4-BIT SINGLE-CHIP MICROCONTROLLERS

The μ PD753208 is one of the 75 XL Series 4 -bit single-chip microcontrollers and has a data processing capability comparable to that of an 8-bit microcontroller.

The μ PD753208 has an on-chip LCD controller/driver and is based on the μ PD75308B of the 75X Series. However, the μ PD75308B is supplied in an 80 -pin package, whereas the μ PD753208 is supplied in a 48pin package (375 mils, $0.65-\mathrm{mm}$ pitch) and therefore is suitable for small-scale application systems. In addition, the μ PD753208 features expanded CPU functions and performs high-speed operations at a low voltage of 1.8 V .

Detailed information about functions can be found in the following user's manual. Be sure to read it before designing. μ PD753208 User's Manual: U10158E

Features

- Low-voltage operation: $\mathrm{VDD}=1.8$ to 5.5 V
- Can be driven by two 1.5-V batteries
- Internal memory
- Program memory (ROM):
4096×8 bits (μ PD753204)
6144×8 bits $(\mu$ PD753206)
8192×8 bits (μ PD753208)
- Data memory (RAM): 512×4 bits
- Variable instruction execution time for high-speed operation and power saving operation
- 0.95, 1.91, 3.81, 15.3 $\mu \mathrm{s}$ (@ 4.19-MHz operation)
- 0.67, 1.33, 2.67, 10.7 $\mu \mathrm{s}$ (@ 6.0-MHz operation)
- Internal programmable LCD controller/driver
- Small package:

48-pin plastic shrink SOP (375 mils, $0.65-\mathrm{mm}$ pitch)

- One-time PROM version: μ PD75P3216

Applications

Remote controllers, Cameras, Sphygnomamometers, Compact-disc radio cassette player compo systems, gas meters, etc.

Ordering Information

Part number	Package	ROM ($\times 8$ bits)
μ PD753204GT- $\times \times \times$	48-pin plastic shrink SOP (375 mils, 0.65-mm pitch)	4096
μ PD753206GT- $\times \times \times$	48-pin plastic shrink SOP (375 mils, 0.65-mm pitch)	6144
μ PD753208GT $-\times \times \times$	48-pin plastic shrink SOP (375 mils, $0.65-\mathrm{mm}$ pitch)	8192

Remark $x X x$ indicates ROM code suffix.

Unless otherwise specified, references in this data sheet to the μ PD753208 mean the μ PD753204 and the μ PD753206.

The information in this document is subject to change without notice.

Function Outline

CONTENTS

1. PIN CONFIGURATION (TOP VIEW) 5
2. BLOCK DIAGRAM 6
3. PIN FUNCTIONS 7
3.1 Port Pins 7
3.2 Non-Port Pins 9
3.3 Pin Input/Output Circuits 11
3.4 Recommended Connections for Unused Pins 13
4. SWITCHING FUNCTION BETWEEN Mk I MODE AND Mk II MODE 14
4.1 Difference Between Mk I and Mk II Modes 14
4.2 Setting Method of Stack Bank Select Register (SBS) 15
5. MEMORY CONFIGURATION 16
6. PERIPHERAL HARDWARE FUNCTION 21
6.1 Digital I/O Port 21
6.2 Clock Generator 22
6.3 Clock Output Circuit 23
6.4 Basic Interval Timer/Watchdog Timer 24
6.5 Watch Timer 25
6.6 Timer/Event Counter 26
6.7 Serial Interface 30
6.8 LCD Controller/Driver 32
6.9 Bit Sequential Buffer 34
7. INTERRUPT FUNCTION AND TEST FUNCTION 35
8. STANDBY FUNCTION 37
9. RESET FUNCTION 38
10. MASK OPTION 41
11. INSTRUCTION SET 42
12. ELECTRICAL SPECIFICATIONS 56
13. CHARACTERISTIC CURVES (REFERENCE VALUES) 68
14. PACKAGE DRAWINGS 70
15. RECOMMENDED SOLDERING CONDITIONS 71
APPENDIX A μ PD753108, 753208, AND 75P3216 FUNCTIONAL LIST 72
APPENDIX B DEVELOPMENT TOOLS 74
APPENDIX C RELATED DOCUMENTS 77

1. PIN CONFIGURATION (TOP VIEW)

- 48-pin plastic shrink SOP (375 mils, $0.65-\mathrm{mm}$ pitch)
μ PD753204GT- $-\times \times \times, \mu$ PD753206GT $-\times \times \times$,
μ PD753208GT- $\times \times \times$

Note Connect IC (Internally Connected) pin directly to VDd.

Pin Identification

P00 to P03	: Port0	S12 to S23	Segment Output 12 to 23
P10, P13	: Port1	Vlco to Vlc2	: LCD Power Supply 0 to 2
P20 to P23	: Port2	BIAS	: LCD Power Supply Bias Control
P30 to P33	: Port3	LCDCL	: LCD Clock
P50 to P53	: Port5	SYNC	: LCD Synchronization
P60 to P63	: Port6	TIO	: Timer Input 0
P80 to P83	: Port8	PTO0 to PTO2 : Programmable Timer Output 0 to 2	
P90 to P93	: Port9	BUZ	: Buzzer Clock
KR0 to KR3	: Key Return 0 to 3	PCL	: Programmable Clock
COM0 to COM3	: Common Output 0 to 3	INT0, INT4	: External Vectored Interrupt 0, 4
$\overline{\text { SCK }}$: Serial Clock	X1, X2	: System Clock Oscillation 1, 2
SI	: Serial Input	RESET	: Reset
SO	: Serial Output	IC	: Internally Connected
SB0, SB1	: Serial Data Bus 0, 1	Vdd	: Positive Power Supply
		Vss	: Ground

2. BLOCK DIAGRAM

Note The ROM capacity depends on the product.

3. PIN FUNCTION

3.1 Port Pins (1/2)

Pin Name	Input/Output	Alternate Function	Function	$\begin{gathered} \hline \text { 8-bit } \\ \text { I/O } \end{gathered}$	After Reset	I/O Circuit TYPE Note 1
P00	Input	INT4	4-bit input port (PORTO). For P01 to P03, on-chip pull-up resistors can be specified by software in 3-bit units.	No	Input	(B)
P01	Input/Output	$\overline{\text { SCK }}$				(F)-A
P02	Input/Output	SO/SB0				(F)-B
P03	Input/Output	SI/SB1				(M) - C
P10	Input	INTO TIO	Input port in 1 bit unit (PORT1). On-chip pull-up resistors can be specified by software in 2-bit units. Noise elimination circuit can be specified with P10/INTO.	No	Input	(B)-C
P20	Input/Output	PTO0	4-bit input/output port (PORT2). On-chip pull-up resistors can be specified by software in 4-bit units.	No	Input	E-B
P21		PTO1				
P22		PCL/PTO2				
P23		BUZ				
P30	Input/Output	LCDCL	Programmable 4-bit input/output port (PORT3). This port can be specified input/output bitwise. On-chip pull-up resistor can be specified by software in 4-bit units.	No	Input	E-B
P31		SYNC				
P32		-				
P33		-				
$\begin{aligned} & \text { P50 to } \\ & \text { P53 Note } 2 \end{aligned}$	Input/Output	-	N-ch open-drain 4-bitinput/outputport (PORT5). A pull-up resistor can be contained bit-wise (mask option). Withstand voltage is 13 V in open-drain mode.	No	High level (when pullup resistors are provided) or highimpedance	M-D

Notes 1. Characters in parentheses indicate the Schmitt-trigger input.
2. If on-chip pull-up resistors are not specified by mask option (when used as N-ch open-drain input port), low level input leakage current increases when input or bit manipulation instruction is executed.

3.1 Port Pins (2/2)

Pin Name	Input/Output	Alternate Function	Function	8-bit I/O	After Reset	I/O Circuit TYPE Note 1
P60	Input/Output	KR0	Programmable 4-bit input/output port (PORT6). This port can be specified for input/output bitwise. On-chip pull-up resistors can be specified by software in 4-bit units.	No	Input	(F)-A
P61		KR1				
P62		KR2				
P63		KR3				
P80	Input/Output	S23	4-bit input/output port (PORT8). On-chip pull-up resistors can be specified by software in 4-bit units. Note 2	Yes	Input	H
P81		S22				
P82		S21				
P83		S20				
P90	Input/Output	S19	4-bit input/output port (PORT9). On-chip pull-up resistors can be specified by software in 4-bit units. Note 2		Input	H
P91		S18				
P92		S17				
P93		S16				

Notes 1. Characters in parentheses indicate the Schmitt-trigger input.
2. Do not connect on-chip pull-up resistors specified by software when using as segment signal output pins.

3.2 Non-Port Pins (1/2)

Pin Name	Input/Output	Alternate Function	Function		After Reset	I/O Circuit TYPE Note 1	
TIO	Input	P13	Inputs external event pulses to the timer/event counter.		Input	(B)-C	
PTO0	Output	P20	Timer/event counter output		Input	E-B	
PTO1		P21	Timer counter output				
PTO2		P22/PCL					
PCL		P22/PTO2	Clock output				
BUZ		P23	Optional frequency output (for buzzer output or system clock trimming)				
$\overline{\text { SCK }}$	Input/Output	P01	Serial clock input/output			Input	(F)-A
SO/SB0		P02	Serial data output Serial data bus input/output		(F)-B		
SI/SB1		P03	Serial data input Serial data bus input/output		(M)-C		
INT4	Input	P00	Edge detection vectored interrupt input (both rising edge and falling edge detection)		Input	(B)	
INTO	Input	P10	Edge detection vectored interrupt input (detection edge can be selected). Noise elimination circuit can be specified.	With clock elimination circuit/asynchronous selectable	Input	(B)-C	
KR0 to KR3	Input/Output	P60 to P63	Falling edge detection testable input		Input	(F)-A	
S12 to S15	Output	-	Segment signal output		Note 2	G-A	
S16 to S19	Output	P93 to P90	Segment signal output		Input	H	
S20 to S23	Output	P83 to P80	Segment signal output		Input	H	
COM0 to COM3	Output	-	Common signal output		Note 2	G-B	
V LCo to V LC2	-	-	LCD drive power On-chip split resistor is enable (mask option).		-	-	
BIAS	Output	-	Output for external split resistor disconnect		Note 3	-	
LCDCL ${ }^{\text {Note } 4}$	Input/Output	P30	Clock output for externally expanded driver		Input	E-B	
SYNC Note 4	Input/Output	P31	Clock output for externally expanded driver sync		Input	E-B	

Notes 1. Characters in parentheses indicate the Schmitt trigger input.
2. Each display output selects the following VLCX as input source. S12 to S15: Vlc1, COM0 to COM2: Vlc2, COM3: Vlco.
3. When a split resistor is contained Low level When no split resistor is contained High-impedance
4. These pins are provided for future system expansion.

At present, these pins are used only as pins P30 and P31.

3.2 Non-Port Pins (2/2)

Pin Name	Input/Output	Alternate Function	Function	After Reset	I/O Circuit TYPE Note 1
X1	Input	-	Crystal/ceramic connection pin for the system clock oscillator. When inputting the external clock, input the external clock to pin X1, and the reverse phase of the external clock to pin X2.	-	-
X2	-	-	System reset input (low-level active)		
$\overline{\text { RESET }}$	Input	-	Internally connected. Connect directly to VDD.	-	-
IC	-	-	Positive power supply	-	-
$V_{D D}$	-	-	Ground potential	-	-
VSs	-	-		-	

Note Characters in parentheses indicate the Schmitt-trigger input.

3.3 Pin Input/Output Circuits

The μ PD753208 pin input/output circuits are shown schematically.

3.4 Recommended Connections for Unused Pins

Table 3-1. List of Recommended Connections for Unused Pins

Pin	Recommended Connection
P00/INT4	Connect to Vss or Vdo
P01/ $\overline{\text { SCK }}$	Connect individually to Vss or Vdo via a resistor
P02/SO/SB0	
P03/SI/SB1	Connect to Vss
P10/INT0	Connect to Vss or Vdo
P13/TIO	
P20/PTO0	Input state: Connect individually to $V_{S S}$ or VDD via a resistor Output state: No connection
P21/PTO1	
P22/PCL/PTO2	
P23/BUZ	
P30/LCDCL	
P31/SYNC	
P32	
P33	
P50 to P53	Input state : Connect to $V_{s s}$ Output state : Connect to $V_{s s}$ (Do not connect pull-up resistor in the mask option)
P60/KR0 to P63/KR3	Input state : Connect individually to $V_{s s}$ or VDD via a resistor Output state : No connection
S0 to S15	No connection
COM0 to COM3	
S16/P93 to S19/P90	Input state: Connect individually to Vss or Vod via a resistor Output state: No connection
S20/P83 to S23/P80	
VLCo to VLC2	Connect to Vss
BIAS	Only if all of V_{Lc} to $\mathrm{V}_{\mathrm{LC} 2}$ are unused, connect to $\mathrm{V}_{\text {ss }}$. In other cases, no connection.
IC	Connect to Vdo directly

4 SWITCHING FUNCTION BETWEEN Mk I MODE AND Mk II MODE

4.1 Difference Between Mk I and Mk II Modes

The CPU of the μ PD753208 has the following two modes: Mk I and Mk II, either of which can be selected. The mode can be switched by bit 3 of the Stack Bank Select register (SBS).

