 
a halfword access is made into a 32-bit I/O register, whereas a word access into a 32-
bit register creates no problem. 

Figure 22:   Word Data-Array Example 

13.3

LAN Controller 
Example

The AMD AM79C791 LAN controller is one example of how a PCI-Bus device that is 
natively little-endian adapts to mixed-endian environments. This LAN controller pro-
vides limited support for big-endian system interfaces. Its designers assumed only two 
data types: a 32-bit word corresponding to the width of I/O registers, and an 8-bit byte 
corresponding to the width of the Ethernet DMA FIFO.

13.3.1

DMA Accesses from 
Ethernet FIFO

Ethernet data packets consist of bytes. To maximize bus bandwidth, these bytes are 
transferred via 32-bit word DMA accesses into memory. This access-data mismatch 
corresponds to the supergroup scenario shown at the bottom of Figure 21. The mis-
match means that a byte-swap must be performed to allow the little-endian LAN con-
troller to access the big-endian memory. The LAN controller provides its own internal 
hardware for this byte-swap. 

13.3.2

Word Accesses to I/O 
Registers

The LAN controller’s designers assumed that the 32-bit internal I/O registers would be 
accessed by 32-bit word transfers. In that case, the access type and data type match, 
and no swapping of bytes or halfwords is needed because order of significance is the 
same for both endian modes. For such word transfers, the I/O register model is endian-
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independent, and the LAN controller’s designers did not provide internal swapping 
hardware for non-word accesses into the I/O registers.

Word accesses offer the advantage that the register address values documented in the 
AM79C971 Technical Manual can be used without change (although offsets for individ-
ual register fields such as the PCI Latency Timer must be ignored). The position of indi-
vidual register fields as well as byte position within these fields would also remain the 
same as documented in the Technical Manual. 

13.3.3

Byte or Halfword 
Accesses to I/O 
Registers

Word accesses can cause some inconvenience (e.g. shadow registers) when modify-
ing only one or two fields within a 32-bit PCI register. In this case, byte or halfword 
access to the 32-bit register may be simpler. This type of transfer is analogous to the 
halfword access into a data array consisting of word data types, shown in Figure 22. 
Such accesses are mismatched to the defined data type and must be cross-addressed 
to get the byte or halfword of interest. The AM79C791 LAN controller does not provide 
big-endian hardware support to deal with byte or halfword transfers into the I/O regis-
ters. Code written to perform byte or halfword accesses into the 32-bit I/O registers will 
not be endian-independent.

The I/O register-field addresses documented in the AM79C971 Technical Manual are 
based on a register model derived from a little-endian perspective. The number order 
of these addresses progresses from right (least-significant) to left. However, a big-
endian system will respond to all addresses as if the number order progresses from left 
(most-significant) to right. To access the desired byte or halfword, the address order 
documented in the Technical Manual must be reversed.

The fields of the PCI Status Register and PCI Command Register are two examples of 
frequently used I/O register fields. The address offsets documented in the Technical 
Manual are 0x06 and 0x04, respectively. The PCI Command Register field is located in 
the less-significant halfword of the 32-bit I/O register that is also located at offset 0x04. 
The PCI Command Register field shares the same offset with its 32-bit register 
because of the little-endian number order. In a big-endian system, the more-significant 
halfword (i.e. PCI Status Register field) would share the same offset value with its 32-
bit register. So, if the offset 0x04 is used to access the PCI Command Register field, a 
big-endian system would actually access the PCI Status Register field. To access the 
proper halfword, the offsets must be exchanged between the two 16-bit register fields. 
In other words there must be a reversal (or swapping) of number order, relative to the 
information documented in the Technical Manual.

These special addressing considerations are completely independent of the operand 
pointers associated with the CPU register used as source or destination. The source or 
destination within the CPU’s register file can be at any location, size, or alignment with-
out altering the transfer results. A common error is to byte-swap CPU register data 
when transferring a halfword to or from a 32-bit register. The order of significance is the 
same for both endian modes, so no byte-swap is needed. This is purely an addressing 
problem. 

Table 35 and Table 36 show how the offsets in the AM79C971 Technical Manual are 
swapped with the other offsets to produce the proper cross-addressed offset required 
by big-endian systems. The determining factors for the swap are the values of the two 
least-significant bits of the offsets. According to the AM79C971 Technical Manual, the 



PCI Command Register field has the offset 0x04. Table 36 shows that the offset 0x06 
is needed to access the PCI Command Register field. The two least-significant bits of 
0x04 are b00, which convert to b10 to give the result of 0x06h.

13.4

GUI Controller 
Example

The Cirrus Logic CL-GD5465 GUI controller is another example of a PCI-Bus device 
that offers some mixed-endian support. The designers of this GUI controller assumed 
three data types: 32-bit word, 16-bit halfword, and 8-bit byte. Unlike the LAN controller 
which could make certain assumptions as to data type (for I/O register or DMA FIFO 
accesses), the GUI hardware cannot determine what data type will be used during any 
particular data transfer; any data type might be involved in any I/O register or RDRAM 
access. 

The data type must be known for a given bus transfer so that the appropriate byte or 
halfword swap can be performed. The data types may change from bus cycle to the 
next; one software task may be operating in parallel with and independently of another 
software task. One of the easiest methods to accommodate such an environment, 
without semaphores and such, is to provide address apertures into the memory space.

The aperture scheme calls for GUI hardware resources to be mirrored into three 
address ranges. Depending on which address range selected, a specific data type and 
data swap is used. Chapter 13 of the CL-GD5465 Technical Manual gives details of 
these three apertures.

13.4.1

Word Accesses to I/O 
Registers

The GUI controller’s internal 32-bit I/O registers can be accessed with 32-bit word 
transfers. In this case, the access type and data type match; no swapping of bytes or 
halfwords is required because the order of significance is the same for both endian 
modes. With such word transfers, the I/O register model is endian-independent, so the 
first address aperture described in the CL-GD5465 Technical Manual is used.

Word accesses have the advantage that the register address values documented in 
the Technical Manual can be used without change (although offsets for individual reg-
ister fields such as the PCI Latency Timer must be ignored). The position of individual 
register fields as well as byte position within these fields also remains the same as 
shown in the Technical Manual.

Table 35: Cross-Addressing for Byte Accesses Into a 32-bit I/O Register

Least-Significant Bits of Offset 
From AM79C971 Technical Manual

Least-Significant Bits of Offset 
Required by Big-Endian System

b00 b11

b01 b10

b10 b01

b11 b00

Table 36: Cross-Addressing for Halfword Accesses into a 32-bit I/O Register

Least-Significant Bits of Offset 
From AM79C971 Technical Manual

Least-Significant Bits of Offset 
Required by Big-Endian System

b00 b10

b10 b00



13.4.2

Byte or Halfword 
Accesses to I/O 
Registers

As in the LAN-controller example, byte or halfword access may be simpler than word 
accesses when modifying only one or two fields within a 32-bit I/O register. This type of 
transfer is analogous to the halfword access into a data array consisting of word data 
types, shown in Figure 22. Such accesses are mismatched to the defined data type 
and must be swapped to get the byte or halfword of interest. Code written to perform 
byte or halfword accesses into the 32-bit word I/O registers will not be endian-indepen-
dent.

There are two methods to perform byte or halfword accesses into the GUI controller. 
The first method is the use of the apertures for halfword-swap (second aperture) and 
byte-swap (third aperture). This method has the advantage that the little-endian 
addresses documented in the Technical Manual are the same as those used by big-
endian code, except for the addition of the offset required to select the appropriate 
aperture. (As of this printing, the second aperture remains unverified and has gener-
ated some confusion resulting from poor documentation or improper implementation.)

The second method of performing byte or halfword accesses is to cross-address the 
transfer. Care must be taken, however, when referencing the CL-GD5465 Technical 
Manual. The I/O register field addresses documented in the Technical Manual are 
based on a little-endian register model. The number order of these addresses progress 
from right (least-significant) to left. However, big-endian systems respond to addresses 
as if the number order progresses from left (most-significant) to right. To access the 
desired byte or halfword, the address order documented in the Technical Manual must 
be reversed.

13.4.3

Accesses to RDRAM
The CL-GD5465 GUI controller’s internal pixel and video engines constrain the 
RDRAM to be little-endian. Here again, big-endian systems have a few problems 
accessing data subgroups, such as a single byte access into a 32-bit data type. Sub-
item accesses are also a factor for RDRAM and the cross-addressing and address 
apertures solutions are the same as those described in Section 13.4.2. Supergroup 
access are also encountered with RDRAM. This situation is mentioned in Section 13.2 
and shown in Figure 22. A specific GUI-oriented example of this would be an 8-bit data 
type, such as a pixel, which is transferred four-at-a-time to maximize PCI-Bus band-
width.

There are two methods for dealing with supergroup transfers. First is the address-aper-
ture method, used in the sub-item scenario of Section 13.4.2. The third aperture, byte-
swap, is used to provide the proper data swap for the four 8-bit pixel case. The second 
aperture, halfword-swap, is used to transfer such things as two 16-bit pixels simulta-
neously. 

The second aperture method requires that the data order in the CPU register be 
swapped prior to an RDRAM write access, or immediately after an RDRAM read 
access. To continue with the previous four-pixel transfer example, the byte number-
order of the four pixels in the CPU register would be reversed. Now the pixel number-
order increases, starting from the right side of the register (first pixel originally on left, 
now on right). Then, the four pixels are written into the RDRAM with a standard 32-bit 
word transfer (first aperture). The case of two 16-bit pixels requires the two halfwords 
to be swapped, but not the order of the two bytes inside the halfwords. This second 
method is probably more time-consuming and is not recommended.



14.0 Timing Diagrams

This section shows timing diagrams for the controller’s various operations on the mem-
ory bus and PCI Bus. The following notation is used:

A or An means Address or sequential Address number

D or Dn means Data or sequential Data-item number

14.1

CPU Accesses to 
Local Memor y

Figure 23 through Figure 32 show the timing for CPU accesses to the controller’s local 
memory, including:

� CPU Single-Byte Memory Read (Figure 23)

� CPU Single-Byte Memory Write (Figure 24)

� CPU Eight-Byte Memory Read (Figure 25)

� CPU Eight-Byte Memory Write (Figure 26)

� CPU Block (32-Byte) Memory Read (Figure 27)

� CPU Block (32-Byte) Memory Write (Figure 28)

� CPU Back-To-Back Eight-Byte Memory Read (Figure 29)

� CPU Back-To-Back Eight-Byte Memory Write (Figure 30)

� CPU Back-To-Back Block (32-Byte) Memory Read (Figure 31)

� CPU Back-To-Back Block (32-Byte) Memory Write (Figure 32)

All SDRAM accesses are full-dword (64 bit) accesses. The controller internally imple-
ments partial-dword (less than 64-bit) write requests as read-merge-writes: it first 
reads from the write address, then merges the partial-dword write data into the read 
data, then writes the full dword to memory. Because of this, partial-dword writes take 
longer than full-dword writes. 