- Mk I mode: Upward compatible with the μ PD75308B. Can be used in the 75XL CPU with a ROM capacity of up to 16 Kbytes.
- Mk II mode: Incompatible with μ PD75308B. Can be used in all the 75XL CPU including those products whose ROM capacity is more than 16 Kbytes.

Table 4-1. Differences between Mk I Mode and Mk II Mode

	Mk I mode	Mk II mode
Number of stack bytes for subroutine instructions	2 bytes	3 bytes
BRA! addr1 instruction CALLA! addr1 instruction	Not available	Available
CALL!addr instruction	3 machine cycles	4 machine cycles
CALLF! faddr instruction	2 machine cycles	3 machine cycles

* Caution The MkII mode supports a program area exceeding 16 Kbytes for the 75X and 75XL Series. Software compatibility with products whose program memory exceeds 16 Kbytes can be raised by using this mode.
When the MkII mode is selected, the number of stack bytes increases by one byte per stack during subroutine call instruction execution compared with the MkI mode. When the !faddr instruction is used, the length of each machine cycle increases by 1 machine cycle. Therefore, if RAM efficiency or processing speed is emphasized over software compatibility, use of the MkI mode is recommended.

4.2 Setting Method of Stack Bank Select Register (SBS)

Switching between the Mk I mode and Mk II mode can be done by the SBS. Figure 4-1 shows the format.
The SBS is set by a 4-bit memory manipulation instruction. When using the Mk I mode, the SBS must be initialized to $100 \times \mathrm{B}^{\text {Note }}$ at the beginning of a program. When using the MkII mode, it must be initialized to $000 \times \mathrm{B}^{\text {Note }}$.

Note The desired numbers must be set in the \times positions.

Figure 4-1. Stack Bank Select Register Format

Caution Since SBS. 3 is set to "1" after a RESET signal is generated, the CPU operates in the Mk I mode. When executing an instruction in the Mk II mode, set SBS. 3 to " 0 " to select the Mk II mode.

5. MEMORY CONFIGURATION

- Program Memory (ROM) 4096×8 bits (μ PD753204)
.... 6144×8 bits (μ PD753206)
.... 8192×8 bits (μ PD753208)
- Addresses 0000 H and 0001 H

Vector table wherein the program start address and the values set for the RBE and MBE at the time a $\overline{\text { RESET }}$ signal is generated are written. Reset and start are possible at an arbitrary address.

- Addresses 0002H to 000DH

Vector table wherein the program start address and values set for the RBE and MBE by the vectored interrupts are written. Interrupt execution can be started at an arbitrary address.

- Addresses 0020H to 007FH

Table area referenced by the GETI instruction ${ }^{\text {Note }}$.

Note The GETI instruction realizes a 1-byte instruction on behalf of an arbitrary 2-byte instruction, 3-byte instruction, or two 1-byte instructions. It is used to decrease the program steps.

- Data Memory (RAM)

- Data area ... 512 words $\times 4$ bits (000 H to 1 FFH)
- Peripheral hardware area ... 128 words $\times 4$ bits (F80H to FFFH)

Figure 5-1. Program Memory Map (1/3)
(a) μ PD753204

Note Can be used only in the Mk II mode.

Remark In addition to the above, a branch can be taken to the address indicated by changing only the low-order eight bits of PC by executing the BR PCDE or BR PCXA instruction.

Figure 5-1. Program Memory Map (2/3)
(b) μ PD753206

Note Can be used only in the Mk II mode.

Remark In addition to the above, a branch can be taken to the address indicated by changing only the low-order eight bits of PC by executing the BR PCDE or BR PCXA instruction.

Figure 5-1. Program Memory Map (3/3)
(c) μ PD753208

Note Can be used only in the Mk II mode.

Remark In addition to the above, a branch can be taken to the address indicated by changing only the low-order eight bits of PC by executing the BR PCDE or BR PCXA instruction.

Figure 5-2. Data Memory Map

Note As a stack area, either memory bank 0 or 1 can be selected.

6. PERIPHERAL HARDWARE FUNCTION

6.1 Digital I/O Port

There are three kinds of I/O ports.

- CMOS input ports (Ports 0,1) : 6
- CMOS input/output ports (Ports 2, 3, 6, 8, 9) : 20

- N-ch open-drain input/output ports (Port 5)	$: 4$
Total	30

Table 6-1. Types and Features of Digital Ports

Port	Function	Operation and features		Remarks
PORTO	4-bit input	The alternate function pins have an output function with operation mode when using the serial interface function.		Also used for the INT4, $\overline{\text { SCK }}$, SO/SB0, and SI/SB1 pins.
PORT1	1-bit input	2-bit input dedicated port		Also used for the INTO and TIO.
PORT2	4-bit I/O	Can be set to input mode or output mode in 4-bit units.		Also used for the PTOO to PTO2, PCL, and BUZ pins.
PORT3		Can be set to input mode or output mode bit-wise.		Also used for the LCDCL and SYNC pins.
PORT5	4-bit I/O (N channel opendrain, 13-V withstand)	Can be set to input mode or output mode in 4-bit units. On-chip pull-up resistor can be specified by mask option bit-wise.		-
PORT6	4-bit I/O	Can be set to input mode or output mode bit-wise.		Also used for the KRO to KR3 pins.
PORT8		Can be set to input mode or output mode in 4 -bit units.	Ports 8 and 9 are paired and data can be input/ output in 8 -bit units.	Also used for the S20 to S23 pins.
PORT9				Also used for the S16 to S19 pins.

6.2 Clock Generator

The clock generator provides the clock signals to the CPU and peripheral hardware and its configuration is shown in Figure 6-1.

The operation of the clock generator is determined by the Processor Clock Control Register (PCC).
The instruction execution time can also be changed.

- 0.95, 1.91, 3.81, 15.3μ s (system clock: @ 4.19-MHz operation)
- 0.67, 1.33, 2.67, 10.7μ s (system clock: @ 6.0-MHz operation)

Figure 6-1. Clock Generator Block Diagram

Note Instruction execution

Remarks 1. $f x=$ System clock frequency
2. $\Phi=C P U$ clock
3. PCC: Processor Clock Control Register
4. One clock cycle (tcy) of the CPU clock is equal to one machine cycle of the instruction.

6.3 Clock Output Circuit

The clock output circuit is provided to output the clock pulses from the PCL pin (also functions as P22 or PTO2) to the remote control wave outputs and peripheral LSIs.

- Clock Output (PCL) : $\Phi, 524,262,65.5 \mathrm{kHz}$ (system clock: @ 4.19-MHz operation) $\Phi, 750,375,93.8 \mathrm{kHz}$ (system clock: @ 6.0-MHz operation)

Figure 6-2. Clock Output Circuit Block Diagram

Remark Special care has been taken in designing the chip so that small-width pulses may not be output when switching clock output enable/disable.

6.4 Basic Interval Timer/Watchdog Timer

The basic interval timer/watchdog timer has the following functions.

- Interval timer operation to generate a reference time interrupt
- Watchdog timer operation to detect program runaway and reset the CPU
- Selects and counts the wait time when the standby mode is released
- Reads the contents of counting

Figure 6-3. Basic Interval Timer/Watchdog Timer Block Diagram

Note Instruction execution

6.5 Watch Timer

The μ PD753208 has one watch timer channel, whose functions are as follows.

- Sets the test flag (IRQW) with 0.5 sec interval. The standby mode can be released by the IRQW.
- 0.5 sec interval can be created with the system clock (4.194304 MHz)
- Convenient for program debugging and checking as interval becomes 128 times longer (3.91 ms) with the fast feed mode.
- Outputs a frequency (2.048, 4.096, or 32.768 kHz) to the BUZ pin (P23), usable for buzzer and trimming of system clock frequencies.
- Clears the frequency divider to make the clock start with zero seconds.

Figure 6-4. Watch Timer Block Diagram

Notes 1. WM3 is undefined while reading data.
2. Be sure to set WM 0 to 0 .

Remark The values enclosed in parentheses are applied when $\mathrm{fx}=4.194304 \mathrm{MHz}$.

6.6 Timer/Event Counter

The μ PD753208 provides one channel for timer/event counters and two channels for timer counters. Figures 6-5 to 6-7 show the block diagrams. Timer/event counter functions are as follows.

- Programmable interval timer operation
- Square wave output of any frequency to the PTOO pin ($\mathrm{n}=0$ to 2).
- Event counter operation (Channel 0 only)
- Divides the frequency of signal input via the TIO pin to 1-nth of the original signal and outputs the divided frequency to the PTOO pin (frequency divider operation).
- Supplies the shift clock to the serial interface circuit.
- Reads the counting status.

The timer/event counter operates in the following four modes as set by the mode register.

Table 6-2. Operation Modes of Timer/Event Counter

| | Channel | Channel 0 | Channel 1 |
| :--- | :---: | :---: | :---: | Channel 2

Notes 1. Channel 0 only. 8-bit timer counter mode for channel 1 and channel 2
2. Used for gate control signal generation

Remark A: Available
N/A: Not available

* Figure 6-5. Timer/Event Counter Block Diagram (channel 0)

Caution When data is set to TMO, always set bit 1 to 0 .
Figure 6-6. Timer/Event Counter Block Diagram (channel 1)

Note Execution of instruction
Figure 6-7. Timer Counter Block Diagram (channel 2)

Note Execution of instruction

6.7 Serial Interface

The μ PD753208 incorporates a clock-synchronous 8 -bit serial interface and can be used in the following four modes.

- Operation stop mode
- 3-wire serial I/O mode
- 2-wire serial I/O mode
- SBI mode (serial bus interface mode)
Figure 6-8. Serial Interface Block Diagram

6.8 LCD Controller/Driver

The μ PD753208 incorporates a display controller which generates segment and common signals according to the display data memory contents and incorporates segment and common drivers which can drive the panel directly.

The μ PD753208 LCD controller/driver functions are as follows:

- Display data memory is read automatically by DMA operation and segment and common signals are generated.
- Display mode can be selected from among the following five:
<1> Static
<2> $1 / 2$ duty (time multiplexing by 2), 1/2 bias
$<3>1 / 3$ duty (time multiplexing by 3), $1 / 2$ bias
$<4>1 / 3$ duty (time multiplexing by 3), $1 / 3$ bias
$<5>1 / 4$ duty (time multiplexing by 4), $1 / 3$ bias
- A frame frequency can be selected from among four in each display mode.
- A maximum of 12 segment signal output pins (S12 to S 23) and four common signal output pins (COM0 to COM3).
- The segment signal output pins (S16 to S23) can be changed to the I/O ports (PORT8 and PORT9).
- Split-resistor can be incorporated to supply LCD drive power. (Mask option)
- Various bias methods and LCD drive voltages can be applicable.
- When display is off, current flowing through the split resistor is cut.
- Display data memory not used for display can be used for normal data memory.

6.9 Bit Sequential Buffer

\qquad 16 Bits

The bit sequential buffer (BSB) is a special data memory for bit manipulation and the bit manipulation can be easily performed by changing the address specification and bit specification in sequence, therefore it is useful when processing large data bit-wise.

Figure 6-10. Bit Sequential Buffer Format

Remarks 1. In pmem.@L addressing, the specified bit moves corresponding to the L register.
2. In pmem.@L addressing, the BSB can be manipulated regardless of MBE/MSB specification.

7. INTERRUPT FUNCTION AND TEST FUNCTION

There are seven interrupt sources and two test sources in the μ PD753208.
The interrupt control circuit of the μ PD753208 has the following functions.

(1) Interrupt function

- Vectored interrupt function for hardware control, enabling/disabling the interrupt acceptance by the interrupt enable flag (IE $\times \times \times$) and interrupt master enable flag (IME).
- Can set any interrupt start address.
- Multiple interrupts wherein the order of priority can be specified by the interrupt priority select register (IPS).
- Test function of interrupt request flag (IRQxxx). An interrupt generated can be checked by software.
- Release the standby mode. A release interrupt can be selected by the interrupt enable flag.

(2) Test function

- Test request flag (IRQxxx) generation can be checked by software.
- Release the standby mode. The test source to be released can be selected by the test enable flag.
Figure 7-1. Interrupt Control Circuit Block Diagram

Note Noise eliminator (Standby release is disabled when noise eliminator is selected.)

8. STANDBY FUNCTION

In order to save power dissipation while a program is in standby mode, two types of standby modes (STOP mode and HALT mode) are provided for the μ PD753208.

Table 8-1. Operation Status in Standby Mode

Item Mode		STOP mode	HALT mode
Set instruction		STOP instruction	HALT instruction
Operation status	Clock generator	The system clock stops oscillation.	Only the CPU clock Φ halts (oscillation continues).
	Basic interval timer/ Watchdog timer	Operation stops.	Operable only when the system clock is oscillated. (The IRQBT is set in the reference interval).
	Serial interface	Operable only when an external $\overline{\text { SCK }}$ input is selected as the serial clock.	Operable
	Timer/event counter	Operable only when a signal input to the TIO pin is specified as the count clock.	Operable
	Watch timer	Operation stops.	Operable
	LCD controller/driver	Operation stops.	Operable
	External interrupt	The INT4 is operable. Only the INTO is not operated Note.	
	CPU	Operation stops.	
Release signal		Interrupt request signal sent from the operable hardware enabled by the interrupt enable flag or RESET signal input.	

Note Can operate only when the noise eliminator is not used $(I M 02=1)$ by bit 2 of the edge detection mode register (IMO).

9. RESET FUNCTION

There are two reset inputs: external $\overline{\text { RESET }}$ signal and $\overline{\text { RESET }}$ signal sent from the basic interval timer/ watchdog timer. When either one of the RESET signals are input, an internal RESET signal is generated. Figure $9-1$ shows the circuit diagram of the above two inputs.

Figure 9-1. Configuration of Reset Function

Each hardware is initialized by the $\overline{\text { RESET }}$ signal generation as listed in Table 9-1. Figure 9-2 shows the timing chart of the reset operation.

Figure 9-2. Reset Operation by RESET Signal Generation

Note The following two times can be selected by the mask option.
$2^{17} / \mathrm{fx}$ (21.8 ms : @ 6.0-MHz operation, 31.3 ms : @ 4.19-MHz operation)
215/fx (5.46 ms : @ 6.0-MHz operation, 7.81 ms : @ 4.19-MHz operation)

Table 9-1. Status of Each Device After Reset (1/2)

Hardware			$\overline{\text { RESET }}$ signal generation in the standby mode	$\overline{\text { RESET }}$ signal generation during operation
Program counter (PC)		μ PD753204	Sets the low-order 4 bits of program memory's address 0000 H to PC11 to PC8 and the contents of address 0001 H to PC7 to PC0.	Sets the low-order 4 bits of program memory's address 0000 H to PC11 to PC8 and the contents of address 0001 H to PC7 to PC0.
		$\left\lvert\, \begin{aligned} & \mu \mathrm{PD} 753206, \\ & \mu \mathrm{PD} 753208 \end{aligned}\right.$	Sets the low-order 5 bits of program memory's address 0000 H to PC12 to PC8 and the contents of address 0001 H to PC7 to PC0.	Sets the low-order 5 bits of program memory's address 0000 H to PC12 to PC8 and the contents of address 0001 H to PC7 to PC0.
PSW	Carry flag (CY)		Held	Undefined
	Skip flag (SK0-SK2)		0	0
	Interrupt status flag (IST0, IST1)		0	0
	Bank enable flag (MBE, RBE)		Sets bit 6 of program memory's address 0000 H to RBE and bit 7 to MBE.	Sets bit 6 of program memory's address 0000 H to RBE and bit 7 to MBE.
Stack pointer (SP)			Undefined	Undefined
Stack bank select register (SBS)			1000B	1000B
Data memory (RAM)			Held	Undefined
General-purpose register (X, A, H, L, D, E, B, C)			Held	Undefined
Bank select register (MBS, RBS)			0, 0	0, 0
Basic interval timer/watchdog timer	Counter (BT)		Undefined	Undefined
	Mode register (BTM)		0	0
	Watchdog timer enable flag (WDTM)		0	0
Timer/event counter (TO)	Counter (T0)		0	0
	Modulo register (TMODO)		FFH	FFH
	Mode register (TM0)		0	0
	TOE0, TOUT F/F		0, 0	0, 0
Timer counter (T1)	Counter (T1)		0	0
	Modulo register (TMOD1)		FFH	FFH
	Mode register (TM1)		0	0
	TOE1, TOUT F/F		0, 0	0, 0
Timer counter (T2)	Counter (T2)		0	0
	Modulo register (TMOD2)		FFH	FFH
	High-level period setting modulo register (TMOD2H)		FFH	FFH
	Mode register (TM2)		0	0
	TOE2, TOUT F/F		0, 0	0, 0
	REMC, NRZ, NRZB		0, 0, 0	0, 0, 0
	TGCE		0	0
Watch timer	Mode register (WM)		0	0

Table 9-1. Status of Each Device After Reset (2/2)

Hardware		RESET signal generation in the standby mode	$\overline{\text { RESET }}$ signal generation during operation
Serial interface	Shift register (SIO)	Held	Undefined
	Operation mode register (CSIM)	0	0
	SBI control register (SBIC)	0	0
	Slave address register (SVA)	Held	Undefined
Clock generator, clock output circuit	Processor clock control register (PCC)	0	0
	Clock output mode register (CLOM)	0	0
LCD controller/ driver	Display mode register (LCDM)	0	0
	Display control register (LCDC)	0	0
	LCD/port selection register (LPS)	0	0
Interrupt function	Interrupt request flag (IRQ×××)	Reset (0)	Reset (0)
	Interrupt enable flag (IE×××)	0	0
	Interrupt priority selection register (IPS)	0	0
	INT0, 2 mode registers (IM0, IM2)	0, 0	0, 0
Digital port	Output buffer	Off	Off
	Output latch	Cleared (0)	Cleared (0)
	I/O mode registers (PMGA, B, C)	0	0
	Pull-up resistor setting register (POGA, B)	0	0
Bit sequential buffer (BSB0 to BSB3)		Held	Undefined

10. MASK OPTION

The μ PD753208 has the following mask options.

- P50 to P53 mask options

Selects whether or not to connect an internal pull-up resistor.
<1> Connect pull-up resistor internally bit-wise.
<2> Do not connect pull-up resistor internally.

- Vlco to Vlcz pins, BIAS pins mask option

Selects whether or not to internally connect LCD-driving split resistors.
<1> Do not connect split resistor internally.
<2> Connect four $10-\mathrm{k} \Omega$ (typ.) split resistors simultaneously internally.
$<3>$ Connect four 100-k Ω (typ.) split resistors simultaneously internally.

- Standby function mask option

Selects the wait time with the RESET signal.
$<1>2^{17} / \mathrm{fx}(21.8 \mathrm{~ms}$: When $\mathrm{fx}=6.0 \mathrm{MHz}, 31.3 \mathrm{~ms}$: When $\mathrm{fx}=4.19 \mathrm{MHz}$)
$<2>2^{15} / \mathrm{fx}(5.46 \mathrm{~ms}:$ When $\mathrm{fx}=6.0 \mathrm{MHz}, 7.81 \mathrm{~ms}$: When $\mathrm{fx}=4.19 \mathrm{MHz}$)

11. INSTRUCTION SET

(1) Expression formats and description methods of operands

The operand is described in the operand column of each instruction in accordance with the description method for the operand expression format of the instruction. For details, refer to "RA75X ASSEMBLER PACKAGE USERS' MANUAL—LANGUAGE (EEU-1363)". If there are several elements, one of them is selected. Capital letters and the + and - symbols are key words and are described as they are. For immediate data, appropriate numbers and labels are described.
Instead of the labels such as mem, fmem, pmem, and bit, the symbols of the registers can be described. However, there are restrictions in the labels that can be described for fmem and pmem. For details, see the user's manual.

Representation format	Description method
$\begin{aligned} & \text { reg } \\ & \text { reg1 } \end{aligned}$	$\begin{aligned} & \text { X, A, B, C, D, E, H, L } \\ & \text { X, B, C, D, E, H, L } \end{aligned}$
rp rp1 rp2 rp' rp'1	```XA, BC, DE, HL BC, DE, HL BC, DE XA, BC, DE, HL, XA', BC', DE', HL' BC, DE, HL, XA', BC', DE', HL'```
rpa rpa1	$\begin{aligned} & \mathrm{HL}, \mathrm{HL}+, \mathrm{HL}-, \mathrm{DE}, \mathrm{DL} \\ & \mathrm{DE}, \mathrm{DL} \end{aligned}$
$\begin{aligned} & \text { n4 } \\ & \text { n8 } \end{aligned}$	4-bit immediate data or label 8-bit immediate data or label
mem bit	8-bit immediate data or label Note 2-bit immediate data or label
fmem pmem	FBOH-FBFH, FFOH-FFFH immediate data or label FCOH-FFFH immediate data or label
addr addr1 (Only in the MKII mode) caddr faddr	000H-FFFH immediate data or label (μ PD753204) 0000H-17FFH immediate data or label (μ PD753206) $0000 \mathrm{H}-1 \mathrm{FFFH}$ immediate data or label (μ PD753208) 000H-FFFH immediate data or label (μ PD753204) 0000H-17FFH immediate data or label (μ PD753206) $0000 \mathrm{H}-1$ FFFH immediate data or label (μ PD753208) 12-bit immediate data or label 11-bit immediate data or label
taddr	20H-7FH immediate data (where bit $0=0$) or label
PORTn IExxx RBn MBn	PORT0-PORT3, PORT5, PORT6, PORT8, PORT9 IEBT, IET0-IET2, IE0, IE2, IE4, IECSI, IEW RB0-RB3 MB0, MB1, MB15

Note mem can be only used for even address in 8-bit data processing.
(2) Legend in explanation of operation

A : A register, 4-bit accumulator
B : B register
C : C register
D : D register
E : E register
H : H register
L : L register
X : X register
XA : XA register pair; 8-bit accumulator
$B C \quad$: BC register pair
DE : DE register pair
HL : HL register pair
XA' : XA' expanded register pair
BC' : BC' expanded register pair
DE' : DE' expanded register pair
HL' : HL' expanded register pair
PC : Program counter
SP : Stack pointer
CY : Carry flag, bit accumulator
PSW : Program status word
MBE : Memory bank enable flag
RBE : Register bank enable flag
PORTn : Port n ($\mathrm{n}=0$ to $3,5,6,8,9$)
IME : Interrupt master enable flag
IPS : Interrupt priority selection register
IEXXX : Interrupt enable flag
RBS : Register bank selection register
MBS : Memory bank selection register
PCC : Processor clock control register
: Separation between address and bit
$(x x) \quad$: Contents addressed by $x x$
$x \times \mathrm{H} \quad:$ Hexadecimal data
(3) Explanation of symbols under addressing area column

*1	$\begin{aligned} & \text { MB }=\text { MBE } \cdot \mathrm{MBS} \\ & (\mathrm{MBS}=0,1,15) \end{aligned}$		Data memory addressing
*2	$\mathrm{MB}=0$		
*3	$\begin{aligned} \mathrm{MBE}=0: \mathrm{MB} & =0(000 \mathrm{H}-07 \mathrm{FH}) \\ \mathrm{MB} & =15(\mathrm{~F} 80 \mathrm{H}-\mathrm{FFFH}) \\ \mathrm{MBE}=1: \mathrm{MB} & =\mathrm{MBS}(\mathrm{MBS}=0,1,15) \end{aligned}$		
*4	$\mathrm{MB}=15, \mathrm{fmem}=\mathrm{FBOH}-\mathrm{FBFH}, \mathrm{FFOH}-\mathrm{FFFH}$		
*5	$\mathrm{MB}=15, \mathrm{pmem}=\mathrm{FCOH}-\mathrm{FFFH}$		\downarrow
*6	μ PD753204	addr $=000 \mathrm{H}-\mathrm{FFFFH}$	Program memory addressing
	μ PD753206	addr $=0000 \mathrm{H}-17 \mathrm{FFH}$	
	μ PD753208	addr $=0000 \mathrm{H}-1 \mathrm{FFFFH}$	
*7	$\begin{aligned} \hline \text { addr, addr1 }= & (\text { Current PC) }-15 \text { to (Current PC) }-1 \\ & (\text { Current PC) }+2 \text { to (Current PC) }+16 \end{aligned}$		
*8	μ PD753204	caddr $=000 \mathrm{H}-\mathrm{FFFH}$	
	μ PD753206	$\begin{aligned} \text { caddr }= & 0000 \mathrm{H}-0 \mathrm{FFFH}\left(\mathrm{PC}_{12}=0\right) \text { or } \\ & 1000 \mathrm{H}-17 \mathrm{FFH}\left(\mathrm{PC}_{12}=1\right) \end{aligned}$	
	μ PD753208	$\begin{aligned} \text { caddr }= & 0000 \mathrm{H}-0 \mathrm{FFFH}\left(\mathrm{PC}_{12}=0\right) \text { or } \\ & 1000 \mathrm{H}-1 \mathrm{FFFH}\left(\mathrm{PC}_{12}=1\right) \end{aligned}$	
*9	faddr $=0000 \mathrm{H}-07 \mathrm{FFH}$		
*10	taddr $=0020 \mathrm{H}-007 \mathrm{FH}$		
*11	μ PD753204	addr1 $=000 \mathrm{H}-\mathrm{FFFH}$	
	μ PD753206	addr1 $=0000 \mathrm{H}-17 \mathrm{FFH}$	
	μ PD753208	addr $1=0000 \mathrm{H}-1 \mathrm{FFFH}$	

Remarks 1. MB indicates memory bank that can be accessed.
2. In *2, MB $=0$ independently of how MBE and MBS are set.
3. In * 4 and $* 5, M B=15$ independently of how MBE and MBS are set.
4. *6 to *11 indicate the areas that can be addressed.
(4) Explanation of number of machine cycles column
S denotes the number of machine cycles required by skip operation when a skip instruction is executed. The value of S varies as follows.

- When no skip is made: $S=0$
- When the skipped instruction is a 1 - or 2 -byte instruction: $S=1$
- When the skipped instruction is a 3-byte instruction Note: $S=2$

Note 3-byte instruction: BR !addr, BRA !addr1, CALL !addr or CALLA !addr1 instruction

Caution The GETI instruction is skipped in one machine cycle.