Figure 23:   Single-Byte Memory Read 



Figure 24:   Single-Byte Memory Write 



Figure 25:   Eight-Byte Memory Read 



Figure 26:   Eight-Byte Memory Write 



Figure 27:   Block Memory Read 



Figure 28:   Block Memory Write 



Figure 29:   Back-To-Back Eight-Byte Memory Reads 



Figure 30:   Back-To-Back Eight-Byte Memory Writes 



Figure 31:   Back-To-Back Block Memory Reads 



Figure 32:   Back-To-Back Block Memory Writes 



14.2

PCI-Bus Accesses
Figure 33 through Figure 39 show the timing for various transactions on the PCI Bus, 
including:

� Controller as PCI-Bus Master

• PCI Memory Write/Read (Figure 33)

• PCI Memory Byte Writes, With Byte-Merging (Figure 34)

• PCI Memory Byte Read, With Prefetching (Figure 35)

• PCI Memory Eight-Byte Writes, With Combining (Figure 36)

• PCI Memory Dual Address Cycle (DAC) Write/Read (Figure 37)

� Controller as PCI-Bus Target

• PCI-Bus Master Read/Write to Controller Memory (Figure 38)

• PCI-Bus Master Read/Write to Controller’s Internal Registers (Figure 39)

All timing examples use a 33 MHz PCI-Bus clock and Medium target DEVSEL. 



Figure 33:   PCI Memory Write/Read 



Figure 34:   PCI Memory Byte Writes, With Byte-Merging 



Figure 35:   PCI Memory Byte Read, With Prefetching 



Figure 36:   PCI Memory Eight-Byte Writes, With Combining 



Figure 37:   PCI Memory Dual Address Cycle (DAC) Write/Read 



Figure 38:   PCI-Bus Master Read/Write to Controller Memory 



Figure 39:   PCI-Bus Master Read/Write to Controller’s Internal Registers 



14.3

Local-Bus Accesses
Figure 40 through Figure 47 show the timing for various transactions on the Local Bus, 
including:

� Controller as Local-Bus Master

• CPU Byte Write/Read to 8-Bit Local-Bus Target (Figure 40)

• CPU Four-Byte Write/Read to 8-Bit Local-Bus Target (Figure 41)

• CPU Eight-Byte Write/Read to 8-Bit Local-Bus Target (Figure 42)

• CPU Burst Write/Read to 32-Bit Local-Bus Target (Figure 43)

� Controller as Local-Bus Target

• Local-Bus Master Four-Byte Write/Read to Controller Memory, 68000 Mode 
(Figure 44)

• Local-Bus Master Burst Write/Read to Controller Memory, 68000 Mode 
(Figure 45)

• Local-Bus Master Four-Byte Write/Read to Controller Memory, Intel Mode 
(Figure 46)

• Local-Bus Master Burst Write/Read to Controller Memory, Intel Mode (Figure 
47)



Figure 40:   CPU Byte Write/Read to 8-Bit Local-Bus Target 



Figure 41:   CPU Four-Byte Write/Read to 8-Bit Local-Bus Target 



Figure 42:   CPU Eight-Byte Write/Read to 8-Bit Local-Bus Target 



Figure 43:   CPU Burst Write/Read to 32-Bit Local-Bus Target 



Figure 44:   Local-Bus Master Four-Byte Write/Read to Controller Memory, 68000 Mode 



Figure 45:   Local-Bus Master Burst Write/Read to Controller Memory, 68000 Mode 



Figure 46:   Local-Bus Master Four-Byte Write/Read to Controller Memory, Intel Mode 



Figure 47:   Local-Bus Master Burst Write/Read to Controller Memory, Intel Mode 



15.0 Testing

The controller does not support JTAG testing or any other type of boundary scan. It 
does, however, support board-level testing. Table 37 shows the board-level test modes 
that can be configured with the TEST#, SMC and TEST_SEL inputs. 

In the Wiggle Mode, the BigEndian signal becomes an output and all other signals are 
inputs. BigEndian is driven by the XOR of all other signals. This mode can be used by 
a board tester to verify connectivity to all controller signals. 

Table 37: Test-Mode Configuration

TEST# SMC TEST_SEL Description

0 0 0 All Outputs Tri-State

0 0 1 unused, reserved

0 1 0 unused, reserved

0 1 1 unused, reserved

1 0 0 Normal Operation

1 0 1 Normal Operation, with PLL by-passed

1 1 0 unused, reserved

1 1 1 Wiggle Mode



16.0 Electrical Specifications

16.1

Terminolo gy Table 38: Terminology for Absolute Maximum Ratings

Item Symbol Meaning

Power supply voltage VDD Range of voltages which will not cause destruction or reduce reliability 
when applied to the VDD pin.

Input voltage VI Range of voltages which will not cause destruction or reduce reliability 
when applied to the input pin.

Output voltage VO Range of voltages which will not cause destruction or reduce reliability 
when applied to the output pin.

Input current II Allowable absolute value of current which will not cause latchup when 
applied to the input pin.

Output current IO Allowable absolute value of DC current which will not cause destruction 
or reduce reliability when flowing to or from the output pin.

Operating ambient 
temperature

TA Range of ambient temperatures for normal logical operation.

Storage temperature Tstg Range of element temperatures which will not cause destruction or 
reduce reliability in the state where neither voltage nor current is applied.

Table 39: Terminology for Recommended Operating Conditions

Item Symbol Meaning

Power supply voltage VDD Range of a voltage for normal logical operation when VSS = 0 V.

Input voltage, high VIH Indicates a high-level voltage applied to the cell-based IC input that 
allows normal operation of the input buffer. Applying a voltage of the Min. 
value or above ensures that the input voltage is at high level.

Input voltage, low VIL Indicates a low-level voltage applied to the cell-based IC input that allows 
normal operation of the input buffer. Applying a voltage of the Max. value 
or below ensures that the input voltage is at low level.

Positive trigger 
voltage

VP Refers to the input level at which the output level is inverted when the cell-
based IC input is changed from low- level to high-level.

Negative trigger 
voltage

VN Refers to the input level at which the output level is inverted when the cell-
based IC input is changed from high- level to low-level.

Hysteresis voltage VH Refers to the difference between the positive trigger voltage and negative 
trigger voltage.

Input rise time tri Indicates the limit value of the time in which the input voltage applied to 
the cell-based IC rises from 10% to 90%.

Input fall time tfi Indicates the limit value of the time in which the input voltage applied to 
the cell-based IC input falls from 90% to 10%.

Table 40: Terminology for DC Characteristics

Item Symbol Meaning

Static current 
consumption

IDDS Indicates the current that flows in from the power supply pin at a specified 
supply voltage without changing the voltage of the input and output pins.

Off-state output 
current

IOZ For a 3-state output, this value indicates the current that flows through the 
output pin at specified voltage when the output is at high impedance.

Output short-circuit 
current

IOS Current that flows out when the output pin is short-circuited to GND, when 
output is at high level.



16.2

Absolute Maximum 
Ratings

16.3

Recommended 
Operating Range

Input leakage current II Current that flows through the input pin when a voltage is applied to the 
input pin.

Output current, low IOL Current that flows to the output pin at a specified low-level output voltage.

Output current, high IOH Current that flows from the output pin at a specified high- level output 
voltage.

Output voltage, low VOL Indicates a low-level output voltage when output is open.

Output voltage, high VOH Indicates a high-level output voltage when output pin is open.

Table 40: Terminology for DC Characteristics  (continued)

Item Symbol Meaning

Table 41: Absolute Maximum Ratings

Item Symbol Conditions Ratings Unit

Power supply voltage VDD –0.5 to +4.6 V

Input voltage a

a. Apply voltage to the input pins only after the power supply voltage has been applied. 

VI VI < VDD + 0.5 V –0.5 to +4.6 V

Output voltage VO VO < VDD+ 0.5 V –0.5 to +4.6 V

Output current: IO
IOL = 1.0 mA FV0A 3 mA

IOL = 2.0 mA FV0B 7 mA

IOL = 3.0 mA FO09, FV09 10 mA

IOL = 6.0 mA FO04, FV04 20 mA

IOL = 9.0 mA FV01, FV01 30 mA

IOL = 12.0 mA FO02, FV02 40 mA

IOL = 18.0 mA FO03 60 mA

IOL = 24.0 mA FO06 75 mA

Operating ambient temperature TA –40 to +85 °C

Storage temperature Tstg –65 to +150 °C

Table 42: Recommended Operating Range

Item Symbol Conditions Min. Typical Max. Unit

Power supply voltage VDD 3.0 3.3 3.6 V

Input voltage, high VIH 3V interface 2.0 VDD V

Input voltage, low VIL 0 0.8 V

Positive trigger voltage VP 1.50 2.70 V

Negative trigger voltage VN 0.60 1.40 V

Hysteresis voltage VH 1.10 1.50 V

Input voltage, high VIH 5V interface 2.0 5.5 V

Input voltage, low VIL 0 0.8 V

Positive trigger voltage VP 2.20 2.55 V

Negative trigger voltage VN 0.84 1.01 V

Hysteresis voltage VH 1.36 1.54 V



16.4

DC Characteristics
The “+” and “–” next to the current value in the table indicate the current direction. Cur-
rent flowing into the device is “+”   and current flowing out of the device is “–”. Structur-
ally, the CMOS 5V output buffer has no DC output High level. 

Input rise time tri Normal input 0 200 ns

Input fall time tfi 0 200 ns

Input rise time tri Schmitt input a 0 10 ms

Input fall time tfi 0 10 ms

a. Use a Schmitt trigger input buffer for input signals with very slow rise or fall times.

Table 42: Recommended Operating Range  (continued)

Item Symbol Conditions Min. Typical Max. Unit

Table 43: DC Characteristics
VDD = 3.3V ± 0.3V; TA = –40 to +85°C; Tj = –40 to +125°C

Item Symbol Conditions Min. Typical Max. Unit

Static current consumption: a

H49-M97 IDDS VI = VDD or GND — 40 800 µA

E80-H10 IDDS — 20 400 µA

Step sizes other than the 
above

IDDS — 10 200 µA

OFF-state output current IOZ VO = VDD or GND — — ±10 µA

Output short-circuit current b IOS VO = GND — — –250 mA

Input leakage current:

Normal input II VI = VDD or GND — ±10–4 ±10 µA

With pull-up resistor (50 kΩ) II VI = GND 36 89 165 µA

With pull-up resistor (5 kΩ) II VI = GND 284 654 1305 µA

With pull-down resistor (50 
kΩ)

II VI = VDD 28 79 141 µA

Pull-up resistor (50 kΩ) RPU — 21.8 37.1 83.1 kΩ

Pull-up resistor (5 kΩ) RPU — 2.8 5.0 10.6 kΩ

Pull-down resistor (50 kΩ) RPD — 25.6 41.9 105.8 kΩ

Output current low:

3.0 mA type FO09 IOL VOL= 0.4 V 3.00 — — mA

6.0 mA type FO04 IOL VOL= 0.4 V 6.00 — — mA

9.0 mA type FO01 IOL VOL= 0.4 V 9.00 — — mA

12.0 mA type FO02 IOL VOL= 0.4 V 12.00 — — mA

18.0 mA type FO03 IOL VOL= 0.4 V 18.00 — — mA

24.0 mA type FO06 IOL VOL= 0.4 V 24.00 — — mA

Output current high:

3.0 mA type FO09 IOH VOH = 2.4 V –3.00 — — mA

6.0 mA type FO04 IOH VOH = 2.4 V –6.00 — — mA

9.0 mA type FO01 IOH VOH = 2.4 V –9.00 — — mA

12.0 mA type FO02 IOH VOH = 2.4 V –12.00 — — mA

18.0 mA type FO03 IOH VOH = 2.4 V –18.00 — — mA



16.5

AC Specifications

16.5.1

Clock Timing
Table 44 shows the timing requirements for SysClock with and without L2 cache, and 
for PCLK[0] with an internal and an external arbiter. 
 

16.5.2

CPU, Memory, Local 
Bus and Interrupt 
Signals

Table 45 shows the timing requirements, relative to SysClock, for the signals on the 
CPU Bus, Memory Bus, Local-Bus, and the interrupt signals (both CPU and PCI inter-
rupt signals). Figure 48 defines the setup, hold, and valid parameters.

Figure 48:   AC Timing Waveforms 

24.0 mA type FO06 IOH VOH = 2.4 V –24.00 — — mA

Output voltage low VOL IOL = 0 mA — — 0.1 V

Output voltage high VOH IOH = 0 mA VDD - 0.1 — — V

a. The static current consumption increases if an I/O block with a pull-up or pull-down 
resistor is used. 

b. Output short-circuit current is 1 second or less and only 1 pin of the chip.

Table 43: DC Characteristics  (continued)
VDD = 3.3V ± 0.3V; TA = –40 to +85°C; Tj = –40 to +125°C

Item Symbol Conditions Min. Typical Max. Unit

Table 44: SysClock and PCLK[0] Timing Requirements

Signal Min. Period Min. Low Max. High Units Notes

SysClock 11.6 5.0 5.0 ns Without L2 cache

SysClock 13.5 5.0 5.0 ns With L2 cache

PCLK[0] 15.7 12.0 5.0 ns With external PCI arbiter

PCLK[0] 15.7 5.0 5.0 ns With internal PCI arbiter



 

Table 45: Signal Timing Relative to SysClock

Signal
Output
Min. Valid

Output
Max. Valid

Output
Pin Load

Input
Min. Setup

Input
Min. Hold

Units

BigEndian 7.5 17.8 50 — — ns

BootCS# 2.8 9.5 50 — — ns

CntrValid# 3.9 9.6 50 1.5 0.0 ns

CntrVccOk 5.9 13.2 50 — — ns

ColdReset# 5.7 13.4 50 — — ns

CPUValid# — — — 4.5 0.0 ns

DCS#[8:2] 2.8 10.4 50 1.0 0.2 ns

DQM 2.8 6.7 80 — — ns

INTA# 2.2 7.8 50 1.3 0.0 ns

INTB# — — — 1.3 0.0 ns

INTC# — — — 1.3 0.0 ns

INTD# — — — 1.3 0.0 ns

INTE# — — — 1.2 0.0 ns

Int#[5:0] 4.2 11.2 50 — — ns

LOC_A[4:0] 2.3 8.4 50 5.2 0.0 ns

LOC_AD[31:0] 2.3 12.6 50 4.2 0.0 ns

LOC_ALE 2.3 14.2 50 4.4 0.0 ns

LOC_BG#
or
HLDA

3.4 9.5 50 — — ns

LOC_BGACK# — — — 3.0 0.0 ns

LOC_BR#
or
HOLD

— — — 3.3 0.0 ns

LOC_CLK 2.2 5.6 50 — — ns

LOC_FR# 3.0 8.3 50 5.0 0.0 ns

LOC_RD# 3.0 8.3 50 3.5 0.0 ns

LOC_RDY# 2.8 8.0 50 10.7 0.0 ns

LOC_WR# 3.0 8.3 50 5.1 0.0 ns

MAbank0[14:0] 2.4 8.6 80 — — ns

MAbank1[14:0] 2.5 7.8 80 — — ns

MCAS#[1:0] 3.5 7.2 80 — — ns

MCS#[1:0] 3.5 7.3 80 — — ns

MCWrRdy# 3.6 8.3 50 — — ns

MD[63:0] 2.0 8.1 40 1.0 0.5 ns

MDC[7:0] 2.8 9.5 40 1.2 0.1 ns

ModeClock — — — 1.0 1.6 ns

ModeOut 4.6 11.8 50 — — ns

MRAS#[1:0] 3.5 7.5 80 — — ns

MRDY# — — — 3.0 0.0 ns

MWE#[1:0] 3.5 7.3 80 — — ns

NMI# 4.4 10.8 50 — — ns

PROM_CLK 5.2 11.9 50 — — ns

PROM_SD 4.8 10.2 40 1.0 1.2 ns

Reset# 5.9 13.4 50 — — ns



16.5.3

PCI-Bus Interface
Table 46 shows the timing requirements, relative to PCLK[0], for signals on the PCI 
Bus, except for the PCI interrupt signals which are included in Table 45. 
 

ScDOE# 3.3 9.1 50 — — ns

ScMatch — — — 1.0 0.2 ns

ScWord[1:0] 2.3 9.1 50 1.0 0.1 ns

SysAD[63:0] 2.5 9.3 50 2.0 0.1 ns

SysADC[7:0] 1.9 9.5 50 1.3 0.1 ns

SysClock See Table 44 ns

SysCmd[8:0] 3.3 9.9 50 3.6 0.3 ns

UART_DSR# ns

UART_DTR# 5.0 11.8 50 1.0 1.1 ns

UART_RxDRDY# ns

UART_TxDRDY# 5.1 11.9 50 1.0 1.1 ns

VccOk — — — 1.9 0.0 ns

WrRdy# 3.3 8.3 50 1.0 0.2 ns

Table 45: Signal Timing Relative to SysClock  (continued)

Signal
Output
Min. Valid

Output
Max. Valid

Output
Pin Load

Input
Min. Setup

Input
Min. Hold

Units

Table 46: Signal Timing Relative to PCLK[0]

Signal
Output
Min. Valid

Output
Max. Valid

Output
Pin Load

Input
Min. Setup

Input
Min. Hold

Units

ACK64# 5.1 10.3 50 5.8 2.2 ns

C/BE#[7:0] 5.0 15.0 50 7.3 2.6 ns

DEVSEL# 5.0 9.9 50 8.4 2.4 ns

FRAME# 5.5 13.8 50 8.6 2.5 ns

GNT#[0] 5.2 9.3 50 10.6 2.5 ns

GNT#[4:1] 5.1 9.3 50 — — ns

IDSEL — — — 1.0 2.2 ns

INT[E:A]# See Table 45 ns

IRDY# 5.2 12.5 50 8.6 2.3 ns

LOCK# TBD TBD TBD TBD TBD ns

M66EN Static signal. Tie High or Low per Table 3 ns

PCI_AD[63:0] 5.1 13.0 50 1.0 2.9 ns

PAR 5.0 9.2 50 1.0 2.3 ns

PAR64  5.0 9.4 50 1.4 2.0 ns

PCI64# Static signal. Tie High or Low per Table 3 ns

PCICR# Static signal. Tie High or Low per Table 3 ns

PCIRST# 5.9 11.8 50 2.1 2.5 ns

PCLK[0] See Table 44 ns

PERR# 4.8 9.0 50 1.0 2.4 ns

REQ#[0] 5.4 10.2 50 1.0 2.6 ns

REQ#[4:1] — — — 1.3 2.8 ns

REQ64# 5.3 15.1 50 1.0 2.2 ns

SERR# 4.9 9.2 50 1.0 2.2 ns

STOP# 5.1 10.4 50 8.1 2.4 ns

TRDY# 5.0 10.5 50 8.5 2.3 ns



17.0 Pinout

The controller is packaged in a 500-pin TBGA package. Table 47 shows the pin assign-
ments, sorted by signal names (left side), pin number (middle), and grid number (right 
side). Figure 49 on page 210 shows the package diagram. 