One machine cycle is equal to one cycle of CPU clock (= tcy); time can be selected from among four types by setting PCC.

Instruction group	Mnemonic	Operand	Number of bytes	Number of machine cycles	Operation	Addressing area	Skip condition
Transfer instruction	MOV	A, \#n4	1	1	$\mathrm{A} \leftarrow \mathrm{n} 4$		String effect A
		reg1, \#n4	2	2	$\mathrm{reg} 1 \leftarrow \mathrm{n} 4$		
		XA, \#n8	2	2	$\mathrm{XA} \leftarrow \mathrm{n} 8$		String effect A
		HL, \#n8	2	2	$\mathrm{HL} \leftarrow \mathrm{n} 8$		String effect B
		rp2, \#n8	2	2	$\mathrm{rp} 2 \leftarrow \mathrm{n} 8$		
		A, @HL	1	1	$\mathrm{A} \leftarrow(\mathrm{HL})$	*1	
		A, @HL+	1	$2+$ S	$\mathrm{A} \leftarrow(\mathrm{HL})$, then $\mathrm{L} \leftarrow \mathrm{L}+1$	*1	$\mathrm{L}=0$
		A, @HL-	1	$2+S$	$\mathrm{A} \leftarrow(\mathrm{HL})$, then $\mathrm{L} \leftarrow \mathrm{L}-1$	*1	$\mathrm{L}=\mathrm{FH}$
		A, @rpa1	1	1	$\mathrm{A} \leftarrow(\mathrm{rpa} 1)$	*2	
		XA, @HL	2	2	$\mathrm{XA} \leftarrow(\mathrm{HL})$	*1	
		@HL, A	1	1	$(\mathrm{HL}) \leftarrow \mathrm{A}$	*1	
		@HL, XA	2	2	$(\mathrm{HL}) \leftarrow \mathrm{XA}$	*1	
		A, mem	2	2	$A \leftarrow($ mem $)$	*3	
		XA, mem	2	2	$X A \leftarrow($ mem $)$	*3	
		mem, A	2	2	$($ mem $) \leftarrow \mathrm{A}$	*3	
		mem, XA	2	2	$($ mem $) \leftarrow \mathrm{XA}$	*3	
		A, reg	2	2	$\mathrm{A} \leftarrow \mathrm{reg}$		
		XA, rp'	2	2	$X A \leftarrow r p^{\prime}$		
		reg1, A	2	2	reg $1 \leftarrow \mathrm{~A}$		
		rp'1, XA	2	2	rp'1 $\leftarrow \mathrm{XA}$		
	XCH	A, @HL	1	1	A $\leftrightarrow(\mathrm{HL})$	*1	
		A, @HL+	1	2+S	A $\leftrightarrow(\mathrm{HL})$, then $\mathrm{L} \leftarrow \mathrm{L}+1$	*1	$\mathrm{L}=0$
		A, @HL-	1	2+S	$A \leftrightarrow(\mathrm{HL})$, then $\mathrm{L} \leftarrow \mathrm{L}-1$	*1	$\mathrm{L}=\mathrm{FH}$
		A, @rpa1	1	1	$\mathrm{A} \leftrightarrow$ (rpa1)	*2	
		XA, @HL	2	2	$X A \leftrightarrow(H L)$	*1	
		A, mem	2	2	$\mathrm{A} \leftrightarrow$ (mem)	*3	
		XA, mem	2	2	$X A \leftrightarrow(\mathrm{mem})$	*3	
		A, reg1	1	1	$\mathrm{A} \leftrightarrow \mathrm{reg} 1$		
		XA, rp'	2	2	$X A \leftrightarrow r^{\prime}$		

Instruction group	Mnemonic	Operand	Number of bytes	Number of machine cycles	Operation	Addressing area	Skip condition
Table reference	MOVT	XA, @PCDE	1	3	$\begin{aligned} & \bullet \mu \text { PD753204 }^{\text {X }} \leftarrow\left(\mathrm{PC}_{11-8+} \mathrm{DE}\right)_{\text {вом }} \end{aligned}$		
					- μ PD753206, 753208 $\mathrm{XA} \leftarrow\left(\mathrm{PC}_{12-8}+\mathrm{DE}\right)_{\text {вом }}$		
		XA, @PCXA	1	3	$\begin{aligned} & \bullet \mu \text { PD753204 } \\ & \text { XA } \leftarrow\left(\text { PC }_{11-8+}+\text { XA }^{\text {Roм }}\right. \end{aligned}$		
					$\begin{aligned} & \text { - } \mu \text { PD753206, } 753208 \\ & \mathrm{XA} \leftarrow\left(\mathrm{PC}_{12-8+\text { XA }}\right)_{\text {Roм }} \end{aligned}$		
		XA, @BCDE	1	3	$\mathrm{XA} \leftarrow(\mathrm{BCDE})_{\text {rom }}{ }^{\text {Note }}$	*6	
		XA, @BCXA	1	3	XA $\leftarrow(\mathrm{BCXA})$ rom Note	*6	
Bit transfer	MOV1	CY, fmem.bit	2	2	$\mathrm{CY} \leftarrow$ (fmem.bit)	*4	
		CY, pmem.@L	2	2	$\mathrm{CY} \leftarrow\left(\right.$ pmem $_{\left.7-2+\mathrm{L}_{3-2} . \mathrm{bit}\left(\mathrm{L}_{1-0}\right)\right)}$	*5	
		CY, @H+mem.bit	2	2	$\mathrm{CY} \leftarrow\left(\mathrm{H}+\mathrm{mem}_{3-0.0 \mathrm{bit})}\right.$	*1	
		fmem.bit, CY	2	2	(fmem.bit) $\leftarrow C \mathrm{CY}$	*4	
		pmem.@L, CY	2	2		*5	
		@H+mem.bit, CY	2	2	$\left(\mathrm{H}+\right.$ mem $_{3-0.0}$.bit $) \leftarrow \mathrm{CY}$	*1	
Operation	ADDS	A, \#n4	1	1+S	$\mathrm{A} \leftarrow \mathrm{A}+\mathrm{n} 4$		carry
		XA, \#n8	2	$2+$ S	$X A \leftarrow X A+n 8$		carry
		A, @HL	1	1+S	$A \leftarrow A+(H L)$	*1	carry
		XA, rp'	2	$2+$ S	$X A \leftarrow X A+r p '$		carry
		rp'1, XA	2	$2+$ S	rp '1 $\leftarrow \mathrm{rp}{ }^{\prime} 1+\mathrm{XA}$		carry
	ADDC	A, @HL	1	1	$\mathrm{A}, \mathrm{CY} \leftarrow \mathrm{A}+(\mathrm{HL})+\mathrm{CY}$	*1	
		XA, rp'	2	2	$X A, C Y \leftarrow X A+r p^{\prime}+C Y$		
		rp'1, XA	2	2	$r p^{\prime} 1, C Y \leftarrow r p^{\prime} 1+X A+C Y$		
	SUBS	A, @HL	1	1+S	$\mathrm{A} \leftarrow \mathrm{A}$-(HL)	*1	borrow
		XA, rp'	2	$2+$ S	$X A \leftarrow X A-r p^{\prime}$		borrow
		rp'1, XA	2	$2+$ S	$\mathrm{rp} ' 1 \leftarrow \mathrm{rp}{ }^{\prime} 1-\mathrm{XA}$		borrow
	SUBC	A, @HL	1	1	$\mathrm{A}, \mathrm{CY} \leftarrow \mathrm{A}-(\mathrm{HL})-\mathrm{CY}$	*1	
		XA, rp'	2	2	XA, CY \leftarrow XA-rp'-CY		
		rp'1, XA	2	2	rp'1, CY \leftarrow rp'1-XA-CY		

Note Set " 0 " to register B if the μ PD753204 is used. Only the low-order one bit of register B will be valid if the μ PD753206 or 753208 is used.

Instruction group	Mnemonic	Operand	Number of bytes	Number of machine cycles	Operation	Addressing area	Skip condition
Operation	AND	A, \#n4	2	2	$A \leftarrow A \wedge n 4$		
		A, @HL	1	1	$A \leftarrow A \wedge(H L)$	*1	
		XA, rp'	2	2	$X A \leftarrow X A \wedge r p^{\prime}$		
		rp'1, XA	2	2	rp '1 $\leftarrow \mathrm{rp} \mathrm{p}^{\prime} 1 \wedge \mathrm{XA}$		
	OR	A, \#n4	2	2	$A \leftarrow A \vee n 4$		
		A, @HL	1	1	$\mathrm{A} \leftarrow \mathrm{A} \vee(\mathrm{HL})$	*1	
		XA, rp'	2	2	$X A \leftarrow X A \vee r p^{\prime}$		
		rp'1, XA	2	2	$\mathrm{rp}^{\prime} 1 \leftarrow \mathrm{rp}{ }^{\prime} 1 \vee \mathrm{XA}$		
	XOR	A, \#n4	2	2	$A \leftarrow A \forall n 4$		
		A, @HL	1	1	$A \leftarrow A \forall(H L)$	*1	
		XA, rp'	2	2	$X A \leftarrow X A \forall r p^{\prime}$		
		rp'1, XA	2	2	$\mathrm{rp}{ }^{\prime} 1 \leftarrow \mathrm{rp}{ }^{\prime} 1 \forall \mathrm{XA}$		
Accumulator manipulation instructions	RORC	A	1	1	$\mathrm{CY} \leftarrow \mathrm{A}_{0}, \mathrm{~A}_{3} \leftarrow \mathrm{CY}, \mathrm{A}_{n-1} \leftarrow \mathrm{~A}_{n}$		
	NOT	A	2	2	$\mathrm{A} \leftarrow \overline{\mathrm{A}}$		
Increment and Decrement instructions	INCS	reg	1	1+S	$\mathrm{reg} \leftarrow \mathrm{reg}+1$		$\mathrm{reg}=0$
		rp1	1	1+S	$\mathrm{rp} 1 \leftarrow \mathrm{rp} 1+1$		rp1 $=00 \mathrm{H}$
		@HL	2	2+S	$(\mathrm{HL}) \leftarrow(\mathrm{HL})+1$	*1	$(\mathrm{HL})=0$
		mem	2	2+S	$($ mem $) \leftarrow($ mem $)+1$	*3	$(\mathrm{mem})=0$
	DECS	reg	1	1+S	$\mathrm{reg} \leftarrow \mathrm{reg}-1$		$\mathrm{reg}=\mathrm{FH}$
		rp'	2	$2+$ S	$r p^{\prime} \leftarrow r p^{\prime}-1$		rp'=FFH
Comparison instruction	SKE	reg, \#n4	2	2+S	Skip if reg $=\mathrm{n} 4$		$\mathrm{reg}=\mathrm{n} 4$
		@HL, \#n4	2	2+S	Skip if (HL) $=\mathrm{n} 4$	*1	$(\mathrm{HL})=\mathrm{n} 4$
		A, @HL	1	1+S	Skip if $A=(H L)$	*1	$A=(H L)$
		XA, @HL	2	$2+$ S	Skip if $X A=(H L)$	*1	$X A=(H L)$
		A, reg	2	$2+S$	Skip if $\mathrm{A}=$ reg		A=reg
		XA, rp'	2	2+S	Skip if $X A=r p^{\prime}$		$X A=r p \prime$
Carry flag manipulation instruction	SET1	CY	1	1	$\mathrm{CY} \leftarrow 1$		
	CLR1	CY	1	1	$\mathrm{CY} \leftarrow 0$		
	SKT	CY	1	1+S	Skip if $C Y=1$		$C Y=1$
	NOT1	CY	1	1	$\mathrm{CY} \leftarrow \overline{\mathrm{CY}}$		

Instruction group	Mnemonic	Operand	Number of bytes	Number of machine cycles	Operation	Addressing area	Skip condition
Memory bit manipulation instructions	SET1	mem.bit	2	2	(mem.bit) $\leftarrow 1$	*3	
		fmem.bit	2	2	(fmem. bit) $\leftarrow 1$	*4	
		pmem.@L	2	2	$\left(\right.$ pmem $\left._{7-2+L_{3-2}} \operatorname{bit}^{\left(L_{1-0}\right)}\right) \leftarrow 1$	*5	
		@H+mem.bit	2	2	$\left(\mathrm{H}+\right.$ mem $_{3-0}$. bit$) \leftarrow 1$	*1	
	CLR1	mem.bit	2	2	(mem. bit) $\leftarrow 0$	*3	
		fmem.bit	2	2	(fmem. bit) $\leftarrow 0$	*4	
		pmem.@L	2	2	$\left(\right.$ pmem $\left.\left._{7-2+L_{3-2}} \operatorname{bit}^{(} \mathrm{L}_{1-0}\right)\right) \leftarrow 0$	*5	
		@H+mem.bit	2	2	$\left(\mathrm{H}+\right.$ mem $_{3-0}$. bit$) \leftarrow 0$	*1	
	SKT	mem.bit	2	$2+$ S	Skip if (mem. bit$)=1$	*3	(mem.bit) $=1$
		fmem.bit	2	$2+$ S	Skip if (fmem.bit) $=1$	*4	$($ fmem.bit $)=1$
		pmem.@L	2	$2+S$		*5	(pmem.@L)=1
		@H+mem.bit	2	$2+S$	Skip if ($\mathrm{H}+\mathrm{mem}_{3-0.0 . \mathrm{bit})=1}$	*1	(@H+mem.bit)=1
	SKF	mem.bit	2	$2+$ S	Skip if (mem. bit$)=0$	*3	(mem.bit) $=0$
		fmem.bit	2	$2+$ S	Skip if (fmem.bit) $=0$	*4	$($ fmem. bit $)=0$
		pmem.@L	2	$2+S$	Skip if (pmem7-2+L3-2.bit $\left(\mathrm{L}_{1-0}\right)$) $=0$	*5	(pmem.@L)=0
		@H+mem.bit	2	$2+$ S	Skip if ($\mathrm{H}+\mathrm{mem}_{3-\text { - }}$.bit $)=0$	*1	(@H+mem.bit)=0
	SKTCLR	fmem.bit	2	$2+S$	Skip if (fmem.bit)=1 and clear	*4	$($ fmem.bit) $=1$
		pmem.@L	2	$2+S$		*5	(pmem.@L)=1
		@H+mem.bit	2	$2+S$	Skip if ($\mathrm{H}+$ mem $_{3-0}$. bit $)=1$ and clear	*1	$(@ H+m e m . b i t)=1$
	AND1	CY, fmem. bit	2	2	$\mathrm{CY} \leftarrow \mathrm{CY} \wedge$ (fmem.bit)	*4	
		CY, pmem.@L	2	2	$\mathrm{CY} \leftarrow \mathrm{CY} \wedge\left(\right.$ pmem $_{\left.7-2+\mathrm{L}_{3-2} . \mathrm{bit}\left(\mathrm{L}_{1-0}\right)\right)}$	*5	
		CY, @H+mem.bit	2	2	$\mathrm{CY} \leftarrow \mathrm{CY} \wedge\left(\mathrm{H}+\right.$ mem $_{3-\text { - }}$.bit $)$	*1	
	OR1	CY, fmem.bit	2	2	$\mathrm{CY} \leftarrow \mathrm{CY} \vee$ (fmem.bit)	*4	
		CY, pmem.@L	2	2	$\mathrm{CY} \leftarrow \mathrm{CY} \vee\left(\right.$ pmem $_{\left.7-2+\mathrm{L}_{3-2} . \mathrm{bit}\left(\mathrm{L}_{1-0}\right)\right)}$	*5	
		CY, @H+mem.bit	2	2	$\mathrm{CY} \leftarrow \mathrm{CY} \vee\left(\mathrm{H}+\mathrm{mem}_{3}\right.$-0.bit $)$	*1	
	XOR1	CY, fmem. bit	2	2	$C Y \leftarrow C Y \forall$ (fmem.bit)	*4	
		CY, pmem.@L	2	2	$\mathrm{CY} \leftarrow \mathrm{CY} \forall\left(\mathrm{pmem}_{\left.7-2+\mathrm{L}_{3}-2 . \mathrm{bit}\left(\mathrm{L}_{1-0}\right)\right)}\right.$	*5	
		CY, @H+mem.bit	2	2	$\mathrm{CY} \leftarrow \mathrm{CY} \forall\left(\mathrm{H}+\mathrm{mem}_{3-0 . \mathrm{bit})}\right.$	*1	

Instruction group	Mnemonic	Operand	Number of bytes	Number of machine cycles	Operation	Addressing area	Skip condition
Branch instructions	BR Note	addr	-	-	- μ PD753204 $\mathrm{PC}_{11-0} \leftarrow$ addr Select the most appropriate instruction from among BR !addr, BRCB !caddr and BR \$addr according to the assembler being used. - μ PD753206, 753208 $\mathrm{PC}_{12-0} \leftarrow$ addr Select the most appropriate instruction from among BR !addr, BRCB !caddr and BR \$addr according to the assembler being used.	*6	
		addr1	-	-	- μ PD753204 $\mathrm{PC}_{11-0} \leftarrow$ addr1 Select the most appropriate instruction from among BR !addr, BRA !addr1, BRCB !caddr and BR \$addr1 according to the assembler being used. - μ PD753206, 753208 $\mathrm{PC}_{12-0} \leftarrow$ addr1 Select the most appropriate instruction from among BR !addr, BRA !addr1, BRCB !caddr and BR \$addr1 according to the assembler being used.	*11	
		! addr	3	3	- μ PD753204 $\mathrm{PC}_{11-0} \leftarrow$ addr - μ PD753206, 753208 $\mathrm{PC}_{12-0} \leftarrow$ addr	*6	
		\$addr	1	2	- μ PD753204 $\mathrm{PC}_{11-0} \leftarrow$ addr - μ PD753206, 753208 $\mathrm{PC}_{12-0} \leftarrow$ addr	*7	
		\$addr1	1	2	- μ PD753204 $\mathrm{PC}_{11-0} \leftarrow$ addr1 - μ PD753206, 753208 $\mathrm{PC}_{12-0} \leftarrow$ addr1		

Note The above operations in the double boxes can be performed only in the Mk II mode. The other operations can be performed only in the MkI mode.

Notes 1. " 0 " must be set to the B register.
2. Only the low-order one bit is valid in the B register.
3. The above operations in the double boxes can be performed only in the Mk II mode. The other operations can be performed only in the Mk I mode.

Instruction group	Mnemonic	Operand	Number of bytes	Number of machine cycles	Operation	Addressing area	Skip condition
Subroutine stack control instructions	CALL Note	laddr	3	3	- μ PD753204 $(\mathrm{SP}-3) \leftarrow \mathrm{MBE}, \mathrm{RBE}, 0,0$ $(S P-4)(S P-1)(S P-2) \leftarrow \mathrm{PC}_{11-0}$ $\mathrm{PC}_{11-0} \leftarrow \mathrm{addr}, \mathrm{SP} \leftarrow \mathrm{SP}-4$ - μ PD753206, 753208 (SP-3) $\leftarrow \mathrm{MBE}, \mathrm{RBE}, 0, \mathrm{PC}_{12}$ $(S P-4)(S P-1)(S P-2) \leftarrow \mathrm{PC}_{11-0}$ $\mathrm{PC}_{12-0} \leftarrow$ addr, $\mathrm{SP} \leftarrow \mathrm{SP}-4$	*6	
				4	```- \(\mu\) PD753204 (SP-2) \(\leftarrow \times, \times\), MBE, RBE \((S P-6)(S P-3)(S P-4) \leftarrow\) PC \(_{11-0}\) \((\mathrm{SP}-5) \leftarrow 0,0,0,0\) \(\mathrm{PC}_{11-0} \leftarrow \operatorname{addr}, \mathrm{SP} \leftarrow \mathrm{SP}-6\) - \(\mu\) PD753206, 753208 (SP-2) \(\leftarrow \times, \times\), MBE, RBE \((S P-6)(S P-3)(S P-4) \leftarrow \mathrm{PC}_{11-0}\) \((\mathrm{SP}-5) \leftarrow 0,0,0, \mathrm{PC}_{12}\) \(\mathrm{PC}_{12-0} \leftarrow \operatorname{addr}, \mathrm{SP} \leftarrow \mathrm{SP}-6\)```		
	CALLF Note	!faddr	2	2	- μ PD753204 $(\mathrm{SP}-3) \leftarrow \mathrm{MBE}, \mathrm{RBE}, 0,0$ $(\mathrm{SP}-4)(\mathrm{SP}-1)(\mathrm{SP}-2) \leftarrow \mathrm{PC}_{11-0}$ $\mathrm{PC}_{11-0} \leftarrow 0$ +faddr, $\mathrm{SP} \leftarrow \mathrm{SP}-4$	*9	
					- μ PD753206, 753208 $(\mathrm{SP}-3) \leftarrow \mathrm{MBE}, \mathrm{RBE}, 0, \mathrm{PC}_{12}$ $(S P-4)(S P-1)(S P-2) \leftarrow \mathrm{PC}_{11-0}$ $\mathrm{PC}_{12-0} \leftarrow 00$ +faddr, $\mathrm{SP} \leftarrow \mathrm{SP}-4$		
				3	$\begin{aligned} & \hline \text { • } \mu \text { PD753204 } \\ & (\text { SP-2) } \rightarrow \times, \times, \text { MBE, RBE } \\ & \left(\text { SP-6) (SP-3) } \left(\text { SP-4) } \leftarrow \text { PC }_{11-0}\right.\right. \\ & (\text { SP-5) } \leftarrow 0,0,0,0 \\ & \text { PC }_{11-0} \leftarrow 0+\text { faddr, SP } \leftarrow \text { SP-6 } \end{aligned}$		
					- μ PD753206, 753208 (SP-2) $\rightarrow \times, \times$, MBE, RBE (SP-6) (SP-3) $(\mathrm{SP}-4) \leftarrow \mathrm{PC}_{11-0}$ $(\mathrm{SP}-5) \leftarrow 0,0,0, \mathrm{PC}_{12}$ $\mathrm{PC}_{12-0} \leftarrow 00$ +faddr, $\mathrm{SP} \leftarrow \mathrm{SP}-6$		

Note The above operations in the double boxes can be performed only in the Mk II mode. The other operations can be performed only in the MkI mode.

Instruction group	Mnemonic	Operand	Number of bytes	Number of machine cycles	Operation	Addressing area	Skip condition
Subroutine stack control instructions	RET Note		1	3	- μ PD753204 $\mathrm{PC}_{11-0} \leftarrow(\mathrm{SP})(\mathrm{SP}+3)(\mathrm{SP}+2)$ MBE, RBE, $0,0 \leftarrow(S P+1)$, $S P \leftarrow S P+4$ - μ PD753206, 753208 $\mathrm{PC}_{11-0} \leftarrow(\mathrm{SP})(\mathrm{SP}+3)(\mathrm{SP}+2)$ MBE, RBE, $0, \mathrm{PC}_{12} \leftarrow(\mathrm{SP}+1), \mathrm{SP} \leftarrow \mathrm{SP}+4$ ```- \(\mu\) PD753204 \\ \(\times, \times\) MBE, RBE \(\leftarrow(S P+4)\) \\ \(0,0,0,0, \leftarrow(S P+1)\) \\ \(\mathrm{PC}_{11-0} \leftarrow(\mathrm{SP})(\mathrm{SP}+3)(\mathrm{SP}+2), \mathrm{SP} \leftarrow \mathrm{SP}+6\) \\ - \(\mu\) PD753206, 753208 \\ \(\times, \times, \mathrm{MBE}, \mathrm{RBE} \leftarrow(\mathrm{SP}+4)\) \\ MBE, \(0,0, \mathrm{PC}_{12} \leftarrow(\mathrm{SP}+1)\) \\ \(\mathrm{PC}_{11-0} \leftarrow(\mathrm{SP})(\mathrm{SP}+3)(\mathrm{SP}+2), \mathrm{SP} \leftarrow \mathrm{SP}+6\)```		
	RETS Note		1	$3+$ S	- μ PD753204 MBE, RBE, $0,0 \leftarrow(\mathrm{SP}+1)$ $\mathrm{PC}_{11-0} \leftarrow(\mathrm{SP})(\mathrm{SP}+3)(\mathrm{SP}+2)$ $S P \leftarrow S P+4$ then skip unconditionally - μ PD753206, 753208 MBE, RBE, $0, \mathrm{PC}_{12} \leftarrow(\mathrm{SP}+1)$ $\mathrm{PC}_{11-0} \leftarrow(\mathrm{SP})(\mathrm{SP}+3)(\mathrm{SP}+2)$ $\mathrm{SP} \leftarrow \mathrm{SP}+4$ then skip unconditionally - μ PD753204 $0,0,0,0 \leftarrow(\mathrm{SP}+1)$ $\mathrm{PC}_{11-0} \leftarrow(\mathrm{SP})(\mathrm{SP}+3)(\mathrm{SP}+2)$ \times, \times MBE, RBE $\leftarrow(\mathrm{SP}+4)$ $\mathrm{SP} \leftarrow \mathrm{SP}+6$ then skip unconditionally - μ PD753206, 753208 $0,0,0, \mathrm{PC}_{12} \leftarrow(\mathrm{SP}+1)$ $\mathrm{PC}_{11-0} \leftarrow(\mathrm{SP})(\mathrm{SP}+3)(\mathrm{SP}+2)$ \times, \times MBE, RBE $\leftarrow(S P+4)$ $\mathrm{SP} \leftarrow \mathrm{SP}+4$ then skip unconditionally		Unconditional

Note The above operations in the double boxes can be performed only in the Mk II mode. The other operations can be performed only in the Mk I mode.

Notes 1. The above operations in the double boxes can be performed only in the Mk II mode. The other operations can be performed only in the Mk I mode.
2. While the IN instruction and OUT instruction are being executed, the MBE must be set to 0 or 1 and MBS must be set to 15 .