Table 47: Pinout Sorted By Signal Name, Pin Number, and Grid Number

Signal 
Name

Alternate 
Signal

Pin 
#

Grid 
#

Pin 
#

Signal 
Name

Alternate 
Signal

Grid 
#

Grid
#

Signal
Name

Alternate
Signal

Pin
#

AGND 170 AJ28 1 NC A1 A1 NC 1

AGND 345 AD4 2 PCLK3 B1 A2 NC 116

AVDD 247 AE3 3 GND C1 A3 SysAD0 115

AVDD 458 AF25 4 GND D1 A4 SysAD3 114

BigEndian 171 AJ29 5 PCI_AD31 E1 A5 SysAD7 113

BootCS# 160 AJ18 6 PCI_AD28 F1 A6 SysAD10 112

C/BE#0 339 V4 7 REQ#3 G1 A7 SysAD13 111

C/BE#1 427 R5 8 REQ#2 H1 A8 SysAD18 110

C/BE#2 334 N4 9 C/BE#3 J1 A9 SysAD20 109

C/BE#3 9 J1 10 PCI_AD22 K1 A10 SysAD23 108

CntrValid# 223 B4 11 PCI_AD19 L1 A11 SysAD28 107

CntrVccOk 324 C4 12 PCI_AD16 M1 A12 SysAD31 106

ColdReset# 500 E6 13 FRAME# N1 A13 SysAD36 105

CPUValid# 224 B3 14 SERR# P1 A14 SysAD39 104

DCS#2 see Table 
4 on page 
27

156 AJ14 15 GND R1 A15 GND 103

DCS#3 see Table 
4 on page 
27

261 AH14 16 VDD T1 A16 SysAD47 102

DCS#4 see Table 
4 on page 
27

42 AK13 17 PCI_AD12 U1 A17 SysAD48 101

DCS#5 see Table 
4 on page 
27

155 AJ13 18 DEVSEL# V1 A18 SysAD51 100

DCS#6 see Table 
4 on page 
27

260 AH13 19 PCI_AD7 W1 A19 SysAD56 99

DCS#7 see Table 
4 on page 
27

357 AG13 20 PERR# Y1 A20 SysAD59 98

DCS#8 see Table 
4 on page 
27

41 AK12 21 PCI_AD1 AA1 A21 SysADC0 97

DEVSEL# 18 V1 22 LOC_AD30 PCI_AD62 AB1 A22 SysADC3 96

DQM 265 AH18 23 LOC_AD28 PCI_AD60 AC1 A23 SysADC5 95

FRAME# 13 N1 24 GND AD1 A24 SysCmd2 94

GND 3 C1 25 LOC_AD23 PCI_AD55 AE1 A25 SysCmd5 93

GND 4 D1 26 NC AF1 A26 SysCmd8 92

GND 15 R1 27 LOC_AD22 PCI_AD54 AG1 A27 ScMatch 91

GND 24 AD1 28 VDD AH1 A28 Int#1 90



GND 36 AK7 29 NC AJ1 A29 Int#5 89

GND 48 AK19 30 NC AK1 A30 NC 88

GND 53 AK24 31 LOC_AD14 PCI_AD46 AK2 AA1 PCI_AD1 21

GND 65 AD30 32 LOC_AD10 PCI_AD42 AK3 AA2 PCI_AD0 136

GND 103 A15 33 LOC_AD9 PCI_AD41 AK4 AA3 LOC_AD31 PCI_AD63 243

GND 146 AJ4 34 LOC_AD6 PCI_AD38 AK5 AA4 VDD 342

GND 167 AJ25 35 LOC_AD3 PCI_AD35 AK6 AA5 GND 433

GND 226 D3 36 GND AK7 AA26 GND 464

GND 244 AB3 37 LOC_A3 C/BE#7 AK8 AA27 VDD 377

GND 248 AF3 38 LOC_A1 C/BE#5 AK9 AA28 MDC4 282

GND 251 AH4 39 LOC_CLK ACK64# AK10 AA29 MDC3 179

GND 256 AH9 40 LOC_RDY# AK11 AA30 MDC2 68

GND 269 AH22 41 DCS#8 see Table 
4 on page 
27

AK12 AB1 LOC_AD30 PCI_AD62 22

GND 277 AF28 42 DCS#4 see Table 
4 on page 
27

AK13 AB2 LOC_AD29 PCI_AD61 137

GND 287 T28 43 INTE# AK14 AB3 GND 244

GND 328 G4 44 INTD# AK15 AB4 LOC_AD27 PCI_AD59 343

GND 336 R4 45 INTA# AK16 AB5 VDD 434

GND 351 AG7 46 UART_DTR# AK17 AB26 MWE#0 463

GND 374 AD27 47 MRDY# AK18 AB27 MCS#0 376

GND 417 E5 48 GND AK19 AB28 NC 281

GND 420 H5 49 MAbank110 AK20 AB29 MDC6 178

GND 421 J5 50 MAbank16 AK21 AB30 MDC5 67

GND 422 K5 51 MAbank13 AK22 AC1 LOC_AD28 PCI_AD60 23

GND 423 L5 52 MAbank11 AK23 AC2 LOC_AD26 PCI_AD58 138

GND 424 M5 53 GND AK24 AC3 LOC_AD25 PCI_AD57 245

GND 425 N5 54 TEST_SEL AK25 AC4 VDD 344

GND 426 P5 55 TEST# AK26 AC5 GND 435

GND 428 T5 56 NC AK27 AC26 GND 462

GND 429 U5 57 NC AK28 AC27 VDD 375

GND 430 V5 58 NC AK29 AC28 MRAS#0 280

GND 431 W5 59 NC AK30 AC29 MCAS#0 177

GND 432 Y5 60 MAbank010 AJ30 AC30 MDC7 66

GND 433 AA5 61 MAbank06 AH30 AD1 GND 24

GND 435 AC5 62 MAbank03 AG30 AD2 LOC_AD24 PCI_AD56 139

GND 437 AE5 63 MAbank00 AF30 AD3 PCLKIN 246

GND 438 AF5 64 MWE#1 AE30 AD4 AGND 345

GND 440 AF7 65 GND AD30 AD5 PCICR# 436

GND 441 AF8 66 MDC7 AC30 AD26 VDD 461

GND 443 AF10 67 MDC5 AB30 AD27 GND 374

GND 444 AF11 68 MDC2 AA30 AD28 MCAS#1 279

GND 445 AF12 69 MD61 Y30 AD29 MCS#1 176

GND 446 AF13 70 MD58 W30 AD30 GND 65

GND 447 AF14 71 MD53 V30 AE1 LOC_AD23 PCI_AD55 25

Table 47: Pinout Sorted By Signal Name, Pin Number, and Grid Number  (continued)

Signal 
Name

Alternate 
Signal

Pin 
#

Grid 
#

Pin 
#

Signal 
Name

Alternate 
Signal

Grid 
#

Grid
#

Signal
Name

Alternate
Signal

Pin
#



GND 448 AF15 72 MD50 U30 AE2 PCI64# 140

GND 449 AF16 73 MD49 T30 AE3 AVDD 247

GND 450 AF17 74 MD45 R30 AE4 LOC_AD21 PCI_AD53 346

GND 452 AF19 75 MD40 P30 AE5 GND 437

GND 453 AF20 76 MD37 N30 AE26 GND 460

GND 454 AF21 77 MD32 M30 AE27 MAbank04 373

GND 456 AF23 78 MD29 L30 AE28 MAbank01 278

GND 459 AF26 79 MD24 K30 AE29 MRAS#1 175

GND 460 AE26 80 MD21 J30 AE30 MWE#1 64

GND 462 AC26 81 MD19 H30 AF1 NC 26

GND 464 AA26 82 MD14 G30 AF2 NC 141

GND 466 W26 83 MD11 F30 AF3 GND 248

GND 468 U26 84 MD8 E30 AF4 LOC_AD19 PCI_AD51 347

GND 471 P26 85 MD4 D30 AF5 GND 438

GND 473 M26 86 MD0 C30 AF6 LOC_AD12 PCI_AD44 439

GND 475 K26 87 NC B30 AF7 GND 440

GND 477 H26 88 NC A30 AF8 GND 441

GND 478 G26 89 Int#5 A29 AF9 VDD 442

GND 479 F26 90 Int#1 A28 AF10 GND 443

GND 480 E26 91 ScMatch A27 AF11 GND 444

GND 481 E25 92 SysCmd8 A26 AF12 GND 445

GND 482 E24 93 SysCmd5 A25 AF13 GND 446

GND 483 E23 94 SysCmd2 A24 AF14 GND 447

GND 485 E21 95 SysADC5 A23 AF15 GND 448

GND 487 E19 96 SysADC3 A22 AF16 GND 449

GND 489 E17 97 SysADC0 A21 AF17 GND 450

GND 492 E14 98 SysAD59 A20 AF18 MAbank113 451

GND 494 E12 99 SysAD56 A19 AF19 GND 452

GND 496 E10 100 SysAD51 A18 AF20 GND 453

GND 498 E8 101 SysAD48 A17 AF21 GND 454

GNT#0 228 F3 102 SysAD47 A16 AF22 MAbank014 455

GNT#1 120 E2 103 GND A15 AF23 GND 456

GNT#2 419 G5 104 SysAD39 A14 AF24 NC 457

GNT#3 327 F4 105 SysAD36 A13 AF25 AVDD 458

GNT#4 227 E3 106 SysAD31 A12 AF26 GND 459

IDSEL 232 K3 107 SysAD28 A11 AF27 MAbank07 372

Int#0 200 B27 108 SysAD23 A10 AF28 GND 277

Int#1 90 A28 109 SysAD20 A9 AF29 MAbank02 174

Int#2 395 D26 110 SysAD18 A8 AF30 MAbank00 63

Int#3 301 C27 111 SysAD13 A7 AG1 LOC_AD22 PCI_AD54 27

Int#4 199 B28 112 SysAD10 A6 AG2 LOC_AD20 PCI_AD52 142

Int#5 89 A29 113 SysAD7 A5 AG3 LOC_AD18 PCI_AD50 249

INTA# 45 AK16 114 SysAD3 A4 AG4 VDD 348

INTB# 359 AG15 115 SysAD0 A3 AG5 LOC_AD11 PCI_AD43 349

INTC# 157 AJ15 116 NC A2 AG6 VDD 350

Table 47: Pinout Sorted By Signal Name, Pin Number, and Grid Number  (continued)

Signal 
Name

Alternate 
Signal

Pin 
#

Grid 
#

Pin 
#

Signal 
Name

Alternate 
Signal

Grid 
#

Grid
#

Signal
Name

Alternate
Signal

Pin
#



INTD# 44 AK15 117 PCLK4 B2 AG7 GND 351

INTE# 43 AK14 118 PCLK2 C2 AG8 VDD 352

IRDY# 128 N2 119 VDD D2 AG9 LOC_A4 PAR64 353

LOC_A0 C/BE#4 257 AH10 120 GNT#1 E2 AG10 VDD 354

LOC_A1 C/BE#5 38 AK9 121 PCI_AD30 F2 AG11 LOC_RD# 355

LOC_A2 C/BE#6 151 AJ9 122 PCI_AD27 G2 AG12 VDD 356

LOC_A3 C/BE#7 37 AK8 123 PCI_AD26 H2 AG13 DCS#7 see Table 
4 on page 
27

357

LOC_A4 PAR64 353 AG9 124 REQ#1 J2 AG14 VDD 358

LOC_AD0 PCI_AD32 150 AJ8 125 PCI_AD23 K2 AG15 INTB# 359

LOC_AD1 PCI_AD33 255 AH8 126 PCI_AD20 L2 AG16 UART_DSR# 360

LOC_AD10 PCI_AD42 32 AK3 127 PCI_AD17 M2 AG17 VDD 361

LOC_AD11 PCI_AD43 349 AG5 128 IRDY# N2 AG18 MAbank114 362

LOC_AD12 PCI_AD44 439 AF6 129 LOCK# P2 AG19 VDD 363

LOC_AD13 PCI_AD45 145 AJ3 130 PAR R2 AG20 MAbank17 364

LOC_AD14 PCI_AD46 31 AK2 131 PCI_AD15 T2 AG21 VDD 365

LOC_AD15 PCI_AD47 144 AJ2 132 PCI_AD11 U2 AG22 MAbank10 366

LOC_AD16 PCI_AD48 250 AH3 133 PCI_AD9 V2 AG23 VDD 367

LOC_AD17 PCI_AD49 143 AH2 134 PCI_AD6 W2 AG24 NC 368

LOC_AD18 PCI_AD50 249 AG3 135 PCI_AD4 Y2 AG25 NC 369

LOC_AD19 PCI_AD51 347 AF4 136 PCI_AD0 AA2 AG26 NC 370

LOC_AD2 PCI_AD34 149 AJ7 137 LOC_AD29 PCI_AD61 AB2 AG27 VDD 371

LOC_AD20 PCI_AD52 142 AG2 138 LOC_AD26 PCI_AD58 AC2 AG28 MAbank08 276

LOC_AD21 PCI_AD53 346 AE4 139 LOC_AD24 PCI_AD56 AD2 AG29 MAbank05 173

LOC_AD22 PCI_AD54 27 AG1 140 PCI64# AE2 AG30 MAbank03 62

LOC_AD23 PCI_AD55 25 AE1 141 NC AF2 AH1 VDD 28

LOC_AD24 PCI_AD56 139 AD2 142 LOC_AD20 PCI_AD52 AG2 AH2 LOC_AD17 PCI_AD49 143

LOC_AD25 PCI_AD57 245 AC3 143 LOC_AD17 PCI_AD49 AH2 AH3 LOC_AD16 PCI_AD48 250

LOC_AD26 PCI_AD58 138 AC2 144 LOC_AD15 PCI_AD47 AJ2 AH4 GND 251

LOC_AD27 PCI_AD59 343 AB4 145 LOC_AD13 PCI_AD45 AJ3 AH5 LOC_BG# HLDA 252

LOC_AD28 PCI_AD60 23 AC1 146 GND AJ4 AH6 LOC_AD7 PCI_AD39 253

LOC_AD29 PCI_AD61 137 AB2 147 LOC_AD8 PCI_AD40 AJ5 AH7 LOC_AD4 PCI_AD36 254

LOC_AD3 PCI_AD35 35 AK6 148 LOC_AD5 PCI_AD37 AJ6 AH8 LOC_AD1 PCI_AD33 255

LOC_AD30 PCI_AD62 22 AB1 149 LOC_AD2 PCI_AD34 AJ7 AH9 GND 256

LOC_AD31 PCI_AD63 243 AA3 150 LOC_AD0 PCI_AD32 AJ8 AH10 LOC_A0 C/BE#4 257

LOC_AD4 PCI_AD36 254 AH7 151 LOC_A2 C/BE#6 AJ9 AH11 LOC_WR# 258

LOC_AD5 PCI_AD37 148 AJ6 152 LOC_ALE REQ64# AJ10 AH12 LOC_BR# HOLD 259

LOC_AD6 PCI_AD38 34 AK5 153 LOC_FR# AJ11 AH13 DCS#6 see Table 
4 on page 
27

260

LOC_AD7 PCI_AD39 253 AH6 154 LOC_BGACK# AJ12 AH14 DCS#3 see Table 
4 on page 
27

261

LOC_AD8 PCI_AD40 147 AJ5 155 DCS#5 see Table 
4 on page 
27

AJ13 AH15 NC 262

Table 47: Pinout Sorted By Signal Name, Pin Number, and Grid Number  (continued)