Instruction group	Mnemonic	Operand	Number of bytes	Number of machine cycles	Operation	Addressing area	Skip condition
Special instructions	GET Notes 1,2	taddr	1	3	- μ PD753204 - When TBR instruction $\mathrm{PC}_{11-0} \leftarrow(\text { taddr })_{3-0}+($ taddr +1$)$	*10	
					- When TCALL instruction $\begin{aligned} & (\mathrm{SP}-4)(\mathrm{SP}-1)(\mathrm{SP}-2) \leftarrow \mathrm{PC}_{11-0} \\ & (\mathrm{SP}-3) \leftarrow \mathrm{MBE}, \mathrm{RBE}, 0,0 \\ & \mathrm{PC}_{11-0} \leftarrow\left(\text { taddr }{ }_{3-0}+(\text { taddr }+1)\right. \\ & \mathrm{SP}^{\leftarrow} \leftarrow \mathrm{SP}-4 \end{aligned}$		
					- When instruction other than TBR and TCALL instructions (taddr) (taddr+1) instruction is executed.		Depending on the reference instruction
					- μ PD753206, 753208 - When TBR instruction $\mathrm{PC}_{12-0} \leftarrow($ taddr $) 4-0+($ taddr +1$)$		
					- When TCALL instruction (SP-4) $(\mathrm{SP}-1)(\mathrm{SP}-2) \leftarrow \mathrm{PC}_{11-0}$ $(\mathrm{SP}-3) \leftarrow \mathrm{MBE}, \mathrm{RBE}, 0, \mathrm{PC}_{12}$ $\mathrm{PC}_{12-0} \leftarrow($ taddr) $4-0+($ taddr +1$)$ $\mathrm{SP} \leftarrow \mathrm{SP}-4$		
					- When instruction other than TBR and TCALL instructions (taddr) (taddr+1) instruction is executed.		Depending on the reference instruction
				3	- μ PD753204 - When TBR instruction $\mathrm{PC}_{11-0} \leftarrow(\text { taddr })_{3-0}+($ taddr +1$)$	*10	
				4	- When TCALL instruction $\begin{aligned} & (\mathrm{SP}-6)(\mathrm{SP}-3)(\mathrm{SP}-4) \leftarrow \mathrm{PC}_{11-0} \\ & (\mathrm{SP}-5) \leftarrow 0,0,0,0 \\ & (\mathrm{SP}-2) \leftarrow \times, \times, \mathrm{MBE}, \mathrm{RBE} \\ & \mathrm{PC}_{11-0} \leftarrow(\text { taddr }) 3-0+(\text { taddr }+1) \\ & \mathrm{SP}^{\leftarrow} \leftarrow \mathrm{SP}-6 \end{aligned}$		
				3	- When instruction other than TBR and TCALL instructions (taddr) (taddr+1) instruction is executed.		Depending on the reference instruction

Notes 1. The TBR and TCALL instructions are the table definition assembler pseudo instructions of the GETI instruction.
2. The above operations in the double boxes can be performed only in the Mk II mode. The other operations can be performed only in the Mk I mode.

Instruction group	Mnemonic	Operand	Number of bytes	Number of machine cycles	Operation	Addressing area	Skip condition
Special instructions	GETI Notes 1, 2	taddr	1	3	- μ PD753206, 753208 - When TBR instruction $\mathrm{PC}_{12-0} \leftarrow\left(\right.$ taddr) ${ }_{4-0}+($ taddr +1$)$	*10	
				4	- When TCALL instruction $\begin{aligned} & (\mathrm{SP}-6)(\mathrm{SP}-3)(\mathrm{SP}-4) \leftarrow \mathrm{PC}_{11-0} \\ & (\mathrm{SP}-5) \leftarrow 0,0,0, \mathrm{PC}_{12} \\ & (\mathrm{SP}-2) \leftarrow \times, \times, \mathrm{MBE}, \mathrm{RBE} \\ & \mathrm{PC}_{12-0} \leftarrow(\text { taddr }) 4-0+(\text { taddr }+1) \\ & \mathrm{SP} \leftarrow \mathrm{SP}-6 \end{aligned}$		
				3	- When instruction other than TBR and TCALL instructions (taddr) (taddr+1) instruction is executed.		Depending on the reference instruction

Notes 1. The TBR and TCALL instructions are the table definition assembler pseudo instructions of the GETI instruction.
2. The above operations in the double boxes can be performed only in the Mk II mode.

12. ELECTRICAL SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$)

Parameter	Symbol	Test Conditions		Rating	Unit
Supply voltage	VDD			-0.3 to +7.0	V
Input voltage	V_{11}	Except port 5		-0.3 to VDD +0.3	V
	V_{12}	Port 5	On-chip pull-up resistor	-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$	V
			When N-ch open-drain	-0.3 to +14	V
Output voltage	Vo			-0.3 to VDD +0.3	V
Output current high	Іон	Per pin		-10	mA
		Total for all pins		-30	mA
Output current low	IoL	Per pin		30	mA
		Total for all pins		220	mA
Operating ambient temperature	TA			-40 to +85 Note	${ }^{\circ} \mathrm{C}$
Storage temperature	$\mathrm{T}_{\text {stg }}$			-65 to +150	${ }^{\circ} \mathrm{C}$

Note When LCD is driven in normal mode: $\mathrm{T}_{\mathrm{A}}=-10$ to $+85^{\circ} \mathrm{C}$

Caution Product quality may suffer if the absolute maximum rating is exceeded for even a single parameter or even momentarily. That is, the absolute ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions which ensure that the absolute maximum ratings are not exceeded.

CAPACITANCE ($\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=0 \mathrm{~V}$)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Input capacitance	Cin	$\mathrm{f}=1 \mathrm{MHz}$ Unmeasured pins returned to 0 V .			15	pF
Output capacitance	Cout				15	pF
I/O capacitance	Cıo				15	pF

SYSTEM CLOCK OSCILLATOR CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=\mathbf{- 4 0}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=1.8$ to 5.5 V)

Resonator	Recommended constant	Parameter	Test conditions	MIN.	TYP.	MAX.	Unit
Ceramic resonator	$\mathrm{x}_{1} \quad \mathrm{x}_{2}$ 	Oscillator frequency (fx) Note 1		1.0		6.0 Note 2	MHz
	$=1 \quad{ }^{\text {干 }}$	Oscillation stabilization time Note 3	After Vod reaches oscillation voltage range MIN.			4	ms
Crystal resonator		Oscillator frequency (fx) Note 1		1.0		6.0 Note 2	MHz
		Oscillation stabilization time Note 3	$\mathrm{V}_{\mathrm{DD}}=4.5$ to 5.5 V			10	ms
						30	
External clock		X1 input frequency (fx) Note 1		1.0		$6.0{ }^{\text {Note } 2}$	MHz
		X1 input high/low level width ($\mathrm{txH}, \mathrm{txL}$)		83.3		500	ns

Notes 1. The oscillator frequency and $X 1$ input frequency indicate characteristics of the oscillator only. For the instruction execution time, refer to the AC characteristics.
2. When the oscillator frequency is $4.19 \mathrm{MHz}<\mathrm{fx} \leq 6.0 \mathrm{MHz}$, setting the processor clock control register (PCC) to 0011 results in 1 machine cycle being less than the required $0.95 \mu \mathrm{~s}$. Therefore, set PCC to a value other than 0011.
3. The oscillation stabilization time is necessary for oscillation to stabilize after applying VDD or releasing the STOP mode.

Caution

When using the system clock oscillator, wiring in the area enclosed with the dotted line should be carried out as follows to avoid an adverse effect from wiring capacitance.

- Wiring should be as short as possible.
- Wiring should not cross other signal lines.
- Wiring should not be placed close to a varying high current.
- The potential of the oscillator capacitor ground should be the same as Vod.
- Do not ground it to the ground pattern in which a high current flows.
- Do not fetch a signal from the oscillator.

RECOMMENDED OSCILLATOR CONSTANTS

Ceramic resonator (TA $=-40$ to $85^{\circ} \mathrm{C}$)

Manufacturer	Part number	Frequency (MHz)	Oscillator constant (pF)		Oscillation voltage range (VDD)		Remark
			C1	C2	MIN. (V)	MAX. (V)	
TDK	CCR1000K2	1.0	100	100	1.8	5.5	-
	CCR2.0MC33	2.0	-	-	2.0		On-chip capacitor
	CCR3.58MC3	3.58					
	CCR4.19MC3	4.19					
	FCR4.19MC5				2.2		
	CCR6.0MC3	6.0					
	FCR6.0MC5				2.5		

Caution The oscillator constant and oscillation voltage range indicate conditions of stable oscillation. Oscillation frequency precision is not guaranteed. For applications requiring oscillation frequency precision, the oscillaiton frequency must be adjusted on the implementation circuit. For details, please contact directly the manufacturer of the resonator you will use.

DC CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=\mathbf{- 4 0}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=1.8$ to 5.5 V)

Parameter	Symbol	Test conditions				MIN.	TYP.	MAX.	Unit
Output voltage low	loL	Per pin						15	mA
		Sum of the all pins						150	mA
Input voltage high	$\mathrm{V}_{\text {HH1 }}$	Ports 2, 3, 8, and 9		$2.7 \leq$	$\mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	0.7 VDD		VDD	V
				$1.8 \leq$	$\mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$	0.9 VDD		Vdo	V
	$\mathrm{V}_{\mathbf{H} 2}$	Ports 0, 1, 6, $\overline{\text { RESET }}$		$2.7 \leq$	$\mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	0.8 VdD		VDD	V
				$1.8 \leq$	VDD < 2.7 V	0.9 Vdo		Vdd	V
	$\mathrm{V}_{\text {Ін3 }}$		When a pull-up register is incorporated	$2.7 \leq$	$\mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	0.7 VdD		VdD	V
				$1.8 \leq$	$\mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$	0.9 VDD		Vdo	V
			When N-ch open-drain	$2.7 \leq$	$\mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	0.7 VDD		13	V
				$1.8 \leq$	$\mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$	0.9 Vdo		13	V
	$\mathrm{V}_{\mathrm{H} 4}$	X1				$\mathrm{V}_{\mathrm{DD}}-0.1$		VDD	V
Input voltage low	VIL1	Ports 2, 3, 5, 8, and 9		$2.7 \leq$	$\mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	0		0.3VDD	V
				$1.8 \leq$	$\mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$	0		0.1 VDD	V
	VIL2	Ports 0, 1, 6, $\overline{\text { RESET }}$		$2.7 \leq$	$\mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	0		0.2 VDD	V
				$1.8 \leq$	VDD < 2.7 V	0		0.1 VDD	V
	Vıı3	X1				0		0.1	V
Output voltage high	Vor	SCK, SO, ports 2, 3, 6, 8, and 9 $\mathrm{loн}=-1.0 \mathrm{~mA}$				VDD - 0.5			V
Output voltage low	VoL1	$\overline{\text { SCK, SO, ports } 2,3,5,6,8,}$ and 9		$\begin{aligned} & \mathrm{loL}=15 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{DD}}=4.5 \mathrm{to} 5.5 \mathrm{~V} \end{aligned}$			0.2	2.0	V
				$\mathrm{loL}=1.6 \mathrm{~mA}$				0.4	V
	Vol2	SB0, SB1	N -ch open-drain pull-up resistor $\geq 1 \mathrm{k} \Omega$					0.2 VDD	V
Input leakage current high	Lııн1	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}}$	Other pins than X1					3	$\mu \mathrm{A}$
	اııн2		X1					20	$\mu \mathrm{A}$
	Іьнз	$\mathrm{V}_{\text {IN }}=13 \mathrm{~V}$	Port 5 (When N-ch open-drain)					20	$\mu \mathrm{A}$
Input leakage current low	\|LLL1	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$	Other pins than port 5 and X 1					-3	$\mu \mathrm{A}$
	\|LLL2		X1					-20	$\mu \mathrm{A}$
	lıLı		Port 5 (When N-ch open drain) Other than when an input instruction is executed					-3	$\mu \mathrm{A}$
			Port 5 (When N-ch open-drain) When an input instruction is executed					-30	$\mu \mathrm{A}$
					$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$		-10	-27	$\mu \mathrm{A}$
					$\mathrm{V}_{\mathrm{dD}}=3.0 \mathrm{~V}$		-3	-8	$\mu \mathrm{A}$
Output leakage current high	ILoh1	VOUT $=$ VDD	$\overline{\text { SCK, SO/SB0, SB1, ports } 2,3,6,8}$ and 9 Port 5 (When a pull-up resistor is incorporated.)					3	$\mu \mathrm{A}$
	ILoh2	Vout $=13 \mathrm{~V}$	Port 5 (When N-ch open-drain)					20	$\mu \mathrm{A}$
Output leakage current low	ILOL	Vout $=0 \mathrm{~V}$						-3	$\mu \mathrm{A}$
On-chip pull-up resistor	RL1	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$	Ports 0 to 3, 6, 8, and 9 (Excluding P00 pin)			50	100	200	k Ω
	RL2		Port 5 (Mask option)			15	30	60	k Ω

DC CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=\mathbf{- 4 0}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=1.8$ to 5.5 V)

Parameter	Symbol	Test conditions			MIN.	TYP.	MAX.	Unit
LCD drive voltage	V LCd	$V A C O=0$	$\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$		2.7		VDD	V
			$\mathrm{T}_{\mathrm{A}}=-10$ to $+85^{\circ} \mathrm{C}$		2.2		VDD	V
		$V A C 0=1$			1.8		VDD	V
VAC current ${ }^{\text {Note } 1}$	Ivac	$V A C 0=1, V D D=2.0 \vee \pm 10 \%$				1	4	$\mu \mathrm{A}$
LCD split resistor ${ }^{\text {Note } 2}$	Rlcol				50	100	200	$\mathrm{k} \Omega$
	Rlcd2				5	10	20	k Ω
LCD output voltage deviation Note 3 (common)	Vodc	$\mathrm{lo}= \pm 1.0 \mu \mathrm{~A}$	$\begin{aligned} & V_{\text {LCDO }}=V_{\text {LCD }} \\ & V_{\text {LCD1 }}=V_{\text {LCD }} \times 2 / 3 \\ & V_{L C D 2}=V_{L C D} \times 1 / 3 \\ & 1.8 \mathrm{~V} \leq V_{L C D} \leq V_{D D} \end{aligned}$		0		± 0.2	V
LCD output voltage deviation Note 3 (segment)	Vods	$\mathrm{lo}= \pm 0.5 \mu \mathrm{~A}$			0		± 0.2	V
Supply current Note 4	IdD1	6.0 MHz Crystal oscillation $\mathrm{C} 1=\mathrm{C} 2=22 \mathrm{pF}$	$V_{\text {DD }}=5.0 \mathrm{~V} \pm 10 \%{ }^{\text {Note } 5}$			1.9	6.0	mA
			VDD $=3.0 \mathrm{~V} \pm 10 \%$ Note 6			0.4	1.3	mA
	IdD2		HALT mode	$\mathrm{V} D \mathrm{D}=5.0 \mathrm{~V} \pm 10 \%$		0.72	2.1	mA
				$V_{\text {DD }}=3.0 \mathrm{~V} \pm 10 \%$		0.27	0.8	mA
	IDD1	4.19 MHz Crystal oscillation $\mathrm{C} 1=\mathrm{C} 2=22 \mathrm{pF}$	$V_{D D}=5.0 \mathrm{~V} \pm 10 \%{ }^{\text {Note } 5}$			1.5	4.0	mA
			VDD $=3.0 \mathrm{~V} \pm 10 \%{ }^{\text {Note } 6}$			0.25	0.75	mA
	IdD2		HALT mode	$V_{D D}=5.0 \mathrm{~V} \pm 10 \%$		0.7	2.0	mA
				$\mathrm{V} D \mathrm{D}=3.0 \mathrm{~V} \pm 10 \%$		0.23	0.7	mA
	Idd3	STOP mode	$\mathrm{V}_{\text {DD }}=5.0 \mathrm{~V} \pm 10 \%$			0.05	10	$\mu \mathrm{A}$
			$\begin{aligned} & \mathrm{VDD}=3.0 \mathrm{~V} \\ & \pm 10 \% \end{aligned}$			0.02	5	$\mu \mathrm{A}$
				$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.02	3	$\mu \mathrm{A}$

Notes 1. Set VACO to 0 when setting the STOP mode. If VACO is set to 1 , the current increases by about 1 $\mu \mathrm{A}$.
2. Either RlcD1 or Rlcd2 can be selected by the mask option.
3. The voltage deviation is the difference from the output voltage corresponding to the ideal value of the segment and common outputs (VLCDn; $n=0,1,2$).
4. Not including currents flowing in on-chip pull-up resistors or LCD split resistors.
5. When the processor clock control register (PCC) is set to 0011 and the device is operated in the highspeed mode.
6. When PCC is set to 0000 and the device is operated in the low-speed mode.

AC CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$, $\mathrm{V} D \mathrm{DD}=1.8$ to 5.5 V)

Parameter	Symbol	Test conditions		MIN.	TYP.	MAX.	Unit
CPU clock cycle time Note 1	tcy	$\mathrm{V} D \mathrm{D}=2.7$ to 5.5 V		0.67		64	$\mu \mathrm{s}$
				0.95		64	$\mu \mathrm{s}$
TIO input frequency	$\mathrm{fti}^{\text {l }}$	$\mathrm{V}_{\mathrm{DD}}=2.7$ to 5.5 V		0		1.0	MHz
				0		275	kHz
TIO input high/low-level width	tтIH, ttil	$V_{\text {DD }}=2.7$ to 5.5 V		0.48			$\mu \mathrm{s}$
				1.8			$\mu \mathrm{s}$
Interrupt input high/ low-level width	tinth, tintl	INT0	$\mathrm{IM} 02=0$	Note 2			$\mu \mathrm{s}$
			$\mathrm{IM} 02=1$	10			$\mu \mathrm{s}$
		INT4		10			$\mu \mathrm{s}$
		KR0 to KR3		10			$\mu \mathrm{s}$
$\overline{\text { RESET low level width }}$	trsL			10			$\mu \mathrm{s}$

Notes 1. The cycle time (minimum instruction execution time) of the CPU clock (Φ) is determined by the oscillation frequency of the connected resonator (and external clock) and the processor clock control register (PCC). The figure at the right indicates the cycle time tcy versus supply voltage Vdd characteristic.
2. 2 tcy or $128 / \mathrm{fx}$ is set by setting the interrupt mode register (IMO).

SERIAL TRANSFER OPERATION

2-Wire and 3-Wire Serial I/O Mode ($\overline{\mathrm{SCK}}$...Internal clock output): ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$, $\mathrm{V}_{\mathrm{DD}}=1.8$ to 5.5 V)

Parameter	Symbol	Test conditions		MIN.	TYP.	MAX.	Unit
$\overline{\text { SCK }}$ cycle time	tkcy1	$\mathrm{V}_{\mathrm{DD}}=2.7$ to 5.5 V		1300			ns
				3800			ns
$\overline{\text { SCK }}$ high/low-level width	tkL1, tkH1	$V_{D D}=2.7$ to 5.5 V		tкcrı1/2-50			ns
				tkcy1/2-150			ns
SI ${ }^{\text {Note } 1}$ setup time (to SCK \uparrow)	tsik1	$V_{D D}=2.7$ to 5.5 V		150			ns
				500			ns
SINote 1 hold time (from SCK \uparrow)	tks11	$V_{\text {DD }}=2.7$ to 5.5 V		400			ns
				600			ns
SO Note 1 output delay time from $\overline{\text { SCK }} \downarrow$	tksor	$\begin{aligned} & R \mathrm{RL}=1 \mathrm{k} \Omega, \\ & \mathrm{CL}_{\mathrm{L}}=100 \mathrm{pF} \end{aligned}$	$V_{\text {DD }}=2.7$ to 5.5 V	0		250	ns
				0		1000	ns

Notes 1. In the 2 -wire serial I/O mode, read SB0 or SB1 instead.
2. RL and C_{L} are the load resistance and load capacitance of the SO output lines.

2-Wire and 3-Wire Serial I/O Mode (SCK...External clock input): ($\mathrm{T}_{\mathrm{A}}=\mathbf{- 4 0}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=1.8$ to 5.5 V)

Parameter	Symbol	Test conditions		MIN.	TYP.	MAX.	Unit
$\overline{\text { SCK cycle time }}$	tkcy2	$V_{\text {DD }}=2.7$ to 5.5 V		800			ns
				3200			ns
$\overline{\text { SCK }}$ high/low-level width	tкц2, tкн2	$V_{\text {D }}=2.7$ to 5.5 V		400			ns
				1600			ns
SI ${ }^{\text {Note } 1}$ setup time (to SCK \uparrow)	tsik2	$\mathrm{V}_{\mathrm{DD}}=2.7$ to 5.5 V		100			ns
				150			ns
SINote 1 hold time (from $\overline{\mathrm{SCK}} \uparrow$)	tksı 2	$V_{D D}=2.7$ to 5.5 V		400			ns
				600			ns
SO ${ }^{\text {Note } 1} 1$ output delay time from $\overline{\mathrm{SCK}} \downarrow$	tksoz	$\begin{aligned} & R \mathrm{LL}=1 \mathrm{k} \Omega, \\ & \mathrm{CL}_{\mathrm{L}}=100 \mathrm{pF} \end{aligned}$	$V_{D D}=2.7$ to 5.5 V	0		300	ns
				0		1000	ns

Notes 1. In the 2 -wire serial I/O mode, read SB0 or SB1 instead.
2. RL and CL are the load resistance and load capacitance of the SO output lines.

SBI Mode ($\overline{\mathrm{SCK}} . .$. Internal clock output (master)): $\left(\mathrm{T}_{\mathrm{A}}=-40\right.$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=1.8$ to 5.5 V)

Note RL and CL are the load resistance and load capacitance of the SB0 and SB1 output lines.

SBI Mode (SCK...External clock input (slave)): $\left(\mathrm{T}_{\mathrm{A}}=-40\right.$ to $+85^{\circ} \mathrm{C}$, $\mathrm{V}_{\mathrm{DD}}=1.8$ to 5.5 V)

Note RL and CL are the load resistance and load capacitance of the SB0 and SB1 output lines.

AC Timing Test Point (Excluding X1 Input)

Clock Timing

TIO Timing

TIO

Serial Transfer Timing

3-wire serial I/O mode

2-wire serial I/O mode

Serial Transfer Timing

Bus release signal transfer

Command signal transfer

Interrupt input timing

INTP0, 4 KRO to 3

RESET input timing

DATA MEMORY STOP MODE LOW SUPPLY VOLTAGE DATA RETENTION CHARACTERISTICS

$$
\left(\mathrm{T}_{\mathrm{A}}=-40 \text { to }+85^{\circ} \mathrm{C}\right)
$$

Parameter	Symbol	Test conditions	MIN.	TYP.	MAX.	Unit
Release signal set time	tsrel		0			$\mu \mathrm{s}$
Oscillation stabilization wait time Note 1	twalt	Release by RESET		Note 2		ms
		Release by interrupt		Note 3		ms

Notes 1. The oscillation stabillization wait time is the time during which the CPU operation is stopped to prevent unstable operation at the oscillation start.
2. Either $2^{17} / \mathrm{fx}$ or $2^{15} / \mathrm{fx}$ can be selected by the mask option.
3. Depends on the basic interval timer mode register (BTM) settings (See the table below).

BTM3	BTM2	BTM1	BTM0	Wait time	
				When $\mathrm{fx}=4.19-\mathrm{MHz}$ operation	When $\mathrm{fx}=6.0-\mathrm{MHz}$ operation
-	0	0	0	2 ${ }^{20 / f x}$ (approx. 250 ms)	220/fx (approx. 175 ms)
-	0	1	1	$2^{17 / f x}$ (approx. 31.3 ms)	2 ${ }^{17} / \mathrm{fx}$ (approx. 21.8 ms)
-	1	0	1	$2^{15 / f x}$ (approx. 7.81 ms)	2 ${ }^{15} / \mathrm{fx}$ (approx. 5.46 ms)
-	1	1	1	$2^{13} / \mathrm{fx}$ (approx. 1.95 ms)	$2^{13} / \mathrm{fx}$ (approx. 1.37 ms)

Data Retention Timing (STOP Mode Release by RESET)

Data Retention Timing (Standby Release Signal: STOP Mode Release by Interrupt Signal)

13. CHARACTERISTIC CURVES (REFERENCE VALUES)

IdD vs VdD (System Clock : 4.19-MHz Crystal Resonator)

14. PACKAGE DRAWINGS

48 PIN PLASTIC SHRINK SOP (375 mil)

NOTE
Each lead centerline is located within 0.10 mm (0.004 inch) of its true position (T.P.) at maximum material condition.

		P48GT-65-375
ITEM	MILLIMETERS	INCHES
A	16.21 MAX.	0.639 MAX.
B	0.63 MAX.	0.025 MAX.
C	0.65 (T.P.)	0.026 (T.P.)
D	0.30 ± 0.10	$0.012_{-0.005}^{+0.004}$
E	0.125 ± 0.075	0.005 ± 0.003
F	2.0 MAX.	0.079 MAX.
G	1.7 ± 0.1	0.067 ± 0.004
H	10.0 ± 0.3	$0.394_{-0.013}^{+0.012}$
1	8.0 ± 0.2	0.315 ± 0.008
J	1.0 ± 0.2	$0.039_{-0.008}^{+0.009}$
K	$0.15_{-0.05}^{+0.10}$	$0.006_{-0.002}^{+0.004}$
L	0.5 ± 0.2	$0.020_{-0.009}^{+0.008}$
M	0.10	0.004
N	0.10	0.004

15. RECOMMENDED SOLDERING CONDITIONS

The μ PD753208 should be soldered and mounted under the conditions recommended in the table below.
For details of recommended soldering conditions, refer to the information document "Semiconductor Device Mounting Technology Manual" (C10535E).

For soldering methods and conditions other than those recommended below, contact an NEC sales representative.

Table 15-1. Surface Mounting Type Soldering Conditions

```
\muPD753204GT-xxx : 48-pin plastic shrink SOP ( }375\mathrm{ mils, 0.65-mm pitch)
\muPD753206GT-xxx : 48-pin plastic shrink SOP (375 mils, 0.65-mm pitch)
\muPD753208GT-xxx : 48-pin plastic shrink SOP (375 mils, 0.65-mm pitch)
```

Soldering Method	Soldering Conditions	Symbol
Infrared rays reflow	Peak package's surface temperature: $235^{\circ} \mathrm{C}$, Reflow time: 30 seconds or less (at $210^{\circ} \mathrm{C}$ or higher), Number of reflow processes: Twice max.	IR35-00-2
VPS	Peak package's surface temperature: $215^{\circ} \mathrm{C}$, Reflow time: 40 seconds or less (at $200^{\circ} \mathrm{C}$ or higher), Number of reflow processes: Twice max.	VP15-00-2
Wave soldering	Solder temperature: $260^{\circ} \mathrm{C}$ or below, Flow time: 10 seconds or less, Number of flow process: 1, Preheating temperature: $120^{\circ} \mathrm{C}$ or below (Package surface temperature)	WS60-00-1
Partial heating	Pin temperature: $300^{\circ} \mathrm{C}$ or below, Time: 3 seconds or less (per device side)	-

Caution Use of more than one soldering method should be avoided (except for partial heating).