Signal 
Name

Alternate 
Signal

Pin 
#

Grid 
#

Pin 
#

Signal 
Name

Alternate 
Signal

Grid 
#

Grid
#

Signal
Name

Alternate
Signal

Pin
#



LOC_AD9 PCI_AD41 33 AK4 156 DCS#2 see Table 
4 on page 
27

AJ14 AH16 VccOk 263

LOC_ALE REQ64# 152 AJ10 157 INTC# AJ15 AH17 UART_TxDRDY# 264

LOC_BG# HLDA 252 AH5 158 M66EN AJ16 AH18 DQM 265

LOC_BGACK# 154 AJ12 159 UART_RxDRDY# AJ17 AH19 MAbank111 266

LOC_BR# HOLD 259 AH12 160 BootCS# AJ18 AH20 MAbank18 267

LOC_CLK ACK64# 39 AK10 161 MAbank112 AJ19 AH21 MAbank14 268

LOC_FR# 153 AJ11 162 MAbank19 AJ20 AH22 GND 269

LOC_RD# 355 AG11 163 MAbank15 AJ21 AH23 MAbank012 270

LOC_RDY# 40 AK11 164 MAbank12 AJ22 AH24 SysClock 271

LOC_WR# 258 AH11 165 MAbank013 AJ23 AH25 NC 272

LOCK# 129 P2 166 MAbank011 AJ24 AH26 NC 273

M66EN 158 AJ16 167 GND AJ25 AH27 NC 274

MAbank00 63 AF30 168 NC AJ26 AH28 NC 275

MAbank01 278 AE28 169 NC AJ27 AH29 MAbank09 172

MAbank02 174 AF29 170 AGND AJ28 AH30 MAbank06 61

MAbank03 62 AG30 171 BigEndian AJ29 AJ1 NC 29

MAbank04 373 AE27 172 MAbank09 AH29 AJ2 LOC_AD15 PCI_AD47 144

MAbank05 173 AG29 173 MAbank05 AG29 AJ3 LOC_AD13 PCI_AD45 145

MAbank06 61 AH30 174 MAbank02 AF29 AJ4 GND 146

MAbank07 372 AF27 175 MRAS#1 AE29 AJ5 LOC_AD8 PCI_AD40 147

MAbank08 276 AG28 176 MCS#1 AD29 AJ6 LOC_AD5 PCI_AD37 148

MAbank09 172 AH29 177 MCAS#0 AC29 AJ7 LOC_AD2 PCI_AD34 149

MAbank010 60 AJ30 178 MDC6 AB29 AJ8 LOC_AD0 PCI_AD32 150

MAbank011 166 AJ24 179 MDC3 AA29 AJ9 LOC_A2 C/BE#6 151

MAbank012 270 AH23 180 MD62 Y29 AJ10 LOC_ALE REQ64# 152

MAbank013 165 AJ23 181 MD59 W29 AJ11 LOC_FR# 153

MAbank014 455 AF22 182 MD54 V29 AJ12 LOC_BGACK# 154

MAbank10 366 AG22 183 MD51 U29 AJ13 DCS#5 see Table 
4 on page 
27

155

MAbank11 52 AK23 184 MD48 T29 AJ14 DCS#2 see Table 
4 on page 
27

156

MAbank12 164 AJ22 185 MD44 R29 AJ15 INTC# 157

MAbank13 51 AK22 186 MD39 P29 AJ16 M66EN 158

MAbank14 268 AH21 187 MD36 N29 AJ17 UART_RxDRDY# 159

MAbank15 163 AJ21 188 MD31 M29 AJ18 BootCS# 160

MAbank16 50 AK21 189 MD28 L29 AJ19 MAbank112 161

MAbank17 364 AG20 190 MD23 K29 AJ20 MAbank19 162

MAbank18 267 AH20 191 MD20 J29 AJ21 MAbank15 163

MAbank19 162 AJ20 192 MD15 H29 AJ22 MAbank12 164

MAbank110 49 AK20 193 MD12 G29 AJ23 MAbank013 165

MAbank111 266 AH19 194 MD9 F29 AJ24 MAbank011 166

MAbank112 161 AJ19 195 MD5 E29 AJ25 GND 167

Table 47: Pinout Sorted By Signal Name, Pin Number, and Grid Number  (continued)

Signal 
Name

Alternate 
Signal

Pin 
#

Grid 
#

Pin 
#

Signal 
Name

Alternate 
Signal

Grid 
#

Grid
#

Signal
Name

Alternate
Signal

Pin
#



MAbank113 451 AF18 196 MD1 D29 AJ26 NC 168

MAbank114 362 AG18 197 ModeOut C29 AJ27 NC 169

MCAS#0 177 AC29 198 NMI# B29 AJ28 AGND 170

MCAS#1 279 AD28 199 Int#4 B28 AJ29 BigEndian 171

MCS#0 376 AB27 200 Int#0 B27 AJ30 MAbank010 60

MCS#1 176 AD29 201 ScDOE# B26 AK1 NC 30

MCWrRdy# 397 D24 202 SysCmd7 B25 AK2 LOC_AD14 PCI_AD46 31

MD0 86 C30 203 SysCmd4 B24 AK3 LOC_AD10 PCI_AD42 32

MD1 196 D29 204 SysCmd1 B23 AK4 LOC_AD9 PCI_AD41 33

MD2 298 E28 205 SysADC4 B22 AK5 LOC_AD6 PCI_AD38 34

MD3 392 F27 206 SysADC1 B21 AK6 LOC_AD3 PCI_AD35 35

MD4 85 D30 207 SysAD60 B20 AK7 GND 36

MD5 195 E29 208 SysAD57 B19 AK8 LOC_A3 C/BE#7 37

MD6 297 F28 209 SysAD52 B18 AK9 LOC_A1 C/BE#5 38

MD7 391 G27 210 SysAD49 B17 AK10 LOC_CLK ACK64# 39

MD8 84 E30 211 SysAD46 B16 AK11 LOC_RDY# 40

MD9 194 F29 212 SysAD43 B15 AK12 DCS#8 see Table 
4 on page 
27

41

MD10 296 G28 213 SysAD38 B14 AK13 DCS#4 see Table 
4 on page 
27

42

MD11 83 F30 214 SysAD35 B13 AK14 INTE# 43

MD12 193 G29 215 SysAD30 B12 AK15 INTD# 44

MD13 295 H28 216 SysAD27 B11 AK16 INTA# 45

MD14 82 G30 217 SysAD22 B10 AK17 UART_DTR# 46

MD15 192 H29 218 SysAD19 B9 AK18 MRDY# 47

MD16 476 J26 219 SysAD14 B8 AK19 GND 48

MD17 389 J27 220 SysAD11 B7 AK20 MAbank110 49

MD18 294 J28 221 SysAD8 B6 AK21 MAbank16 50

MD19 81 H30 222 SMC B5 AK22 MAbank13 51

MD20 191 J29 223 CntrValid# B4 AK23 MAbank11 52

MD21 80 J30 224 CPUValid# B3 AK24 GND 53

MD22 293 K28 225 PCIRST# C3 AK25 TEST_SEL 54

MD23 190 K29 226 GND D3 AK26 TEST# 55

MD24 79 K30 227 GNT#4 E3 AK27 NC 56

MD25 474 L26 228 GNT#0 F3 AK28 NC 57

MD26 387 L27 229 PCI_AD29 G3 AK29 NC 58

MD27 292 L28 230 REQ#4 H3 AK30 NC 59

MD28 189 L29 231 PCI_AD24 J3 B1 PCLK3 2

MD29 78 L30 232 IDSEL K3 B2 PCLK4 117

MD30 291 M28 233 REQ#0 L3 B3 CPUValid# 224

MD31 188 M29 234 PCI_AD18 M3 B4 CntrValid# 223

MD32 77 M30 235 TRDY# N3 B5 SMC 222

MD33 472 N26 236 STOP# P3 B6 SysAD8 221

MD34 385 N27 237 NC R3 B7 SysAD11 220

MD35 290 N28 238 PCI_AD14 T3 B8 SysAD14 219

Table 47: Pinout Sorted By Signal Name, Pin Number, and Grid Number  (continued)
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Name

Alternate 
Signal

Pin 
#

Grid 
#

Pin 
#
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Name
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#
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MD36 187 N29 239 PCI_AD10 U3 B9 SysAD19 218