APPENDIX A μ PD753108, 753208, AND 75P3216 FUNCTIONAL LIST

Parameter		μ PD753108	μ PD753208	μ PD75P3216
Program memory		Mask ROM 0000H-1FFFH (8192 $\times 8$ bits)		One-time PROM 0000H-3FFFH (16384×8 bits)
Data memory		$\begin{gathered} 000 \mathrm{H}-1 \mathrm{FFH} \\ (512 \times 4 \mathrm{bits}) \end{gathered}$		
CPU		75XL CPU		
Instruction execution time	When main system clock is selected	- $0.95,1.91,3.81,15.3 \mu \mathrm{~s}$ (@ 4.19-MHz operation) - $0.67,1.33,2.67,10.7 \mu \mathrm{~s}$ (@ 6.0-MHz operation)		
	When subsystem clock is selected	$\begin{aligned} & 122 \mu \mathrm{~s} \text { (@ 32.768-kHz } \\ & \text { operation) } \end{aligned}$	None	
I/O port	CMOS input	8 (on-chip pull-up resistors can be specified by software: 7)	6 (on-chip pull-up resistors can be specified by software: 5)	
	CMOS input/output	20 (on-chip pull-up resistors can be specified by software)		
	N-ch open drain input/output	4 (on-chip pull-up resistors can be specified by software, withstand voltage is 13 V)		4 (no mask option, withstand voltage is 13 V)
	Total	32	30	
LCD controller/driver		Segment selection: 16/20/24 (can be changed to CMOS input/output port in 4 timeunit; max. 8)	Segment selection: 4/8/12 segments (can be changed to CMOS input/output port in 4 time-unit; max. 8)	
		Display mode selection: static, $1 / 2$ duty ($1 / 2$ bias), $1 / 3$ duty ($1 / 2$ bias), $1 / 3$ duty ($1 / 3$ bias), $1 / 4$ duty ($1 / 3$ bias)		
		On-chip split resistor for LCD driver can be specified by using mask option.		No on-chip split resistor for LCD driver
Timer		5 channels - 8-bit timer/event counter: 3 channels - Basic interval timer/ watchdog timer: 1 channel - Watch timer: 1 channel	5 channels - 8-bit timer counter: 2 channels (can be used as the 16 -bit timer counter, carrier generator, and timer with gate) - 8-bit timer/event counter: 1 channel - Basic interval timer/watchdog timer: 1 channel - Watch timer: 1 channel	
Clock output (PCL)		- $\Phi, 524,262,65.5 \mathrm{kHz}$ (Main system clock: @ 4.19-MHz operation) - Ф, 750, $375,93.8 \mathrm{kHz}$ (Main system clock: @ 6.0-MHz operation)		
Buzzer output (BUZ)		- 2, 4, 32 kHz (Main system clock: $4.19-\mathrm{MHz}$ operation or subsystem clock: @ 32.768-kHz operation) - 2.86, $5.72,45.8 \mathrm{kHz}$ (Main system clock: @ $6.0-\mathrm{MHz}$ operation)	- 2, 4, 32 kHz (Main system clock: @ 4.19-MHz operation) - 2.93, 5.86, 46.9 kHz (Main system clock: @ 6.0-MHz operation)	
Serial interface		3 modes are available - 3-wire serial I/O mode ... MSB/LSB can be selected for transfer top bit - 2-wire serial I/O mode - SBI mode		
SCC register		Contained	None	
SOS register				
Vectored interrupt		External: 3, internal: 5	External: 2, internal: 5	

Parameter	μ PD753108	$\mu \mathrm{PD} 753208$	μ PD75P3216
Test input	External: 1, internal: 1		
Operation supply voltage	VDD $=1.8$ to 5.5 V		
Operating ambient temperature	$\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$		
Package	- 64-pin plastic QFP ($14 \times 14 \mathrm{~mm}$) - 64-pin plastic QFP $(12 \times 12 \mathrm{~mm})$	- 48-pin plastic shrink SOP (375 mils, $0.65-\mathrm{mm}$ pitch)	

APPENDIX B DEVELOPMENT TOOLS

The following development tools are provided for system development using the μ PD753208.
In 75XL series, the relocatable assembler which is common to the μ PD753208 Subseries is used in combination with the device file of each product.

Language processor

RA75X relocatable assembler	Host machine			Part number (product name)
		OS	Distribution media	
	PC-9800 series	MS-DOS ${ }^{\text {TM }}$	3.5-inch 2HD	μ S5A13RA75X
		$\binom{\text { Ver. } 3.30 \text { to }}{\text { Ver. } 6.2^{\text {Note }}}$	5-inch 2HD	μ S5A10RA75X
	IBM PC/AT ${ }^{\text {TM }}$ and compatible machines	Refer to section "OS for IBM PC"	3.5-inch 2HC	μ S7B13RA75X
			5-inch 2HC	μ S7B10RA75X

Device file	Host machine			Part number (product name)
		OS	Distribution media	
	PC-9800 series	MS-DOS	3.5-inch 2HD	μ S5A13DF753208
		$\binom{\text { Ver. } 3.30 \text { to }}{\text { Ver. } 6.2^{\text {Note }}}$	5-inch 2HD	μ S5A10DF753208
	IBM PC/AT and compatible machines	Refer to section "OS for IBM PC"	3.5-inch 2HC	μ S7B13DF753208
			5-inch 2HC	μ S7B10DF753208

PROM write tools

Hardware	PG-1500PA-75P3216GT	PG-1500 is a PROM programmer which enables you to program single chip microcomputers including PROM by stand-alone or host machine operation by connecting an attached board and optional programmer adapter to PG-1500. It also enables you to program typical PROM devices of 256 Kbits to 4 Mbits.			
		PROM programmer adapter for the μ PD75P3216GT. Connect the programmer adapter to PG-1500 for use.			
Software	PG-1500 controller	PG-1500 and a host machine are connected by serial and parallel interfaces and PG-1500 is controlled on the host machine.			
		Host machine	os	Distribution media	Part number (product name)
		PC-9800 series	MS-DOS	3.5-inch 2HD	μ S5A13PG1500
			$\binom{\text { Ver. } 3.30 \text { to }}{\text { Ver. } 6.2^{\text {Note }}}$	5-inch 2HD	μ S5A10PG1500
		IBM PC/AT and compatible machines	Refer to section "OS for IBM PC"	3.5-inch 2HD	μ S7B13PG1500
				5-inch 2HC	μ S7B10PG1500

Note Ver. 5.00 or later have the task swap function, but it cannot be used for this software.

Remarks 1. Operation of the assembler and device file is guaranteed only on the above host machine and OSs.
2. Operation of the PG-1500 controller is guaranteed only on the above host machine and OSs.

Debugging tool

The in-circuit emulators (IE-75000-R and IE-75001-R) are available as the program debugging tool for the μ PD753208.

The system configurations are described as follows.

Hardware	IE-75000-R Note 1	In-circuit emulator for debugging the hardware and software when developing the application systems that use the 75X series and 75XL series. When developing a μ PD753208 subseries, the emulation board IE-75300-R-EM and emulation probe EP-753208GT-R that are sold separately must be used with the IE-75000-R. By connecting with the host machine and the PROM programmer, efficient debugging can be made. It contains the emulation board IE-75000-R-EM which is connected.			
	IE-75001-R	In-circuit emulator for debugging the hardware and software when developing the application systems that use the 75X series and 75XL series. When developing a μ PD753208 subseries, the emulation board IE-75300-R-EM and emulation probe EP-753208GT-R which are sold separately must be used with the IE-75001-R. It can debug the system efficiently by connecting the host machine and PROM programmer.			
	IE-75300-R-EM	Emulation board for evaluating the application systems that use a μ PD753208 subseries. It must be used with the IE-75000-R or IE-75001-R.			
	EP-753208GT-R EV-9500GF-48	Emulation probe for the μ PD753208GT. It must be connected to the IE-75000-R (or IE-75001-R) and IE-75300-R-EM. It is supplied with the 48-pin conversion adapter EV-9500GF-48 which facilitates connection to a target system.			
Software	IE control program	Connects the IE-75000-R or IE-75001-R to a host machine via RS-232-C and Centronix I/F and controls the above hardware on a host machine.			
		Host machine	OS	Distribution media	Part No. (product name)
		PC-9800 series	$\begin{gathered} \text { MS-DOS } \\ \binom{\text { Ver. } 3.30 \text { to }}{\text { Ver. } 6.2^{\text {Note 2 }}} \end{gathered}$	3.5-inch 2HD	μ S5A13IE75X
				5-inch 2HD	μ S5A10IE75X
		IBM PC/AT and its compatible machine	Refer to section "OS for IBM PC"	3.5-inch 2HC	μ S7B13IE75X
				5 -inch 2HC	μ S7B10IE75X

Notes 1. Maintenance parts.
2. Ver. 5.00 or later have the task swap function, but it cannot be used for this software.

Remarks 1. Operation of the IE control program is guaranteed only on the above host machines and OSs.
2. The μ PD753204, 753206, 753208, and 75P3216 are commonly referred to as the μ PD753208 Subseries.

OS for IBM PC

The following IBM PC OS's are supported.

OS	Version
PC DOS	
MS-DOS	Ver. 5.02 to Ver. 6.3 J6.1/V Note to J6.3/V Note
IBM DOS $^{\text {TM }}$	Ver. 5.0 to Ver. 6.22 $5.0 / \mathrm{V}$ Note to $6.2 / \mathrm{V}$ Note

Note English version is supported.

Caution Ver. 5.0 and later have the task swap function, but it cannot be used for this software.

APPENDIX C RELATED DOCUMENTS

The related documents indicated in this publication may include preliminary versions.
However, preliminary versions are not marked as such.

Documents related to device

Document Name	Document No.	
	Japanese	English
μ PD753204, 753206, 753208 Data Sheet	U10166J	This manual
μ PD75P3216 Data Sheet	U10241J	U10241E
μ PD753208 User's Manual	U10158J	U10158E
$75 X L$ Series Selection Guide	U10453J	U10453E

Documents related to development tool

Other related documents

Document Name	Document No.	
	Japanese	English
Semiconductor Device Package Manual	C10943X	
Semiconductor Device Mounting Technology Manual	C10535J	C10535E
Quality Grades on NEC Semiconductor Devices	C11531J	C11531E
NEC Semiconductor Device Reliability/Quality Control System	C10983J	C10983E
Electrostatic Discharge (ESD) Test	MEM-539	IEI-1201
Guide to Quality Assurance for Semiconductor Devices	C11893J	MEI-1202
Microcontroller - Related Product Guide - Third Party Products -	C11416J	-

Caution The contents of the documents listed above are subject to change without prior notice to users. Make sure to use the latest edition when starting design.

NOTES FOR CMOS DEVICES

(1) PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note: Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note: No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS device behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to Vod or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

(3) STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note: Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- Device availability
- Ordering information
- Product release schedule
- Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics Inc. (U.S.)
Santa Clara, California
Tel: 800-366-9782
Fax: 800-729-9288
NEC Electronics (Germany) GmbH
Duesseldorf, Germany
Tel: 0211-65 0302
Fax: 0211-65 03490
NEC Electronics (UK) Ltd.
Milton Keynes, UK
Tel: 01908-691-133
Fax: 01908-670-290
NEC Electronics Italiana s.r.1. Milano, Italy
Tel: 02-66 7541
Fax: 02-66 754299

NEC Electronics (Germany) GmbH NEC Electronics Hong Kong Ltd.
Benelux Office
Hong Kong
Tel: 2886-9318
Fax: 2886-9022/9044
NEC Electronics Hong Kong Ltd.
Seoul Branch
Seoul, Korea
Tel: 02-528-0303
Fax: 02-528-4411
NEC Electronics (France) S.A. NEC Electronics Singapore Pte. Ltd.
Spain Office
Madrid, Spain
Tel: 01-504-2787
Fax: 01-504-2860
NEC Electronics (Germany) GmbH
Scandinavia Office
Taeby, Sweden
Tel: 08-63 80820
Fax: 08-63 80388

United Square, Singapore 1130
Tel: 253-8311
Fax: 250-3583
NEC Electronics Taiwan Ltd.
Taipei, Taiwan
Tel: 02-719-2377
Fax: 02-719-5951
NEC do Brasil S.A.
Sao Paulo-SP, Brasil
Tel: 011-889-1680
Fax: 011-889-1689

MS-DOS is a trademark of Microsoft Corporation.

IBM DOS, PC/AT, and PC DOS are trademarks of International Business Machines Corporation.

The export of this product from Japan is regulated by the Japanese government. To export this product may be prohibited without governmental license, the need for which must be judged by the customer. The export or reexport of this product from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales representative.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.
While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.
NEC devices are classified into the following three quality grades:
"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.
The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.
Anti-radioactive design is not implemented in this product.