MD37 76 N30 240 PCI_AD8 V3 B10 SysAD22 217

MD38 289 P28 241 PCI_AD5 W3 B11 SysAD27 216

MD39 186 P29 242 PCI_AD3 Y3 B12 SysAD30 215

MD40 75 P30 243 LOC_AD31 PCI_AD63 AA3 B13 SysAD35 214

MD41 470 R26 244 GND AB3 B14 SysAD38 213

MD42 383 R27 245 LOC_AD25 PCI_AD57 AC3 B15 SysAD43 212

MD43 288 R28 246 PCLKIN AD3 B16 SysAD46 211

MD44 185 R29 247 AVDD AE3 B17 SysAD49 210

MD45 74 R30 248 GND AF3 B18 SysAD52 209

MD46 382 T27 249 LOC_AD18 PCI_AD50 AG3 B19 SysAD57 208

MD47 469 T26 250 LOC_AD16 PCI_AD48 AH3 B20 SysAD60 207

MD48 184 T29 251 GND AH4 B21 SysADC1 206

MD49 73 T30 252 LOC_BG# HLDA AH5 B22 SysADC4 205

MD50 72 U30 253 LOC_AD7 PCI_AD39 AH6 B23 SysCmd1 204

MD51 183 U29 254 LOC_AD4 PCI_AD36 AH7 B24 SysCmd4 203

MD52 286 U28 255 LOC_AD1 PCI_AD33 AH8 B25 SysCmd7 202

MD53 71 V30 256 GND AH9 B26 ScDOE# 201

MD54 182 V29 257 LOC_A0 C/BE#4 AH10 B27 Int#0 200

MD55 285 V28 258 LOC_WR# AH11 B28 Int#4 199

MD56 380 V27 259 LOC_BR# HOLD AH12 B29 NMI# 198

MD57 467 V26 260 DCS#6 see Table 
4 on page 
27

AH13 B30 NC 87

MD58 70 W30 261 DCS#3 see Table 
4 on page 
27

AH14 C1 GND 3

MD59 181 W29 262 NC AH15 C2 PCLK2 118

MD60 284 W28 263 VccOk AH16 C3 PCIRST# 225

MD61 69 Y30 264 UART_TxDRDY# AH17 C4 CntrVccOk 324

MD62 180 Y29 265 DQM AH18 C5 SysAD1 323

MD63 283 Y28 266 MAbank111 AH19 C6 SysAD5 322

MDC0 378 Y27 267 MAbank18 AH20 C7 SysAD9 321

MDC1 465 Y26 268 MAbank14 AH21 C8 SysAD12 320

MDC2 68 AA30 269 GND AH22 C9 SysAD17 319

MDC3 179 AA29 270 MAbank012 AH23 C10 SysAD21 318

MDC4 282 AA28 271 SysClock AH24 C11 SysAD26 317

MDC5 67 AB30 272 NC AH25 C12 SysAD29 316

MDC6 178 AB29 273 NC AH26 C13 SysAD34 315

MDC7 66 AC30 274 NC AH27 C14 SysAD37 314

ModeClock 300 C28 275 NC AH28 C15 SysAD42 313

ModeOut 197 C29 276 MAbank08 AG28 C16 NC 312

MRAS#0 280 AC28 277 GND AF28 C17 SysAD50 311

MRAS#1 175 AE29 278 MAbank01 AE28 C18 SysAD53 310

MRDY# 47 AK18 279 MCAS#1 AD28 C19 SysAD58 309

MWE#0 463 AB26 280 MRAS#0 AC28 C20 SysAD61 308

Table 47: Pinout Sorted By Signal Name, Pin Number, and Grid Number  (continued)
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MWE#1 64 AE30 281 NC AB28 C21 SysADC2 307

NC 29 AJ1 282 MDC4 AA28 C22 SysADC6 306

NC 237 R3 283 MD63 Y28 C23 SysCmd3 305

NC 1 A1 284 MD60 W28 C24 SysCmd6 304

NC 116 A2 285 MD55 V28 C25 WrRdy# 303

NC 312 C16 286 MD52 U28 C26 ScWord1 302

NC 88 A30 287 GND T28 C27 Int#3 301

NC 87 B30 288 MD43 R28 C28 ModeClock 300

NC 281 AB28 289 MD38 P28 C29 ModeOut 197

NC 59 AK30 290 MD35 N28 C30 MD0 86

NC 58 AK29 291 MD30 M28 D1 GND 4

NC 262 AH15 292 MD27 L28 D2 VDD 119

NC 30 AK1 293 MD22 K28 D3 GND 226

NMI# 198 B29 294 MD18 J28 D4 VDD 325

PAR 130 R2 295 MD13 H28 D5 Reset# 416

PCI64# 140 AE2 296 MD10 G28 D6 SysAD2 415

PCI_AD0 136 AA2 297 MD6 F28 D7 SysAD6 414

PCI_AD1 21 AA1 298 MD2 E28 D8 VDD 413

PCI_AD2 341 Y4 299 PROM_CLK D28 D9 SysAD16 412

PCI_AD3 242 Y3 300 ModeClock C28 D10 VDD 411

PCI_AD4 135 Y2 301 Int#3 C27 D11 SysAD25 410

PCI_AD5 241 W3 302 ScWord1 C26 D12 VDD 409

PCI_AD6 134 W2 303 WrRdy# C25 D13 SysAD33 408

PCI_AD7 19 W1 304 SysCmd6 C24 D14 VDD 407

PCI_AD8 240 V3 305 SysCmd3 C23 D15 SysAD41 406

PCI_AD9 133 V2 306 SysADC6 C22 D16 SysAD44 405

PCI_AD10 239 U3 307 SysADC2 C21 D17 VDD 404

PCI_AD11 132 U2 308 SysAD61 C20 D18 SysAD54 403

PCI_AD12 17 U1 309 SysAD58 C19 D19 VDD 402

PCI_AD13 337 T4 310 SysAD53 C18 D20 SysAD62 401

PCI_AD14 238 T3 311 SysAD50 C17 D21 VDD 400

PCI_AD15 131 T2 312 NC C16 D22 SysADC7 399

PCI_AD16 12 M1 313 SysAD42 C15 D23 VDD 398

PCI_AD17 127 M2 314 SysAD37 C14 D24 MCWrRdy# 397

PCI_AD18 234 M3 315 SysAD34 C13 D25 ScWord0 396

PCI_AD19 11 L1 316 SysAD29 C12 D26 Int#2 395

PCI_AD20 126 L2 317 SysAD26 C11 D27 VDD 394

PCI_AD21 332 L4 318 SysAD21 C10 D28 PROM_CLK 299

PCI_AD22 10 K1 319 SysAD17 C9 D29 MD1 196

PCI_AD23 125 K2 320 SysAD12 C8 D30 MD4 85

PCI_AD24 231 J3 321 SysAD9 C7 E1 PCI_AD31 5

PCI_AD25 330 J4 322 SysAD5 C6 E2 GNT#1 120

PCI_AD26 123 H2 323 SysAD1 C5 E3 GNT#4 227

PCI_AD27 122 G2 324 CntrVccOk C4 E4 PCLK0 326

PCI_AD28 6 F1 325 VDD D4 E5 GND 417

PCI_AD29 229 G3 326 PCLK0 E4 E6 ColdReset# 500

Table 47: Pinout Sorted By Signal Name, Pin Number, and Grid Number  (continued)
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Alternate 
Signal

Pin 
#

Grid 
#
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#
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Name

Alternate 
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#
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#
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Name
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#



PCI_AD30 121 F2 327 GNT#3 F4 E7 SysAD4 499

PCI_AD31 5 E1 328 GND G4 E8 GND 498

PCICR# 436 AD5 329 VDD H4 E9 SysAD15 497

PCIRST# 225 C3 330 PCI_AD25 J4 E10 GND 496

PCLK0 326 E4 331 VDD K4 E11 SysAD24 495

PCLK1 418 F5 332 PCI_AD21 L4 E12 GND 494

PCLK2 118 C2 333 VDD M4 E13 SysAD32 493

PCLK3 2 B1 334 C/BE#2 N4 E14 GND 492

PCLK4 117 B2 335 VDD P4 E15 SysAD40 491

PCLKIN 246 AD3 336 GND R4 E16 SysAD45 490

PERR# 20 Y1 337 PCI_AD13 T4 E17 GND 489

NC 141 AF2 338 VDD U4 E18 SysAD55 488

NC 26 AF1 339 C/BE#0 V4 E19 GND 487

NC 457 AF24 340 VDD W4 E20 SysAD63 486

NC 168 AJ26 341 PCI_AD2 Y4 E21 GND 485

NC 272 AH25 342 VDD AA4 E22 SysCmd0 484

NC 368 AG24 343 LOC_AD27 PCI_AD59 AB4 E23 GND 483

NC 275 AH28 344 VDD AC4 E24 GND 482

NC 274 AH27 345 AGND AD4 E25 GND 481

NC 370 AG26 346 LOC_AD21 PCI_AD53 AE4 E26 GND 480

NC 57 AK28 347 LOC_AD19 PCI_AD51 AF4 E27 PROM_SD 393

NC 169 AJ27 348 VDD AG4 E28 MD2 298

NC 273 AH26 349 LOC_AD11 PCI_AD43 AG5 E29 MD5 195

NC 369 AG25 350 VDD AG6 E30 MD8 84

NC 56 AK27 351 GND AG7 F1 PCI_AD28 6

PROM_CLK 299 D28 352 VDD AG8 F2 PCI_AD30 121

PROM_SD 393 E27 353 LOC_A4 PAR64 AG9 F3 GNT#0 228

REQ#0 233 L3 354 VDD AG10 F4 GNT#3 327

REQ#1 124 J2 355 LOC_RD# AG11 F5 PCLK1 418

REQ#2 8 H1 356 VDD AG12 F26 GND 479

REQ#3 7 G1 357 DCS#7 see Table 
4 on page 
27

AG13 F27 MD3 392

REQ#4 230 H3 358 VDD AG14 F28 MD6 297

Reset# 416 D5 359 INTB# AG15 F29 MD9 194

ScDOE# 201 B26 360 UART_DSR# AG16 F30 MD11 83

ScMatch 91 A27 361 VDD AG17 G1 REQ#3 7

ScWord0 396 D25 362 MAbank114 AG18 G2 PCI_AD27 122

ScWord1 302 C26 363 VDD AG19 G3 PCI_AD29 229

SERR# 14 P1 364 MAbank17 AG20 G4 GND 328

SMC 222 B5 365 VDD AG21 G5 GNT#2 419

STOP# 236 P3 366 MAbank10 AG22 G26 GND 478

SysAD0 115 A3 367 VDD AG23 G27 MD7 391

SysAD1 323 C5 368 NC AG24 G28 MD10 296

SysAD2 415 D6 369 NC AG25 G29 MD12 193

Table 47: Pinout Sorted By Signal Name, Pin Number, and Grid Number  (continued)

Signal 
Name

Alternate 
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SysAD3 114 A4 370 NC AG26 G30 MD14 82

SysAD4 499 E7 371 VDD AG27 H1 REQ#2 8

SysAD5 322 C6 372 MAbank07 AF27 H2 PCI_AD26 123

SysAD6 414 D7 373 MAbank04 AE27 H3 REQ#4 230

SysAD7 113 A5 374 GND AD27 H4 VDD 329

SysAD8 221 B6 375 VDD AC27 H5 GND 420

SysAD9 321 C7 376 MCS#0 AB27 H26 GND 477

SysAD10 112 A6 377 VDD AA27 H27 VDD 390

SysAD11 220 B7 378 MDC0 Y27 H28 MD13 295

SysAD12 320 C8 379 VDD W27 H29 MD15 192

SysAD13 111 A7 380 MD56 V27 H30 MD19 81

SysAD14 219 B8 381 VDD U27 J1 C/BE#3 9

SysAD15 497 E9 382 MD46 T27 J2 REQ#1 124

SysAD16 412 D9 383 MD42 R27 J3 PCI_AD24 231

SysAD17 319 C9 384 VDD P27 J4 PCI_AD25 330

SysAD18 110 A8 385 MD34 N27 J5 GND 421

SysAD19 218 B9 386 VDD M27 J26 MD16 476

SysAD20 109 A9 387 MD26 L27 J27 MD17 389

SysAD21 318 C10 388 VDD K27 J28 MD18 294

SysAD22 217 B10 389 MD17 J27 J29 MD20 191

SysAD23 108 A10 390 VDD H27 J30 MD21 80

SysAD24 495 E11 391 MD7 G27 K1 PCI_AD22 10

SysAD25 410 D11 392 MD3 F27 K2 PCI_AD23 125

SysAD26 317 C11 393 PROM_SD E27 K3 IDSEL 232

SysAD27 216 B11 394 VDD D27 K4 VDD 331

SysAD28 107 A11 395 Int#2 D26 K5 GND 422

SysAD29 316 C12 396 ScWord0 D25 K26 GND 475

SysAD30 215 B12 397 MCWrRdy# D24 K27 VDD 388

SysAD31 106 A12 398 VDD D23 K28 MD22 293

SysAD32 493 E13 399 SysADC7 D22 K29 MD23 190

SysAD33 408 D13 400 VDD D21 K30 MD24 79

SysAD34 315 C13 401 SysAD62 D20 L1 PCI_AD19 11

SysAD35 214 B13 402 VDD D19 L2 PCI_AD20 126

SysAD36 105 A13 403 SysAD54 D18 L3 REQ#0 233

SysAD37 314 C14 404 VDD D17 L4 PCI_AD21 332

SysAD38 213 B14 405 SysAD44 D16 L5 GND 423

SysAD39 104 A14 406 SysAD41 D15 L26 MD25 474

SysAD40 491 E15 407 VDD D14 L27 MD26 387

SysAD41 406 D15 408 SysAD33 D13 L28 MD27 292

SysAD42 313 C15 409 VDD D12 L29 MD28 189

SysAD43 212 B15 410 SysAD25 D11 L30 MD29 78

SysAD44 405 D16 411 VDD D10 M1 PCI_AD16 12

SysAD45 490 E16 412 SysAD16 D9 M2 PCI_AD17 127

SysAD46 211 B16 413 VDD D8 M3 PCI_AD18 234

SysAD47 102 A16 414 SysAD6 D7 M4 VDD 333

SysAD48 101 A17 415 SysAD2 D6 M5 GND 424

Table 47: Pinout Sorted By Signal Name, Pin Number, and Grid Number  (continued)
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SysAD49 210 B17 416 Reset# D5 M26 GND 473

SysAD50 311 C17 417 GND E5 M27 VDD 386

SysAD51 100 A18 418 PCLK1 F5 M28 MD30 291

SysAD52 209 B18 419 GNT#2 G5 M29 MD31 188

SysAD53 310 C18 420 GND H5 M30 MD32 77

SysAD54 403 D18 421 GND J5 N1 FRAME# 13

SysAD55 488 E18 422 GND K5 N2 IRDY# 128

SysAD56 99 A19 423 GND L5 N3 TRDY# 235

SysAD57 208 B19 424 GND M5 N4 C/BE#2 334

SysAD58 309 C19 425 GND N5 N5 GND 425

SysAD59 98 A20 426 GND P5 N26 MD33 472

SysAD60 207 B20 427 C/BE#1 R5 N27 MD34 385

SysAD61 308 C20 428 GND T5 N28 MD35 290

SysAD62 401 D20 429 GND U5 N29 MD36 187

SysAD63 486 E20 430 GND V5 N30 MD37 76

SysADC0 97 A21 431 GND W5 P1 SERR# 14

SysADC1 206 B21 432 GND Y5 P2 LOCK# 129

SysADC2 307 C21 433 GND AA5 P3 STOP# 236

SysADC3 96 A22 434 VDD AB5 P4 VDD 335

SysADC4 205 B22 435 GND AC5 P5 GND 426

SysADC5 95 A23 436 PCICR# AD5 P26 GND 471

SysADC6 306 C22 437 GND AE5 P27 VDD 384

SysADC7 399 D22 438 GND AF5 P28 MD38 289

SysClock 271 AH24 439 LOC_AD12 PCI_AD44 AF6 P29 MD39 186

SysCmd0 484 E22 440 GND AF7 P30 MD40 75

SysCmd1 204 B23 441 GND AF8 R1 GND 15

SysCmd2 94 A24 442 VDD AF9 R2 PAR 130

SysCmd3 305 C23 443 GND AF10 R3 NC 237

SysCmd4 203 B24 444 GND AF11 R4 GND 336

SysCmd5 93 A25 445 GND AF12 R5 C/BE#1 427

SysCmd6 304 C24 446 GND AF13 R26 MD41 470

SysCmd7 202 B25 447 GND AF14 R27 MD42 383

SysCmd8 92 A26 448 GND AF15 R28 MD43 288

TEST# 55 AK26 449 GND AF16 R29 MD44 185

TEST_SEL 54 AK25 450 GND AF17 R30 MD45 74

TRDY# 235 N3 451 MAbank113 AF18 T1 VDD 16

UART_DSR# 360 AG16 452 GND AF19 T2 PCI_AD15 131

UART_DTR# 46 AK17 453 GND AF20 T3 PCI_AD14 238

UART_RxDRDY# 159 AJ17 454 GND AF21 T4 PCI_AD13 337

UART_TxDRDY# 264 AH17 455 MAbank014 AF22 T5 GND 428

VccOk 263 AH16 456 GND AF23 T26 MD47 469

VDD 16 T1 457 NC AF24 T27 MD46 382

VDD 28 AH1 458 AVDD AF25 T28 GND 287

VDD 119 D2 459 GND AF26 T29 MD48 184

VDD 325 D4 460 GND AE26 T30 MD49 73

Table 47: Pinout Sorted By Signal Name, Pin Number, and Grid Number  (continued)
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VDD 329 H4 461 VDD AD26 U1 PCI_AD12 17

VDD 331 K4 462 GND AC26 U2 PCI_AD11 132

VDD 333 M4 463 MWE#0 AB26 U3 PCI_AD10 239

VDD 335 P4 464 GND AA26 U4 VDD 338

VDD 338 U4 465 MDC1 Y26 U5 GND 429

VDD 340 W4 466 GND W26 U26 GND 468

VDD 342 AA4 467 MD57 V26 U27 VDD 381

VDD 344 AC4 468 GND U26 U28 MD52 286

VDD 348 AG4 469 MD47 T26 U29 MD51 183

VDD 350 AG6 470 MD41 R26 U30 MD50 72

VDD 352 AG8 471 GND P26 V1 DEVSEL# 18

VDD 354 AG10 472 MD33 N26 V2 PCI_AD9 133

VDD 356 AG12 473 GND M26 V3 PCI_AD8 240

VDD 358 AG14 474 MD25 L26 V4 C/BE#0 339

VDD 361 AG17 475 GND K26 V5 GND 430

VDD 363 AG19 476 MD16 J26 V26 MD57 467

VDD 365 AG21 477 GND H26 V27 MD56 380

VDD 367 AG23 478 GND G26 V28 MD55 285

VDD 371 AG27 479 GND F26 V29 MD54 182

VDD 375 AC27 480 GND E26 V30 MD53 71

VDD 377 AA27 481 GND E25 W1 PCI_AD7 19

VDD 379 W27 482 GND E24 W2 PCI_AD6 134

VDD 381 U27 483 GND E23 W3 PCI_AD5 241

VDD 384 P27 484 SysCmd0 E22 W4 VDD 340

VDD 386 M27 485 GND E21 W5 GND 431

VDD 388 K27 486 SysAD63 E20 W26 GND 466

VDD 390 H27 487 GND E19 W27 VDD 379

VDD 394 D27 488 SysAD55 E18 W28 MD60 284

VDD 398 D23 489 GND E17 W29 MD59 181

VDD 400 D21 490 SysAD45 E16 W30 MD58 70

VDD 402 D19 491 SysAD40 E15 Y1 PERR# 20

VDD 404 D17 492 GND E14 Y2 PCI_AD4 135

VDD 407 D14 493 SysAD32 E13 Y3 PCI_AD3 242

VDD 409 D12 494 GND E12 Y4 PCI_AD2 341

VDD 411 D10 495 SysAD24 E11 Y5 GND 432

VDD 413 D8 496 GND E10 Y26 MDC1 465

VDD 434 AB5 497 SysAD15 E9 Y27 MDC0 378

VDD 442 AF9 498 GND E8 Y28 MD63 283

VDD 461 AD26 499 SysAD4 E7 Y29 MD62 180

WrRdy# 303 C25 500 ColdReset# E6 Y30 MD61 69

Table 47: Pinout Sorted By Signal Name, Pin Number, and Grid Number  (continued)
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18.0 Package

Figure 49 shows the controller’s 500-pin TBGA package. 



Figure 49:   500-Pin TBGA Package
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Appendix A Revision 2 Errata
The following bugs or revision-specific states exist for Revision 2 of the controller. 

A.1

Serial Configuration 
Stream

The controller generates the default serial configuration stream incorrectly (See Sec-
tion 12.4.2). Use an external Serial Mode EEPROM, connected to the controller. There 
is no need to connect a Serial Mode EEPROM to the CPU. 

A.2

PCI-Bus Interface

A.2.1

Revision ID
The PCI Revision ID register has the value 0x02. 

A.2.2

PCI Timing Problems
The PCI bus does not meet the 66 MHz PCI specification, due to setup/hold timing on 
a variety of signals. Thus, the PCI Bus cannot be clocked at 66 MHz. 

A.2.3

PCI Loopback Reads
If the controller initiates a PCI read, and the target is the same controller, bad things 
happen. This bug applies to all PCI reads, including PCI configuration cycles.

For example, the CPU can only read the controller’s PCI configuration registers by 
accessing them directly with the internal address described in Section 7.12. The CPU 
cannot access these registers via PCI configuration cycles on the PCI Bus. 

A.2.4

PCI LOCK#
The controller does not generate or respond to PCI locked cycles. If PCI locked cycles 
are being used by other devices in the system, the LOCK# signal on controller should 
be tied off (driven with a constant value 0 or 1), otherwise controller may not properly 
complete delayed transactions as a target. 

If multiple VRC5074 controllers are connected to a CPU, both controllers can be con-
nected to LOCK# if LOCK# is pulled up. 

A.2.5

PCI Address Parity 
Error

When a parity error occurs during an access by a PCI-Bus master to the controller as 
target, the controller accepts the access. Here's what happens:

1. The external master does an access (e.g. a write) to somewhere. During the 
address phase there is a parity error. This means the address is corrupted, and this 
access should be ignored by all targets! (but see Section 3.8.2.2. in the PCI Local 
Bus Specification.)

2. The controller decodes the corrupted address and thinks this access is for it. The 
controller completes the access (if a write to SDRAM, then bad data gets written).



The controller can assert SERR# and/or interrupt the CPU when a PCI address error 
occurs, as described in Section 7.5.4. This should be considered a catastrophic sys-
tem error. Reset is an appropriate response.

Most or all PCI targets will respond normally to a PCI access with an address parity 
error. Also most PC systems will assert NMI#, causing a system panic or reset.

A.2.6

PCI Target Prefetch 
May Cause OUTFIFO 
Overrun

When a PCI read is performed with the controller as the target, and prefetching is 
enabled with the PREFETCHABLE bit in the PCI Master (Initiator) Control Registers 
(PCIINITn, Section 7.11.3), a data overrun may occur in the OUTFIFO. Prefetching 
must not be used on PCI target reads. This means: 

� The PREFETCHABLE bit must be cleared in the Base Address Register. See 
Section 7.13.10.

� Memory Read Line and Memory Read Multiple commands must not be used. 
Only Memory Read should be used.

If both the PREFETCHABLE bit and the cache line size register (CLSIZ, Section 
7.13.7) are cleared to 0, Memory Read and Memory Read Multiple commands may still 
cause overruns, but only if there are many pending PCI writes that use up the OUT-
FIFO’s 32-dword capacity. 

For example, writing 8 to the CLSIZ register causes the controller to fetch 8 words (4 
dwords) during PCI target reads, using four dword entries in the OUTFIFO. There can 
be a maximum of four outstanding reads, which would use 16 of the OUTFIFO’s 32 
dword entries. In this case, an OUTFIFO overrun will occur if there are, at the same 
time, more than four outstanding PCI writes. 

See Section 7.4.4.2 for more information on prefetching during target reads.

A.3

Secondary Cache in 
Multi-Controller 
Configuration

Section 5.3 describes the controller’s operation with multiple external agents. When L2 
cache is enabled there can be problems with the ScDOE# signal driven by the control-
ler: 

� There must be multiple controllers (e.g. multiple external agents A and B). 

� L2 cache must be enabled.

� Agent B must be a VRC5074 controller. Agent A may be a controller or a 
compatible device.

� If L2 cache miss occurs on a block read to agent A, that agent responds with the 
correct read data. Thereafter, whenever a non-block read is performed to agent B, 
the ScDOE# signal is incorrectly left high (negated) at the end of the transaction. 
This can cause subsequent transactions to be corrupted.

There are several workarounds:

� Do not allow cacheable accesses to agent A.

� After any cacheable access to agent A, the first access to agent B must be a block 
read cache miss. This will cause the state of ScDOE# to be set properly.

� Agent B must be the Main Controller (see Section 5.3.2). After any cacheable 



access to agent A, the first access to agent B must cause a CPU-Bus Read 
Timeout (seeSection 5.3.3). This will cause the state of ScDOE# to be set 
properly.

� Put a strong pulldown resistor on ScDOE#. After agent B leaves ScDOE# in a 
high state, there are a minimum of three idle clocks before ScDOE# must be low 
for a subsequent cache hit.

A.4

UART External 
Clock

Section 10.2 and Section 8.6.3 describe how DCS#[5] can optionally be configured as 
the UART_XIN signal. This feature does not work. The UART must be clocked with the 
internally-generated UART clock (SYS_CLK divided by 12).





Appendix B Index
Numerics

MCAS#,  23
MCS#,  23
MRAS#,  23
MWE#,  23
ScCWE#,  38
ScDCE#,  38
ScWord,  22, 38
MAbank0,  23
MAbank1,  23
ScLine,  38
CLKSEL,  92
DSC#,  29
C/BE#,  24
DSC#,  29
LOC_A,  25, 119
LOC_AD,  25, 28
PCI_AD,  25
DSC#,  29
GNT#,  24, 25
LOC_A,  25, 119, 27
PCLK,  25, 26, 90
REQ#,  25, 26
DCS#,  137
DSC#,  29
Int#,  21, 37
DSC#,  29
MD,  23
PCI_AD,  25
SysAD,  22, 38
64-Bit PCI Bus,  87
66M,  108
C/BE#,  24, 25, 27
DSC#,  29
MDC,  23
SysADC,  22, 38
DCS,  110, 114
DCS#,  27, 132
DSC#,  29
SysCmd,  22, 38

A

AC Specifications,  194
ACCESS_32,  101
ACCT,  74
ACK64#,  24, 25
ACSTIME,  72, 74
ADDR,  48, 49, 81, 103
Address Decoding Example,  49, 81
Address Mapping,  69
Address Space Summary,  36
Address-Multiplexing Modes,  68
AERIN,  97
AERSE,  95

ARBDISABLE,  100
ARBEN,  121
Arbitration,  89, 98

Local Bus,  118
Arbitration Priority,  99
ARBMODE,  118, 121

B

Bank-Interleaved SDRAM,  66
Bank-Interleaving,  67
Banks

Physical,  67
Virtual,  67

BAR0,  105, 110
BAR1,  106, 110
BAR2,  106, 110
BAR3,  106, 110
BAR4,  106, 110
BAR5,  106, 110
BAR6,  106, 110
BAR7,  106, 110
BAR8,  106, 110
BARB,  106, 110
BARC,  105, 110
BARn,  110
Base Address,  150
Base Address Registers,  110
BASEADDR,  111
BASECL,  110
baud rate,  138
BCST,  121, 129
BE,  41
BI,  144
BigEndian,  21, 37, 41, 150
BLKSIZE,  133
BLOCK_PFB,  103
BMASEN,  107
Boot Chip-Select,  45
Boot ROM,  64, 150
Boot ROM Location,  154
Boot ROM Size,  154
BOOTCS,  45, 64, 110
BootCS#,  23, 27
Branches to Unaligned Addresses,  41
Burst length,  68
burst transfers,  78, 113
Bus Width,  13
BUSIDLE,  124, 129
Byte-Merging,  82
BZ,  135

C

Cache,  39, 40
Cache Errata,  214
CAS latency,  68, 71



CAS-before-RAS refresh,  71
CEADDR,  74
Central Resource Functions,  88
CESYN,  75
Chip-Select,  114
CHKDIS,  72, 73
CHKERR,  72, 74
CHKMODE,  72, 73
CLASS,  105, 110
CLDRST,  50, 149
Clocking,  90

UART,  138
CLSIZ,  105, 110
CNTDEN,  52
CNTDPRI,  52
CntrValid#,  21, 38, 39
CntrVccOk,  21, 38
COFHOLD,  124, 129
Cold Reset,  149
ColdReset#,  21, 37, 149
COMBINING,  102
Combining,  82
CON_POL,  125, 129
CONFIGTYPE,  102
Configuration,  103
CONOFF,  124, 129
CONS0,  99
CONS0n,  99
CONS1,  99
CONS2,  100
CONSET,  123, 129
controller,  19
Controller Boot ROM Location,  154
Controller Boot ROM Size,  154
Controller ID,  150
Controller PCI Clock Speed,  154
CONWID,  123, 129
CPCEEN,  40, 52
CPCEPRI,  52
CPU Accesses to Local Memory,  162
CPU and Controller Initialization,  151
CPU Configuration,  37
CPU Delayed Read Completion (DRC) Buffer,  

79
CPU Interface,  1
CPU Interface Registers,  31, 37, 50
CPU No-Target Decode,  148
CPU Parity Errors,  148
CPU Reads,  40
CPU Status,  50
CPU Status Register,  50
CPU Write FIFO,  64
CPU-Bus Read Time-Out Control Register,  

59
CPU-Bus Read Time-Out Counter Register,  

60
CPU-Bus Signals,  21, 37

CPUHOG,  92, 122
CPU-Interface Data Path,  38
CPU-Interface FIFO,  38, 39
CPUSTAT,  50
CPUValid#,  21, 38
CS_POL,  125, 129
CSOFF,  123, 129
CSON,  122, 129
CTRLNUM,  51
CTS,  145

D

DAC,  88
Data Aligner,  131
daughter board,  16
DCD,  145
DCS2,  45
DCS3,  45
DCS4,  45
DCS5,  45
DCS6,  45
DCS7,  45
DCS8,  45
DCSFN,  121
DCSFN2,  125
DCSFN3,  126
DCSFN4,  126
DCSFN5,  126
DCSFN6,  127
DCSFN7,  127
DCSFN8,  128
DCSIO,  121, 128
DCSL2IN,  128
DCSL3IN,  128
DCSL4IN,  128
DCSL5IN,  128
DCSL6IN,  128
DCSL7IN,  128
DCSL8IN,  129
DCSLOUT,  129
DCTS,  144
DDCD,  145
DDSR,  144
DEFGNT,  100
DESINC,  134
Device Chip Selects,  45
Device Chip-Select Configuration,  114
Device Chip-Select Function Register,  125
Device Chip-Selects as I/O Bits Register,  128
DEVSEL,  109
DEVSEL#,  24
DID,  105, 107
DIMMs,  68
DISCPUPC,  40, 51
DISCTIM,  93
DISMRDY,  74
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DMA,  3
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DMACTRL0,  133
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DMADESA0,  133
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DPE,  109
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DR,  144
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FBBC,  108
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I/O
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Initialization,  149
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INTC#,  24
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Internal Registers and Devices,  45
Interrupt Clear,  50
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Interrupt Status 1/CPU Interrupt Enable 
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INTSTAT0,  50, 55
INTSTAT1,  50, 55
IOEN,  107
IRDY#,  24
IS_CPU,  103
ISCLR,  57
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LOC_BR#,  28
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Local-Bus Timing,  116
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LOCK,  102
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MAINCTRL,  52
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PCI Bus 64-Bit vs. Local Bus,  120
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PCI Class Code Register,  110
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PCI Command Register,  107
PCI Commands Supported,  80
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PCI Configuration Space Cycles,  103
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PCI Control Register,  91
PCI Data Paths,  80
PCI Device ID Register,  107
PCI Error Register,  103
PCI Header Type Register,  110
PCI I/O Space Cycles,  85
PCI Input FIFO,  79
PCI Internal Error,  148
PCI Interrupt Control Register,  57



PCI Interrupt Line Register,  112
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PCI Interrupts,  148
PCI Latency Timer Register,  110
PCI LOCK# Errata,  213
PCI Locked Cycles,  91
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PCI Output FIFO,  79
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PCI Stand-Alone Mode,  13, 19
PCI Status Register,  108
PCI Sub-System ID,  111
PCI Sub-System Vendor ID,  111
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PCI Timing Errata,  213
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PCI Warm Reset,  149
PCI Write FIFO,  64
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PCIARB,  91, 98
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PCI-Bus Configuration and Monitoring,  78
PCI-Bus Interface and Registers,  78
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PCI-Bus Signals,  24
PCI-Bus Width,  13
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PCIEEN,  54
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PCI-Target Reads,  86
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PERIN,  96
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PLL_SYNC,  97
Power-Up Reset,  149
PRDERR,  135
PREFETCHABLE,  86, 102, 111
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REQ64#,  25, 26
Reset,  149
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REVID,  105, 109
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RFUa,  45
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TEST_SEL,  30
Testing,  190
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UART_RxDRDY#,  29
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UARTLSR,  139, 144
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UARTMSR,  139, 144
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UARTRBR,  139
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UARTTHR,  139
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UDRDERR,  135
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USP,  142
UTFRST,  141
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Warm Reset,  149
WARMRST,  50, 149
Watchdog Timer,  148
Watchdog Timer Control Register,  61
Watchdog Timer Counter Register,  62
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WDOGEN,  53
WDOGPRI,  53
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